COMPACT GROUPS

1. Preliminaries

1.1. Topological Groups. A topological group is a (Hausdorff) topological space G which also has a group structure i.e. a multiplicaion map $m: G \times G \rightarrow G$ and an inverse map $i: G \rightarrow G$ satisfying the usual axioms of groups, such that the group structure and topology are compatible. That is, the maps m and i are continuous maps of topological spaces (we assume here that the space $G \times G$ is equipped with the product topology).

We assume that the topological group G is locally compact. That is, every point of the group G has a neighbourhood which is compact.

We will only deal with locally compact groups from now on.By a mild abuse of notation, we will call these topological groups.

Example. $\mathbb{R}, \mathbb{R}^{n}$ are topological groups under vector addition.
$G L_{n}(\mathbb{R})$ is a topological group under matrix multiplication.
The group $U(n)$ of unitary matrices is a compact topological group.
The group $S O(n)$ of orthogonal matrices of determinant one, is a compact topological group.
1.2. Haar Measure on Topological Groups. We assume the well known result that every locally compact group G comes equipped with a left invariant measure, which is a regular Borel measure, called a (left) Haar measure. "Regular" means that the measure of a Borel set is approximated by compact sets from below and open sets from above. Such a measure is unique up to a scalar multiple.

A compact topological group is automatically locally compact. It can easily be proved that a locally compact group is compact if and only if its Haar measure is finite. The Haar measure of G is then the unique Haar measure μ with $\mu(G)=1$ (the total volume is one).

Example. (1) A group G with discrete topology is a locally compact group with Haar measure being the counting measure: the measure of any set is its cardinality.
(2) The group \mathbb{R}^{n} with the Euclidean topology is a locally compact group (vector space) with Haar measure μ being the Lebesgue measure. For any $A \in G L_{n}(\mathbb{R})$, it follows that $d \mu(A x)$ is also a left invariant meanure, and by the general uniqueness theorem, $d \mu(A x)=c d \mu(x)$ for some scalar $c>0$. Note that by the change of variables formula, we have, for $A \in G L_{n}(\mathbb{R})$ and $x \in \mathbb{R}^{n}$,

$$
d \mu(A x)=\mid \operatorname{det} A) \mid d \mu(x) .
$$

Therefore, the scalar $c=|\operatorname{det} A|$.
(3) The set $G L_{n}(\mathbb{R})$ of nonsingular $n \times n$ matrices is an open subset of the set $M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$ of $n \times n$ matrices. If $d x$ denotes the Lebesgue measure on the vector space $M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$, then the Haar measure on $G L_{n}(\mathbb{R})$ is $\frac{d x}{(\operatorname{det} x)^{n}}$.
(4) Suppose that G is a compact group and v is a regular Borel measure on the quotient space G / H such that v is G invariant. Suppose μ_{H} is a left invariant measure on H. Then the functional

$$
f \mapsto \int_{G / H} d v(x) \int_{H} d \mu_{H}(h) f(x h)
$$

gives a left invariant Haar measure on G.
Corollary: the groups $S O(n)$ have a left invariant Haar measure.
The proof is by induction. The group $S O(2)=S^{1}$ has a Haar measure, and $S O(n) / S O(n-1)=S^{n-1}$ has an $S O(n)$ invariant measure: consider $X=\mathbb{R}^{n} \backslash\{0\}$. The Lebesgue measure $d \mu_{n}$ on X is an $S O(n)$ invariant measure. Given a measurable set $E \subset S^{n-1}$, and the open interval $(0,1)$, consider the map $E \mapsto \mu_{n}(E \times(0,1))$. This gives a measure on S^{n-1} invariant under $S O(n)$. By the result (4), $S O(n)$ has a Haar measure.

Example. (Haar measure on Lie Groups) We will say that a topological group G is a Lie Group if G is a smooth manifold such that the group operations $m: G \times G \rightarrow G$ and $i: G \rightarrow G$ are smooth (i.e. infinitely differentiable).

If G is a Lie group of dimension d, let $\omega_{1}, \cdots, \omega_{d}$ denote linearly independent left invariant differential 1-forms on G. Such forms are obtained by taking a basis of cotangent vectors at the identity and left translating them to get differential one forms on the manifold. A left
invariant Haar measure on G is got by fixing a left invariant top degree differential form $\omega=\omega_{1} \wedge \cdots \wedge \omega_{d}$ and integrating continuous functions with respect to this differential form ω. We will see this in detail later.

Much of this course is concerned with compact Lie groups. Examples of compact Lie groups are the unitary group $U(n)$, the orthogonal group $O(n)$, the torus group $S^{1} \times \cdots \times S^{1}$. Any closed subgroup of $U(n)$ may be shown to have the structure of a compact Lie group. One of the theorems proved in this course says that any compact Lie group may be realised as a closed subgroup of $U(n)$ for some n.
1.3. Representations. Given a topological group G, A continuous homomorphism

$$
\rho: G \rightarrow G L_{n}(\mathbb{C})=G L\left(\mathbb{C}^{n}\right)=G L(V) \quad(n \geq 1)
$$

is called a (complex) representation where V is an n-dimensional complex vector space; we often refer to the pair (ρ, V) as a representation (or simply the vector space V when the action ρ is clear from the context, or simply the homomorphism ρ). We write $n=\operatorname{dim}(V)=\operatorname{dim}(\rho)$. Given a representation $\rho: G \rightarrow G L(V)$ on an n-dimensional vector space V, we fix a basis v_{1}, \cdots, v_{n} of V. We then realise the representation ρ as a homomorphism $\rho: G \rightarrow G L_{n}(\mathbb{C})$, where now $\rho(g)$ denotes the matrix of the transformation $\rho(g)$ with respect to the basis v_{1}, \cdots, v_{n}. Different bases give conjugate homomorphisms from G into $G L_{n}(\mathbb{C})$.

A sub-representation W of V is a subspace W of V which is stable under the action of all the linear transformations $\rho(g): g \in G$. A representation is irreducible if the only sub-representations W of V are V and $\{0\}$.

A representation (ρ, V) is trivial if V is one dimensional and for all $g \in G, \rho(g) v=v$ for $v \in V$. If the dimension of V is arbitrary, but $\rho(g)=1$ for all g, then we say that V is a direct sum of trivial representations (or that G acts trivially on V).

If $W \subset V$ is a sub-representation of a representation (ρ, V), then we get a representation on the quotient vector space V / W as follows. If $v+W$ is a coset representative of the quotient V / W and $g \in G$, then write $g(v+W)=\rho(g)(v)+W$; it is routine to check that this defines a representation (called the quotient representation) of G on the quotient V / W.

Fix a basis w_{1}, \cdots, w_{m} is a basis of W. Extend this to a basis

$$
B: w_{1}, \cdots, w_{m}, e_{1}, \cdots, e_{p}
$$

of V. Then the cosets $e_{1}+W, \cdots, e_{p}+W$ form a basis of the quotient V / W. In matrix terms (with respect to the basis B), the matrices $\rho(g)$ are of the form

$$
\left(\begin{array}{cc}
\tau(g) & z(g) \\
0 & \bar{\rho}(g)
\end{array}\right)
$$

where $\overline{\rho(g)}$ is the quotient representation on V / W. Here $z(g)$ is an $p \times m$ matrix depending on g.

Suppose (τ, W) and (ρ, V) are two representations and $T: W \rightarrow V$ a linear map such that for each $g \in G$, the equality $\rho(g) T=T \tau(g)$ holds. Then T is called a morphism of representations W and V; one also says that T is G-equivariant. Observe that the kernel of T is a subrepresentation of (τ, W) (and the image of T is a sub-representation of $(\rho, V))$. The co-kernel of T, namely $V / \operatorname{Image}(T)$, is a quotient representation of V.

Given two representations (τ, W) and (ρ, V), the vector space of linear maps $\operatorname{Hom}(V, W)$ is also a representation of G defined, for $g \in G$ and $T \in \operatorname{Hom}(V, W)$, by $g * T=\tau(g) T \rho\left(g^{-1}\right)$ (if T is equivariant, $g * T=T$ for all $g \in G$). If W is the one dimensional trivial representation, then $\operatorname{Hom}(V, W)$ is simply the dual (also denoted V^{*}) of the vector space V, and the foregoing representation on V^{*} is called the contragredient of V. If v_{1}, \cdots, v_{n} is a basis of V let $v_{1}^{*}, \cdots, v_{n}^{*}$ be the dual basis of V^{*}, i.e. $\left\langle v_{i}^{*}, v_{j}\right\rangle=\delta_{i j}$ for all i, j. Denote now by $\rho(g)$ the matrix of the transformation $\rho(g)$ with respect to the basis v_{1}, \cdots, v_{n}. The matrix of the contragredient $\rho^{*}(g)$ with respect to the dual basis $v_{1}^{*}, \cdots, v_{n}^{*}$ is easily seen to be ${ }^{t}(\rho(g))^{-1}$, the transpose of the matrix $\rho(g)^{-1}$.

Two representations (τ, W) and (ρ, V) are equivalent of there is a morphism $T: W \rightarrow V$ of representations which is a linear isomorphism of vector spaces. If T is an isomorphism, then the inverse linear map $T^{-1}: V \rightarrow W$ is also a morphism of representations, called the inverse of T. If τ and ρ are equivalent, then let w_{1}, \cdots, w_{n} be a basis of $W=\mathbb{C}^{n}$; identify $V=\mathbb{C}^{n}$. Now $T\left(w_{1}\right), \cdots, T\left(w_{n}\right)$ a basis of $V=\mathbb{C}^{n}$; let A denote the matrix of T. If T is a morphism of representations, then the matrix of $\rho(g)$ with respect to the basis $\left(w_{1}\right), \cdots,\left(w_{n}\right)$ is seen to be $A^{-1} \rho(g) A=\tau(g)$. Thus, if we view a representation $\tau: G \rightarrow G L(W)$ as
a homomorphism $G \rightarrow G L_{n}(\mathbb{C})$, then $\rho(g)=A \tau(g) A^{-1}$ for all $g \in G$.
If $(\rho, V),(\tau, W)$ are representations, then on the direct sum $W \oplus V$ of vector spaces, the group G operates by the formula $(\tau \oplus \rho)(g)(v, w)=$ $(\tau(g) v, \rho(g) w)$ and yields a representation denoted $(\tau \oplus \rho, W \oplus V)$.

If w_{1}, \cdots, w_{m} is a basis of W, and e_{1}, \cdots, e_{p} is a basis of V, then the sequence of vectors $w_{1}, \cdots, w_{m} ; e_{1}, \cdots, e_{p}$ is a basis of $W \oplus V$; the matrix of $(\tau \oplus \rho)(g)$ with respect to this basis is clearly

$$
\left(\begin{array}{cc}
\tau(g) & 0 \\
0 & \rho(g)
\end{array}\right) .
$$

The direct sum of several representations can similarly be defined.
A representation (ρ, V) is completely reducible if V is a direct sum of irreducible representations.

Lemma 1. (Complete Reducibility) Every representation of a compact group G is completely reducible.

Proof. Given any inner product $\left\langle v, v^{\prime}\right\rangle$ on the complex vector space V, define the bilinear form

$$
\left(v, v^{\prime}\right)=\int_{G} d \mu(g)\left\langle\rho(g) v, \rho(g) v^{\prime}\right\rangle .
$$

It is clear that $\left(v, v^{\prime}\right)$ is an inner product on V, which is preserved by G i.e. is invariant under the action of G. Given a subrepresentation W of V, let W^{\prime} be the orthogonal complement of W with respect to this invariant inner product. Then W^{\prime} is easily seen to be a sub-representation of V. Moreover, $V=W \oplus W^{\prime}$ as representations of G.

We now prove the lemma by induction on the dimension of V. If V is not irreducible, then there is a non-zero smaller invariant subspace W of V and we have proved that $V=W \oplus W^{\prime}$; here W and W^{\prime} have strictly smaller dimension than V. Therefore, by induction, W and W^{\prime} are direct sums of irreducible representations, and hence, so is V.

Define the unitary group $U(n)$ as the subgroup of $G L_{n}(\mathbb{C})$ which preserves the standard inner product $(v, w)_{s t d}=\sum v_{i} \bar{w}_{i}$ on \mathbb{C}^{n}. That is, for all $g \in U(n)$ and all vectors $v, w \in \mathbb{C}^{n},(g v, g w)_{s t d}=(v, w)_{s t d}$. Also observe that if (v, w) is any inner product, there exists a non-singular linear transformation $T \in G L_{n}(\mathbb{C})$ such that $(v, w)=(T v, T w)_{\text {std }}$.

Note that elements of $U(n)$ may be viewed as orthonormal bases of \mathbb{C}^{n} with respect to the standard inner product on \mathbb{C}^{n}. With respect to the standard basis of $\mathbb{C}^{n}, U(n)$ consists of matrices g in $G L_{n}(\mathbb{C})$ such that ${ }^{t}(\bar{g}) g=1$ where \bar{g} is the matrix whose entries are complex conjugates of the entries of g, and ${ }^{t}(x)$ is the transpose of the matrix x. It is then clear that $U(n)$ is a closed and bounded subset of the set $M_{n}(\mathbb{C})$ of $n \times n$ complex matrices: the condition ${ }^{t}(\bar{g}) g=1$ is equivalent to saying that if $g_{i j}$ are the entries of the matrix g, then for each pair of integers i, k with $1 \leq i, k \leq n$, we have

$$
\sum_{j=1}^{n} \bar{g}_{j i} g_{j k}=\delta_{i k} .
$$

Since the matrix coefficients are continuous on $M_{n}(\mathbb{C})$ (even infinitely differentiable), it follows that $U(n)$ is the set of zeroes of a finite collection of smooth functions on $M_{n}(\mathbb{C})$ and hence $U(n)$ is closed in $M_{n}(\mathbb{C})$. On the other hand, taking the traces of both sides of ${ }^{t}(\bar{g}) g=1$, we see that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{g}_{j i} g_{j i}=\operatorname{trace}(1)=n .
$$

This shows that the $g_{i j}$ are bounded by n and hence $U(n)$ is a bounded subset of $M_{n}(\mathbb{C})$. By a theorem in general topology (the Heine-Borel Theorem), $U(n)$ is therefore compact. As a corollary, any closed subgroup of $U(n)$ is also compact.

Example. The group $U(n)$ acts irreducibly on \mathbb{C}^{n}.
Proof. For, suppose W is a non-zero $U(n)$-invariant subspace of \mathbb{C}^{n} and $w \in W \backslash\{0\}$, of norm one. The vector w may then be completed to an orthonormal basis of \mathbb{C}^{n}; but every orthonormal basis is obtained by a translation of the standard orthonormal basis by a unitary transformation. Hence there exists a unitary transformation g which transforms w into the first element ε_{1} of the standard basis of \mathbb{C}^{n}. This means that $\varepsilon_{1} \in W$ and hence, by the same reasoning, any element of norm one in \mathbb{C}^{n} lies in W; that is, $W=\mathbb{C}^{n}$.

Corollary 1. Every compact subgroup K of $G L_{n}(\mathbb{C})$ may be conjugated into $U(n)$. In particular, every representation of a compact group is unitary.

Proof. By the proof of complete reducibility lemma, the compact group K preserves an inner product (v, w) on \mathbb{C}^{n}. Since the inner product (v, w) is of the form $(T v, T w)_{s t d}$ for some non-singular T, it follows that the conjugate group $T K T^{-1}$ lies in $U(n)$.

Lemma 2. (Schur's Lemma) Suppose V is an irreducible representation f a topological group G and T is a linear transformation on V commuting with the operators $\rho(g)$ for all $g \in G$. Then T is a scalar.

Proof. Let λ be an eigenvalue of T. Let W be the kernel of $T-\lambda$. Then W is a subrepresentation of V and is nonzero. By the irreducibility of V, it follows that $W=V$ i.e. T is the scalar transformation λ on the whole space V.
Corollary 2. The group $U(n)$ is a maximal compact subgroup of $G L_{n}(\mathbb{C})$.
Proof. Suppose K is a compact subgroup of $G L_{n}(\mathbb{C})$ containing $U(n)$. By the preceding corollary, there exists a nonsingular T such that $T K T^{-1} \subset U(n)$. Hence $U(n) \subset T U(n) T^{-1}$. Therefore, $U(n)$ preserves two inner products $h(v, w)=(v, w)_{s t d}$ and $h^{\prime}(v, w)=(T v, T w)_{s t d}$. We have thus two $U(n)$-equivariant isomorphisms $T_{h}, T_{h^{\prime}}: \bar{V} \rightarrow V^{*}$. By Schur's Lemma, there exists a scalar λ such that $T_{h^{\prime}}=\lambda T_{h}$; i.e. $(T v, T w)_{s t d}=$ $\lambda(v, w)_{s t d}$ with $\lambda=\mu^{-2}$ for some positive scalar μ. Therefore $T \mu$ is unitary and hence $T U(n) T^{-1}=T \mu U(n)(T \mu)^{-1}=U(n)$. Hence $K=U(n)$ and $U(n)$ is a maximal compact subgroup of $G L_{n}(\mathbb{C})$.

Corollary 3. (Orthogonality relations) Let ρ, τ be irreducible unitary representations of a compact group G, with matrix coefficients $\rho_{i j}$ and $\tau_{k l}$. If ρ and τ are not equivalent, then their matrix coefficients are orthogonal; that is

$$
\int_{G} d g \rho_{i j}(g) \overline{\tau_{k l}(g)}=0
$$

If $\tau=\rho$, then, we have

$$
\int_{G} d g \rho_{i j}(g) \overline{\rho_{i j}(g)}=\frac{1}{\operatorname{dim} \rho}
$$

and

$$
\int_{G} d g \rho_{i j}(g) \overline{\rho_{k l}(g)}=0 \quad((i j) \neq(k l))
$$

Proof. Let (ρ, V) and τ, W) be two irreducible representations as in the statement of the corollary, and let $T \in \operatorname{Hom}(W, V)$ be an arbitrary linear transformation. Consider the linear map (it is an integral of a vector valued function)

$$
T^{\prime}=\int_{G} d g \rho(g) T \tau(g)^{-1}
$$

We then have $\rho(g) T^{\prime} \tau(g)^{-1}=T^{\prime}$ and hence T^{\prime} is an equivariant map. If T^{\prime} is non-zero, then by the irreducibility of W, the kernel of T^{\prime} is zero (since it is a ($\rho(G)$ invariant subspace) and the image of T^{\prime} is all of V.

Therefore, T^{\prime} is an isomorphism and hence W, V are equivalent.
Consequently, if V, W are not equivalent, then $T^{\prime}=0$. Fix bases v_{1}, \cdots, v_{n} of V and w_{1}, \cdots, w_{m} of W. Let $T=\left(T_{j k}\right)$ with $T_{j k}$ arbitrary. Since $T^{\prime}=0$, we get

$$
0=T_{i l}^{\prime}=\sum_{j, k} \int_{G} d g \rho(g)_{i j} T_{j k} \tau\left(g^{-1}\right)_{k l}=\sum_{j, k}\left(\int_{G} d g \rho(g)_{i j} \tau\left(g^{-1}\right)_{k l}\right) T_{j k} .
$$

The independence of the $T_{j k}$ and the unitarity of the $\tau(g)$ (i.e. $\overline{\tau(g)_{l k}}=$ $\tau\left(g^{-1}\right)_{k l}$) now ensure that the functions $\rho_{i j}(g)$ and $\tau(g)_{l k}$ are orthogonal.

The remaining part is proved similarly. Suppose ρ, τ are equivalent. We may assume that $\rho=\tau$ and that $V=W$. Then the equivariant map T^{\prime} is a scalar matrix λ and $T_{i j}^{\prime}=0$ if $i \neq j$ and $T_{i i}^{\prime}=\lambda$. The trace of T^{\prime} is $n \lambda$ with n the dimension of ρ. Since T^{\prime} is the integral over G, of $\rho(g) T \tau(g)^{-1}=\rho(g) T \rho(g)^{-1}$, it follows that the trace of T^{\prime} is the trace of T. We then get

$$
\delta_{i l} \frac{T_{11}+\cdots+T_{n n}}{n}=\delta_{i l} \lambda=T_{i l}^{\prime}=\sum \int_{G} d g \rho(g)_{i j} T_{j k} \rho\left(g^{-1}\right)_{k l} .
$$

Since $\rho(g)$ is unitary, we have $\rho\left(g_{k l}^{-1}\right)=\overline{\rho(g)_{l k}}$ and therefore

$$
\delta_{i l} \frac{T_{j j}}{n}=\sum_{k} \int_{G} d g \rho(g)_{i j} T_{j k} \overline{\rho(g)_{l k}}=\sum_{k}\left(\int_{G} d g \rho(g)_{i j} \overline{\rho(g)_{l k}}\right) T_{j k} .
$$

The independence of the linear forms $T_{i j}$ gives the rest of the corollary.

Corollary 4. Suppose ρ, τ are two irreducible representations of a compact group G. Then

$$
\int_{G} d g \chi_{\rho}(g) \overline{\chi_{\tau}(g)}=\delta_{\rho, \tau}
$$

where δ is the Dirac delta function (i.e. $\delta_{\rho, \tau}=0$ if ρ, τ are not equivalent and $\delta_{\rho, \tau}=1$ if ρ, τ are equivalent).

Proof. Suppose ρ, τ are not equivalent. Then by the orthogonality relations, $\int_{G} d g \rho_{i j}(g) \overline{\tau_{k l}(g)}=0$ for all i, j, k, l. Hence

$$
\int_{G} d g \chi_{\rho}(g) \overline{\chi_{\tau}(g)}=\sum_{i, k} \int_{G} d g \rho_{i i}(g) \overline{\tau_{k k}(g)}=0 .
$$

If ρ, τ are equal, then, again by the orthogonality relations,

$$
\int_{G} d g \chi_{\rho}(g) \overline{\chi_{\rho}(g)}=\sum_{i} \int_{G} d g \rho_{i i}(g) \overline{\rho_{i i}(g)}=\sum_{i} \frac{1}{\operatorname{dim} \rho}=1 .
$$

Corollary 5. Suppose ρ and τ are two representations of a compact group whose trace functions $g \mapsto \chi_{\rho}(g)=\operatorname{trace}(\rho(g))$ and $g \mapsto \chi_{\tau}(g)=$ trace $(\tau(g))$ are equal. Then the representations ρ, τ are equivalent.

Proof. Suppose $\rho=\oplus m_{i} \rho_{i}$ and $\tau=\oplus n_{j} \tau_{j}$ is a decomposition into a direct sum of irreducibles ρ_{i}, τ_{j} with multiplicities m_{i}, n_{j}. Assume that $\chi_{\rho}=\chi_{\tau}$. Then the orthogonality relations say that for an irreducible representation θ, the integral

$$
\int_{G} d g \chi_{\rho}(g) \overline{\chi_{\theta}(g)}=m_{i}
$$

if $\theta=\rho_{i}$ for some i and is zero otherwise. Since $\chi_{\rho}=\chi_{\tau}$, it follows that the sets $\left\{\rho_{i}\right\}_{i}$ and $\left\{\tau_{j}\right\}_{j}$ are the same, and hence that the multiplicities m_{i}, n_{i} are the same.
Corollary 6. Every irreducible representation of a compact abelian group S is one dimensional.

Proof. Let (ρ, V) be a representation of S. We may assume that ρ is unitary. Fix an element $s \in S$ and consider $\rho(s)$; it has an eigenvector v with eigenvalue λ say. Consider the λ eigenspace V_{λ} of $\rho(s)$. Since S is abelian, all of $\rho(S)$ commutes with $\rho(s)$ and the λ eigenspace of $\rho(s)$ is stable under the action of S. By irreducibility of $\rho, V_{\lambda}=V$ and therefore, s acts by the scalar λ on all of V. But s was an arbitrary element of S. Therefore, all of S acts by scalar matrices, and hence every line in V is S-stable. By the irreducilbility of V, it follows that V is a line i.e. ρ is one dimensional.

2. Representations of $S U(2)$

2.1. Representations of S^{1}. We first note that if $S^{1}=\left\{z \in \mathbb{C}^{*}: \mid\right.$ $z \mid=1\}$ then, for a fixed m, the homomorphism $z \mapsto z^{m} \in G L(\mathbb{C})$ is a one dimensional irreducible representation of S^{1}. Denote by R the space of linear combinations of the functions $z \mapsto z^{m}$, as m varies. This is called the algebra of trigonometric polynomials. This algebra separates points, contains the constant function 1 and is closed under complex conjugation. Hence, by the Weierstrass-Stone Theorem, R is dense in the space of continuous functions on S^{1}.

If ρ is any irreducible representation of S^{1} different from $z \mapsto z^{m}$ for any m, then by the orthogonality relations, the matrix coefficient $\rho_{i j}$ is orthogonal to z^{m} for all m and hence to R. But, by the density of R, this means that $\rho_{i j}=0$ i.e. ρ does not exist. We have thus proved that the only irreducible representations of S^{1} are one dimensional representations of the form $z \mapsto z^{m}$.

Lemma 3. Suppose V is a representation of the one dimensional "torus" S^{1}. Suppose $V=\oplus V_{\chi}$ is a direct sum of irreducible representations each occurring with multiplicity one. Let $v \in V$ be a vector such that $v=\sum v_{\chi}$ accordingly, with $v_{\chi} \neq 0$ for every χ. Then the S^{1}-translates of the vector v span V.

Proof. Suppose W is the span of S^{1} translates of the vector v. Under the projection $V \rightarrow V_{\chi}$ the image of W is non-zero, since this holds for the vector v. The space W is a direct sum of irreducibles W^{\prime}, and hence, by multiplicity one assumption, one of the W^{\prime} is V_{χ}. This means that W contains all the V_{χ} and hence their direct sum, namely the whole space V.
2.2. Conjugacy Classes in the group $S U((2)$. By definition, $S U(2)$ is the group of complex 2×2 matrices of the form $\left(\begin{array}{cc}\alpha & \overline{-\beta} \\ \beta & \bar{\alpha}\end{array}\right)$, with determinant one, i.e. $|\alpha|^{2}+|\beta|^{2}=1$. Clearly this is the unit ball in \mathbb{C}^{2} and is hence compact (it is in fact, isomorphic to the unit sphere S^{3} is \mathbb{R}^{4}). Now $S U(2)$ acts on \mathbb{C}^{2} and hence acts on the space P_{m} of homogeneous polynomials of degree m in the two variables X, Y where X, Y are the coordinate functions on \mathbb{C}^{2}.

Given an element $g \in S U(2)$, let $v \in \mathbb{C}^{2}$ be an eigenvector for g, with eigenvalue λ, say. We may assume v has norm one. Let w be of norm one and generate the perpendicular of v in \mathbb{C}^{2}. Then w is
also an eigenvector with eigenvalue λ^{-1}. We have thus proved that g can be conjugated into the diagonal matrix $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, by an element of $S U(2)$. Note also that the matrix g and g^{-1} are conjugate by the element $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ of $S U(2)$.
2.3. Irreducible Representations of $S U(2)$. We first exhibit a family of irreducible representations of $S U(2)$.

Lemma 4. The space P_{m} is an irreducible representation of $S U(2)$.
Proof. Suppose $W \subset P_{m}$ is a non-zero sub-representation of $S U(2)$. Decompose W as a direct sum of irreducible representations of the diagonal group T. The group T consists of matrices of the form $\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right)$ with $\theta \in \mathbb{R}$ arbitrary. Therefore, T is the group S^{1}. By the remark before Lemma 3, the irreducibles of S^{1} are characters of the form $e^{i \theta} \mapsto e^{i k \theta}$ for some k. Now the only irreducibles of S^{1} occurring in P_{m} are the lines $\mathbb{C} X^{j} Y^{m-j}$ for j fixed; on this line, S^{1} operates by the character $e^{i(j \theta-(m-j) \theta)}=e^{(2 j-m) i \theta}$. Therefore, for some integer j, the representation W contains the vector $X^{j} Y^{m-j}$.

We now apply the $S U(2)$ matrix $T=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ to the vector $X^{j} Y^{m-j}$ to obtain the following vector w in W :

$$
w=\frac{(X+Y)^{j}(Y-X)^{m-j}}{\sqrt{2}^{m}} .
$$

Note that the coefficient of X^{m} in the vector w, is non-zero: it is $\pm \frac{1}{\sqrt{2}^{m}}$. Since $W \subset P_{m}$ and the multiplicity of each irreducible representation of T in P_{m} is at most one, the same holds for W. Then, by Lemma 3, the vector X^{m} lies in W. Hence the translate of X^{m} by the matrix T also lies in W. But this translate is

$$
v=\frac{(X+Y)^{m}}{\sqrt{2}^{m}}
$$

and the coefficient of $X^{j} Y^{n-j}$ in v is nonzero for every $j \leq m$. Therefore, by Lemma 3, the vector $X^{j} Y^{m-j} \in W$ for all j. That is, $W=P_{m}$; the representation P_{m} is irreducible.

Since any element of $S U(2)$ may be conjugated into the diagonal subgroup T of $S U(2)$, it follows that the trace of any representation
is determined by its restriction to T. We now compute the trace of $g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ on the representation P_{m}. The space P_{m} has the vectors $v_{j}=X^{j} Y^{m-j}$ as basis, for $0 \leq j \leq m$. These vectors are eigenvectors for g with eigenvalue $\lambda^{j}\left(\lambda^{-1}\right)^{m-j}=\lambda^{2 j-m}$. Hence the trace of g is

$$
S_{m}=\sum_{j=0}^{m} \lambda^{2 j-m}=\frac{1}{\lambda^{m}} \frac{\lambda^{2 m+2}-1}{\lambda^{2}-1}=\frac{\lambda^{m+1}-\lambda^{-m-1}}{\lambda-\lambda^{-1}} .
$$

We also have

$$
S_{m}=\sum_{j=0}^{m} \lambda^{2 i-m}=\left(\lambda^{m}+\lambda^{-m}\right)+\left(\lambda^{m-2}+\lambda^{2-m}\right)+\cdots
$$

Theorem 5. Every irreducible representation of $\operatorname{SU(2)}$ is of the form P_{m} for some integer m.

Proof. Let ρ be any representation of $S U(2)$. The restriction of ρ to the diagonal group $T=\left\{g \in G: g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)\right\}$, is a direct sum of characters of the form λ^{k}. Moreover, if the character λ^{k} occurs, so does λ^{-k} since g, g^{-1} are conjugate. Consequently, the trace of ρ is a sum of terms of the form $\lambda^{k}+\lambda^{-k}$. The formula for the trace of P_{m} above shows that the trace of ρ is an integral linear combination of the traces S_{m}. In particular, ρ is the direct sum of the P_{m} 's. This also proves that every irreducible representation of $S U(2)$ is of the form P_{m} for some m.

2.4. The Clebsch-Gordan Formula.

Theorem 6. (Clebsch-Gordan Formula) Let $m \geq n$. The tensor product of the irreducible representations P_{m} and P_{n} decomposes:

$$
P_{m} \otimes P_{n}=\bigoplus_{j=0}^{n} P_{m+n-2 j}
$$

Proof. We need only compute the traces on both sides and show that they are equal, since the trace completely determines the representation for a compact group. Moreover, the trace function being conjugate invariant, the traces need only be proved equal on the diagonals T in $S U(2)$ since every element in $S U(2)$ can be conjugated into the diagonals.

Let $t=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ be a diagonal matrix in $S U(2)$ with $\lambda \neq \pm 1$. Let S_{m} be the trace of the representation P_{m} evaluated at t. The trace of the
tensor product of P_{m} and P_{n} is simply the product of the traces of P_{m} and P_{n}. Hence the product of $\lambda-\lambda^{-1}$ and the trace of the left hand side evaluated at the element t is

$$
\begin{gathered}
\left(\lambda-\lambda^{-1}\right) S_{m} S_{n}=\left(\lambda^{m+1}-\lambda^{-m-1}\right) S_{n}=\left(\lambda^{m+1}-\lambda^{-m-1}\right)\left(\sum_{j=0}^{n} \lambda^{n-2 j}\right)= \\
=\sum_{j=0}^{n}\left(\lambda^{m+n-2 j+1}-\lambda^{-m-n+2 j-1}\right)=\sum_{j=0}^{n}\left(\lambda-\lambda^{-1}\right) S_{m+n-2 j} .
\end{gathered}
$$

(Note that since $m \geq n$, and $0 \leq j \leq n$, we have $m+n-2 j \geq m-n \geq 0$).
We thus get

$$
S_{m} S_{n}=\sum_{j=0}^{n} S_{m+n-2 j},
$$

proving the formula.

