COMPACT GROUPS

1. PRELIMINARIES

1.1. Topological Groups. A topological group is a (Hausdorff) topo-
logical space G which also has a group structure i.e. a multiplicaion
map m : G X G — G and an inverse map i : G — G satisfying the
usual axioms of groups, such that the group structure and topology
are compatible. That is, the maps m and i are continuous maps of
topological spaces (we assume here that the space G X G is equipped
with the product topology).

We assume that the topological group G is locally compact. That is,
every point of the group G has a neighbourhood which is compact.

We will only deal with locally compact groups from now on.By a
mild abuse of notation, we will call these topological groups.

Example. R, R" are topological groups under vector addition.
GL,(R) is a topological group under matrix multiplication.
The group U(n) of unitary matrices is a compact topological group.

The group SO(n) of orthogonal matrices of determinant one, is a
compact topological group.

1.2. Haar Measure on Topological Groups. We assume the well
known result that every locally compact group G comes equipped with
a left invariant measure, which is a regular Borel measure, called a
(left) Haar measure. "Regular" means that the measure of a Borel set
is approximated by compact sets from below and open sets from above.
Such a measure is unique up to a scalar multiple.

A compact topological group is automatically locally compact. It
can easily be proved that a locally compact group is compact if and
only if its Haar measure is finite. The Haar measure of G is then the
unique Haar measure g with p(G) =1 (the total volume is one).
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Example. (1) A group G with discrete topology is a locally compact
group with Haar measure being the counting measure: the measure of
any set is its cardinality.

(2) The group R" with the Euclidean topology is a locally compact
group (vector space) with Haar measure p being the Lebesgue measure.
For any A € GL,(R), it follows that du(Ax) is also a left invariant
meanure, and by the general uniqueness theorem, du(Ax) = cdu(x) for
some scalar ¢ > 0. Note that by the change of variables formula, we
have, for A € GL,(R) and x € R",

du(Ax) =| detA) | du(x).
Therefore, the scalar ¢ =| detA |.

(3) The set GL,(R) of nonsingular n X n matrices is an open subset
of the set M,(R) = R™ of n x n matrices. If dx denotes the Lebesgue

measure on the vector space M,(R) = R”Q, then the Haar measure on
: d
GLn([R) 1S W
(4) Suppose that G is a compact group and v is a regular Borel
measure on the quotient space G/H such that v is G invariant. Suppose
py is a left invariant measure on H. Then the functional

fH-/G/HdV(X)./HdHH(h)f(Xh)’

gives a left invariant Haar measure on G.

Corollary: the groups SO(n) have a left invariant Haar measure.

The proof is by induction. The group SO(2) = S! has a Haar measure,
and SO(n)/SO(n — 1) = §"~! has an SO(n) invariant measure: consider
X = R"\ {0}. The Lebesgue measure du, on X is an SO(n) invariant
measure. Given a measurable set E ¢ S"!, and the open interval (0, 1),
consider the map E — p,(E x (0,1)). This gives a measure on S"*!
invariant under SO(n). By the result (4), SO(n) has a Haar measure.

Example. (Haar measure on Lie Groups) We will say that a topo-
logical group G is a Lie Group if G is a smooth manifold such that
the group operations m : GXG — G and i : G — G are smooth (i.e.
infinitely differentiable).

If G is a Lie group of dimension d, let w1y, ,wy denote linearly
independent left invariant differential 1-forms on G. Such forms are
obtained by taking a basis of cotangent vectors at the identity and left
translating them to get differential one forms on the manifold. A left
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invariant Haar measure on G is got by fixing a left invariant top degree
differential form w = w1 A--- A wg and integrating continuous functions
with respect to this differential form . We will see this in detail later.

Much of this course is concerned with compact Lie groups. Exam-
ples of compact Lie groups are the unitary group U(n), the orthogonal
group O(n), the torus group S' x---xS'. Any closed subgroup of U(n)
may be shown to have the structure of a compact Lie group. One of
the theorems proved in this course says that any compact Lie group
may be realised as a closed subgroup of U(n) for some n.

1.3. Representations. Given a topological group G, A continuous
homomorphism

p:G — GL,(C) =GL(C") =GL(V) (n>1),

is called a (complex) representation where V is an n-dimensional com-
plex vector space; we often refer to the pair (p,V) as a representation
(or simply the vector space V when the action p is clear from the con-
text, or simply the homomorphism p). We write n = dim(V) = dim(p).
Given a representation p : G — GL(V) on an n-dimensional vector
space V, we fix a basis v1,---,v, of V. We then realise the repre-
sentation p as a homomorphism p : G — GL,(C), where now p(g)
denotes the matriz of the transformation p(g) with respect to the basis
vy, -+ ,0,. Different bases give conjugate homomorphisms from G into

GL,(C).

A sub-representation W of V is a subspace W of V which is stable
under the action of all the linear transformations p(g) : g € G. A rep-
resentation is irreducible if the only sub-representations W of V are V
and {0}.

A representation (p, V) is trivial if V is one dimensional and for all
g € G,p(9)v = v for v € V. If the dimension of V is arbitrary, but
p(g) =1 for all g, then we say that V is a direct sum of trivial repre-
sentations (or that G acts trivially on V).

If W c V is a sub-representation of a representation (p, V), then we
get a representation on the quotient vector space V/W as follows. If
v+ W is a coset representative of the quotient V/W and g € G, then
write g(v + W) = p(g)(v) + W; it is routine to check that this defines a
representation (called the quotient representation) of G on the quotient
V/w.
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Fix a basis wy, -, wy, is a basis of W. Extend this to a basis
B : Wls'.' ,Wm:ela.'. ,ep
of V. Then the cosets ey + W,--- ,e, + W form a basis of the quotient

V/W. In matrix terms (with respect to the basis B), the matrices p(g)
are of the form

(f(g) Z(g))
0 p(9)

where p(g) is the quotient representation on V/W. Here z(g) is an pxm
matrix depending on g.

Suppose (7, W) and (p,V) are two representations and T : W — V
a linear map such that for each g € G, the equality p(¢9)T = Tz(g)
holds. Then T is called a morphism of representations W and V; one
also says that T is G-equivariant. Observe that the kernel of T is a sub-
representation of (7, W) (and the image of T is a sub-representation of
(p,V)). The co-kernel of T, namely V/Image(T), is a quotient repre-
sentation of V.

Given two representations (7, W) and (p, V), the vector space of lin-
ear maps Hom(V, W) is also a representation of G defined, for g € G
and T € Hom(V,W), by g+T = (¢)Tp(g~") (if T is equivariant, g+T = T
for all g € G). If W is the one dimensional trivial representation, then
Hom(V,W) is simply the dual (also denoted V*) of the vector space V,
and the foregoing representation on V* is called the contragredient of
V. If v1,--+,0, is a basis of V let 0],---,0, be the dual basis of V*,
ie. <of,0; >=§;; for all i, j. Denote now by p(g) the matrix of the
transformation p(g) with respect to the basis vy, ---,v,. The matrix
of the contragredient p*(g) with respect to the dual basis v],--- v, is
easily seen to be *(p(g))~!, the transpose of the matrix p(g)~'.

Two representations (z, W) and (p,V) are equivalent of there is a
morphism T : W — V of representations which is a linear isomorphism
of vector spaces. If T is an isomorphism, then the inverse linear map
T~! .V — W is also a morphism of representations, called the inverse
of T. If r and p are equivalent, then let wy, - - -, w, be a basis of W = C";
identify V.= C". Now T(wy),---,T(wy) a basis of V = C"; let A de-
note the matrix of T. If T is a morphism of representations, then the
matrix of p(g) with respect to the basis (wy),---,(wy) is seen to be
A71p(g)A = 1(g). Thus, if we view a representation 7 : G — GL(W) as
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a homomorphism G — GL,(C), then p(g) = Ar(g)A~"! for all g € G.

If (p, V), (r, W) are representations, then on the direct sum W @V of
vector spaces, the group G operates by the formula (z @ p)(g)(v, w) =
(7(g)v, p(g)w) and yields a representation denoted (7 @ p, W & V).

If wi,---,wp is a basis of W, and ey, -+, e, is a basis of V, then the
sequence of vectors wy, -+, wp;e1,- -+, ep is a basis of W@V the matrix
of (r ® p)(g) with respect to this basis is clearly

(9) 0
0 p@9)
The direct sum of several representations can similarly be defined.

A representation (p, V) is completely reducible if V is a direct sum of
irreducible representations.

Lemma 1. ( Complete Reducibility) Every representation of a compact
group G is completely reducible.

Proof. Given any inner product (v,v’) on the complex vector space V,
define the bilinear form

(0.0) = /G d(9)p(g)0. p(g)0').

It is clear that (ov,0") is an inner product on V, which is preserved by G
i.e. is invariant under the action of G. Given a subrepresentation W of
V, let W’ be the orthogonal complement of W with respect to this in-
variant inner product. Then W’ is easily seen to be a sub-representation
of V. Moreover, V.= W & W’ as representations of G.

We now prove the lemma by induction on the dimension of V. If V
is not irreducible, then there is a non-zero smaller invariant subspace
W of V and we have proved that V.= W @& W’; here W and W’ have
strictly smaller dimension than V. Therefore, by induction, W and W’
are direct sums of irreducible representations, and hence, sois V. 0O

Define the unitary group U(n) as the subgroup of GL,(C) which pre-
serves the standard inner product (v, w)gq = D, v;w; on C". That is,
for all g € U(n) and all vectors v,w € C", (gv, gw)stq = (v, W)stq. Also
observe that if (v, w) is any inner product, there exists a non-singular
linear transformation T € GL,(C) such that (v, w) = (Tv, Tw)syq.
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Note that elements of U(n) may be viewed as orthonormal bases of
C" with respect to the standard inner product on C". With respect
to the standard basis of C", U(n) consists of matrices g in GL,(C)
such that (g)g = 1 where g is the matrix whose entries are complex
conjugates of the entries of g, and !(x) is the transpose of the matrix
x. It is then clear that U(n) is a closed and bounded subset of the set
M, (C) of n x n complex matrices: the condition '(g)g = 1 is equivalent
to saying that if g;; are the entries of the matrix g, then for each pair
of integers i,k with 1 < i,k < n, we have

n
Z 9i9jk = Jik-
j=1

Since the matrix coefficients are continuous on M,(C) (even infinitely
differentiable), it follows that U(n) is the set of zeroes of a finite collec-
tion of smooth functions on M,(C) and hence U(n) is closed in M, (C).
On the other hand, taking the traces of both sides of {(g)g = 1 , we see

that .

Z Zgﬁgﬁ = trace(1l) = n.

i=1 j=1
This shows that the g;; are bounded by n and hence U(n) is a bounded
subset of M,(C). By a theorem in general topology (the Heine-Borel
Theorem), U(n) is therefore compact. As a corollary, any closed sub-
group of U(n) is also compact.

Example. The group U(n) acts irreducibly on C".

Proof. For, suppose W is a non-zero U (n)-invariant subspace of C" and
w € W\ {0}, of norm one. The vector w may then be completed to an
orthonormal basis of C*; but every orthonormal basis is obtained by a
translation of the standard orthonormal basis by a unitary transforma-
tion. Hence there exists a unitary transformation g which transforms
w into the first element &1 of the standard basis of C". This means that
€1 € W and hence, by the same reasoning, any element of norm one in
C" lies in W; that is, W = C". |

Corollary 1. Every compact subgroup K of GL,(C) may be conjugated
ito U(n). In particular, every representation of a compact group is
unitary.

Proof. By the proof of complete reducibility lemma, the compact group
K preserves an inner product (v, w) on C". Since the inner product
(v, w) is of the form (Tv, Tw)q for some non-singular T, it follows that
the conjugate group TKT™! lies in U(n). O



COMPACT GROUPS 7

Lemma 2. (Schur’s Lemma) Suppose V is an irreducible represen-
tation f a topological group G and T is a linear transformation on V
commuting with the operators p(g) for all g € G. Then T is a scalar.

Proof. Let A be an eigenvalue of T. Let W be the kernel of T —A. Then
W is a subrepresentation of V and is nonzero. By the irreducibility of
V, it follows that W = V i.e. T is the scalar transformation A on the
whole space V. O

Corollary 2. The group U(n) is a mazimal compact subgroup of GL,(C).

Proof. Suppose K is a compact subgroup of GL,(C) containing U(n).
By the preceding corollary, there exists a nonsingular T such that
TKT™' c U(n). Hence U(n) c TU(n)T~!. Therefore, U(n) preserves
two inner products h(v,w) = (v, w)ge and h'(v,w) = (To,Tw)gqe. We
have thus two U(n)-equivariant isomorphisms T, Ty : V — V*. By
Schur’s Lemma, there exists a scalar A such that Ty, = ATy; i.e. (To, Tw)gq =
A(v, W)gq with A = p~2 for some positive scalar y. Therefore Ty is uni-
tary and hence TU(n)T™' = TuU(n)(Tp)™' = U(n). Hence K = U(n)
and U(n) is a maximal compact subgroup of GL,(C). O

Corollary 3. (Orthogonality relations) Let p,t be irreducible unitary
representations of a compact group G, with matriz coefficients p;; and
. If p and T are not equivalent, then their matriz coefficients are
orthogonal; that is

/G dgpij(g)mia(g) = 0.
If © = p, then, we have

— 1
dgpij ij\g9) = 57—
/G 9pij(9)pij(9) dimp
and

/G dgp (9pa@ =0 (1)) # (kL)).

Proof. Let (p,V) and 7, W) be two irreducible representations as in the
statement of the corollary, and let T € Hom(W, V) be an arbitrary linear
transformation. Consider the linear map ( it is an integral of a vector
valued function)

’ _ -1
T = /G dgp(g)Te(g) ™.

We then have p(g)T’7(¢)~' = T’ and hence T’ is an equivariant map. If
T’ is non-zero, then by the irreducibility of W, the kernel of T’ is zero
(since it is a (p(G) invariant subspace) and the image of T” is all of V.
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Therefore, T’ is an isomorphism and hence W,V are equivalent.

Consequently, if V,W are not equivalent, then T’ = 0. Fix bases
01,-+-,0, of Vand wy, -+, wy of W. Let T = (Tj;) with Tj arbitrary.
Since T" = 0, we get

0= Tl,z = Zk: /G dgp(g)ijTjkT(g_l)kl — Z (/G dgp(g)ijf(g_l)kl) Tjk-
Js

Jjik

The independence of the Tj and the unitarity of the 7(g) (i.e. 7(g)u =
(g~ Y)x1) now ensure that the functions p; i(g) and 7(g)jx are orthogonal.

The remaining part is proved similarly. Suppose p, r are equivalent.
We may assume that p = 7 and that V.= W. Then the equivariant map
T’ is a scalar matrix A and Tl'] =0if i # j and T, = A. The trace of
T’ is nA with n the dimension of p. Since T’ is the integral over G, of
p(g)Tt(9)~t = p(¢)Tp(g9)~" , it follows that the trace of T’ is the trace
of T. We then get

oyt 0=y = D /G dgp(9)iiTikp (g™ it-

n

Since p(g) is unitary , we have p(g;ll) = p(9)ix and therefore

T.. -
51-1# = Zkl/Gdgp(g)ijTjkP(g)lk = Z (/G dgp(g)ijp(g)lk) Tik.

k

The independence of the linear forms T;; gives the rest of the corol-
lary.
O

Corollary 4. Suppose p, T are two irreducible representations of a com-
pact group G. Then

/G d92(9) 1 () = 6

where § is the Dirac delta function (i.e. 8, = 0if p, r are not equivalent
and 6, = 1 if p, 7 are equivalent).

Proof. Suppose p, r are not equivalent. Then by the orthogonality re-
lations, /G dgpij(9)tii(g) = 0 for all i, j, k,I. Hence

/G 492,(9) 1 (9) = Zk /G d9pi(9)7x(g) = 0.
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If p, 7 are equal, then, again by the orthogonality relations,

/Gdgxp(g)m = Z /G dgpii(9)pii(9) = ZI: ﬁ = 1.
O

Corollary 5. Suppose p and t are two representations of a compact
group whose trace functions g — y,(g) = trace(p(g)) and g — x:(g) =
trace(t(g)) are equal. Then the representations p,t are equivalent.

Proof. Suppose p = @m;p; and 7 = @n;7; is a decomposition into a
direct sum of irreducibles p;, 7; with multiplicities m;, n;. Assume that
Xp = Xxr- Then the orthogonality relations say that for an irreducible
representation 6, the integral

/G 49,(9)x0(9) = m,

if 6 = p; for some i and is zero otherwise. Since y, = x, it follows that
the sets {p;}; and {r;}; are the same, and hence that the multiplicities
m;, n; are the same. O

Corollary 6. Every irreducible representation of a compact abelian
group S 1s one dimensional.

Proof. Let (p,V) be a representation of S. We may assume that p is
unitary. Fix an element s € S and consider p(s); it has an eigenvector
v with eigenvalue A say. Consider the A eigenspace V) of p(s). Since
S is abelian, all of p(S) commutes with p(s) and the A eigenspace of
p(s) is stable under the action of S. By irreducibility of p, V) =V and
therefore, s acts by the scalar A on all of V. But s was an arbitrary
element of S. Therefore, all of S acts by scalar matrices, and hence
every line in V is S-stable. By the irreducilbility of V, it follows that V
is a line i.e. p is one dimensional.

O
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2. REPRESENTATIONS OF SU(2)

2.1. Representations of S!. We first note that if S! = {z € C* : |
z |= 1} then, for a fixed m, the homomorphism z — z™ € GL(C) is a
one dimensional irreducible representation of S'. Denote by R the space
of linear combinations of the functions z + z™, as m varies. This is
called the algebra of trigonometric polynomials. This algebra separates
points, contains the constant function 1 and is closed under complex
conjugation. Hence , by the Weierstrass-Stone Theorem, R is dense in
the space of continuous functions on S*.

If p is any irreducible representation of S different from z + z™ for
any m, then by the orthogonality relations, the matrix coefficient p;;
is orthogonal to z™ for all m and hence to R. But, by the density of
R, this means that p;; = 0 i.e. p does not exist. We have thus proved
that the only irreducible representations of S! are one dimensional rep-
resentations of the form z — z™.

Lemma 3. Suppose V is a representation of the one dimensional "torus”
St. Suppose V = ®V, is a direct sum of irreducible representations each
occurring with multiplicity one. Letv € V be a vector such thatv = Y v,
accordingly, with v, # 0 for every y. Then the St-translates of the vec-
tor v span V.

Proof. Suppose W is the span of S! translates of the vector v. Under
the projection V. — V, the image of W is non-zero, since this holds for
the vector v. The space W is a direct sum of irreducibles W', and hence,
by multiplicity one assumption, one of the W’ is V,.This means that W
contains all the V) and hence their direct sum, namely the whole space
V. O

2.2. Conjugacy Classes in the group SU((2). By definition, SU(2)

is the group of complex 2 X 2 matrices of the form g __ﬂ ), with de-
a

terminant one, i.e. | a |> + | f |>= 1. Clearly this is the unit ball in

C? and is hence compact (it is in fact, isomorphic to the unit sphere

$3 is R*). Now SU(2) acts on C? and hence acts on the space P,, of

homogeneous polynomials of degree m in the two variables X,Y where

X, Y are the coordinate functions on C2.

Given an element g € SU(2), let v € C? be an eigenvector for g,
with eigenvalue A, say. We may assume v has norm one. Let w be
of norm one and generate the perpendicular of v in C?>. Then w is
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also an eigenvector with eigenvalue A='. We have thus proved that g

0 )Lgl)’ by an element

of SU(2). Note also that the matrix g and g~ are conjugate by the
0 1) of SU(2).

. . . . (A
can be conjugated into the diagonal matrix (

element w = (_1 0

2.3. Irreducible Representations of SU(2). We first exhibit a fam-
ily of irreducible representations of SU(2).

Lemma 4. The space Py, is an irreducible representation of SU(2).

Proof. Suppose W C P,, is a non-zero sub-representation of SU(2). De-
compose W as a direct sum of irreducible representations of the diag-
i6
onal group T. The group T consists of matrices of the form (eo e_Oie)
with 8 € R arbitrary. Therefore, T is the group S!. By the remark
before Lemma 3, the irreducibles of S! are characters of the form
el 1 ek? for some k. Now the only irreducibles of St occurring in
P,, are the lines CX/Y™/ for j fixed; on this line, S! operates by the
character e!0-(m=10) = ¢(2j=-m)if  Therefore, for some integer j, the
representation W contains the vector X/Y™ /.

1 _1
We now apply the SU(2) matrix T = | V2 1‘@) to the vector X/ Y™~/
V2 V2

to obtain the following vector w in W:
(X+Y) (Y -X)"J
w= — .

V2

Note that the coefficient of X™ in the vector w, is non-zero: it is iﬁ.
Since W C P,, and the multiplicity of each irreducible representation of
T in P, is at most one, the same holds for W. Then, by Lemma 3, the
vector X™ lies in W. Hence the translate of X™ by the matrix T also

lies in W. But this translate is
X+m"
V=
V2
and the coefficient of X/Y"/ in v is nonzero for every j < m. Therefore,

by Lemma 3, the vector XY™/ € W for all j. That is, W = P,,; the
representation P, is irreducible. O

Since any element of SU(2) may be conjugated into the diagonal
subgroup T of SU(2), it follows that the trace of any representation
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is determined by its restriction to T. We now compute the trace of

10 |
9= (O )L‘l) on the representation P,. The space P, has the vectors

0j = XY™/ as basis, for 0 < j < m. These vectors are eigenvectors for
g with eigenvalue A/(A~1)™~/ = 12/~ Hence the trace of g is

s - Zm:AZj—m _ LAQWHQ -1 _ Am+1 _)L—m—l
" Amo22 -1 A=At

We also have

Sm = Z P2 A M) + (A2 2T 4
J=0

Theorem 5. Fvery irreducible representation of SU(2) is of the form
Py, for some integer m.

Proof. Let p be any representation of SU(2). The restriction of p to the
A0
0 A1
of the form A¥. Moreover, if the character A* occurs, so does 7% since
g,g~ " are conjugate. Consequently, the trace of p is a sum of terms of
the form A + 1%, The formula for the trace of P, above shows that
the trace of p is an integral linear combination of the traces S,. In
particular, p is the direct sum of the P,,’s. This also proves that every
irreducible representation of SU(2) is of the form P,, for some m. 0O

diagonal group T ={ge G:g= ( )}, is a direct sum of characters

2.4. The Clebsch-Gordan Formula.

Theorem 6. (Clebsch-Gordan Formula) Let m > n. The tensor prod-
uct of the irreducible representations P, and P, decomposes:

n
Pn®P, = @Pm+n—2j-
j=0

Proof. We need only compute the traces on both sides and show that
they are equal, since the trace completely determines the representa-
tion for a compact group. Moreover, the trace function being conjugate
invariant, the traces need only be proved equal on the diagonals T in
SU(2) since every element in SU(2) can be conjugated into the diago-
nals.

Let t = ?) /1(_)1 be a diagonal matrix in SU(2) with A # £1. Let S,

be the trace of the representation P, evaluated at t. The trace of the
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tensor product of P, and P, is simply the product of the traces of Py,
and P,. Hence the product of A — A~! and the trace of the left hand
side evaluated at the element t is

(A _ A_l)SmSn — (Am+1 _ A—m—l)sn — (Am+1 _ A—m—l)(Z )Ln—Qj) —
j=0

n

n
— Z(Am+n—2j+l _ /l—m—n+2j—1) — Z(}L _ A_l)sm+n—2j~
Jj=0 Jj=0
(Note that since m > n, and 0 < j < n, we have m+n—2j > m—n > 0).
We thus get

n
SmSn = Z Sm+n—2j,
j=0

proving the formula. O



