BLFG 000 $qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Glue and Sea Inside the Proton from a Light-Front Hamiltonian

Chandan Mondal

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

BLFQ Collaboration

Siqi Xu, Bolang Lin, Hongyao Yu, Zhimin Zhu, Sreeraj Nair..., Xingbo Zhao (IMP) and James P. Vary (ISU)

Workshop on probing hadron structure at EIC

February 08, 2024

```
Introduction
000
```

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Introduction

Basis Light-Front Quantization (BLFQ) to

```
Proton : (|qqq\rangle + |qqqg\rangle)
```

Proton : $(|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle)$

Conclusions

(PRD 108 094002 (2023), PLB 847 138305 (2023), work in progress)(Satvir Kaur : Valence quark and gluon TMDs of spin-1 QCD system)

BLFC

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Fundamental Properties: Mass and Spin

- About 99% of the visible mass is contained within nuclei
- Nucleon: composite particles, built from nearly massless quarks ($\sim 1\%$ of the nucleon mass) and gluons
- How does 99% of the nucleon mass emerge?
- Quantitative decomposition of *nucleon spin* in terms of quark and gluon degrees of freedom is not yet fully understood.
- To address these fundamental issues
 → nature of the subatomic force
 between quarks and gluons, and the
 internal landscape of nucleons.

¹Pictures (top to bottom) adopted from A. Signori, J. Qiu, C. Lorce

Introduction	BLFQ	$ qqq\rangle + qqqg\rangle$	$ qqq\rangle + qqqqg\rangle + qqqq\bar{q}\rangle$	Conclusions
000	000	000000000000000000000000000000000000000	00000	00000000

Spin sum rule	Formula	Terms	Characteristics
Frame independent (Ji) ³⁰	$\frac{1}{2}\Delta\Sigma + L_q^z + J_g = \frac{h}{2}$	$\Delta \Sigma/2$ is the quark helicity L_q^z is the quark OAM J_g is the gluon contribution	The quark and gluon contributions, J_a and J_g , can be obtained from the GPD moments. A similar sum rule also works for the transverse angular momentum and has a simple parton interpretation
Infinite-momentum frame (Jaffe–Manohar) ³¹	$\frac{1}{2}\Delta\Sigma + \Delta G + \ell_q + \ell_g = \frac{\hbar}{2}$	ΔG is the gluon helicity ℓ_q and ℓ_g are the quark and gluon canonical OAM, respectively	All terms have partonic interpretations; ℓ_q and ℓ_g are twist-three quantities. ΔG is measurable in experiments, including the RHIC spin and the EIC; ℓ_q and ℓ_g can be extracted from twist-three GPDs

X. Ji, F. Yuan and Y. Zhao, Nature Reviews Physics 3, 65 (2021)
 Y.-B. Yang, R.S. Sufian, A. Alexandru et al., Phys. Rev. Lett. 118, 102001 (2017)
 ³Aidala's, Hatta's, Mathur's... talks,

IM

• $x \rightarrow$ longitudinal momentum fraction; $k_{\perp} \rightarrow$ parton transverse momentum; $r_{\perp} \rightarrow$ transverse distance from the center.

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Basis Light-Front Quantization (BLFQ)

A computational framework for solving relativistic many-body bound state problems in quantum field theories

- $P^{-}P^{+}|\Psi\rangle = M^{2}|\Psi\rangle$
- $P^- \equiv P^0 P^3$: light-front Hamiltonian
- $P^+ \equiv P^0 + P^3$: longitudinal momentum
- $|\Psi\rangle$ mass eigenstate
- M^2 : mass squared eigenvalue for eigenstate $|\Psi\rangle$
- First-principle / effective Hamiltonian as input
- Evaluate observables

 $O \sim \langle \Psi | \hat{O} | \Psi \rangle$

• direct access to light-front wavefunction of bound states

¹Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

Intro	du	cti	on	
000				

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $\begin{array}{c} |qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle \\ 00000 \end{array}$

Conclusions 00000000

• Fock expansion of baryonic bound states:

 $|\text{Proton}\rangle = \psi_{(3q)}|qqq\rangle + \psi_{(3q+1g)}|qqqg\rangle + \psi_{(3q+q\bar{q})}|qqqq\bar{q}\rangle + \dots ,$

Solution proposed by BLFQ

Discrete	basis	and	their
dire	ct pro	oduct	t

2D HO $\phi_{nm}(p^{\perp})$ in the transverse plane

Plane-wave in the longitudinal direction

Light-front helicity state for spin d.o.f.

$$\begin{split} \alpha_i &= (k_i, n_i, m_i, \lambda_i) \\ &|\alpha\rangle &= \otimes_i |\alpha_i\rangle \end{split}$$

 $\frac{\text{Truncation}}{\sum_{i} (2n_i + |m_i| + 1) \le N_{\max}}$

$$\sum_{i} k_{i} = K, \quad x_{i} = \frac{k_{i}}{K}$$
$$\sum_{i} (m_{i} + \lambda_{i}) = M_{I}$$

Fock sector truncation

Large N_{\max} and $K \to \text{High UV}$ cutoff & low IR cutoff

• Exact factorization between center-of-mass motion and intrinsic motion

¹Vary, Honkanen, Li, Maris, Brodsky, Harindranath, et. al., Phys. Rev. C 81, 035205 (2010).

BLFQ 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Nucleon within BLFQ

$$\begin{aligned} H_{\text{eff}} &= \sum_{a} \frac{\vec{p}_{\perp a}^{2} + m_{a}^{2}}{x_{a}} + \frac{1}{2} \sum_{a \neq b} \kappa^{4} \left[x_{a} x_{b} (\vec{r}_{\perp a} - \vec{r}_{\perp b})^{2} - \frac{\partial_{x_{a}} (x_{a} x_{b} \partial_{x_{b}})}{(m_{a} + m_{b})^{2}} \right] \\ &+ \frac{1}{2} \sum_{a \neq b} \frac{C_{F} 4 \pi \alpha_{s}}{Q_{ab}^{2}} \bar{u}_{s_{a}'}(k_{a}') \gamma^{\mu} u_{s_{a}}(k_{a}) \bar{u}_{s_{b}'}(k_{b}') \gamma^{\nu} u_{s_{b}}(k_{b}) g_{\mu\nu} \end{aligned}$$

Publications:

- Mondal et al., Phys. Rev. D 102, 016008 (2020) : Form Factors, PDFs,...
- Xu et al., Phys. Rev. D 104, 094036 (2021) : Nucleon structure,...
- Liu et al., Phys. Rev. D 105, 094018 (2022) : Angular Momentum,...
- Hu et al., Phys. Lett. B 2022, 137360 (2022) : TMDs,...
- Peng et al., Phys. Rev. D 106, 114040 (2022) : Λ and Λ_c PDFs,...
- Zhu et al., Phys. Rev. D 108, 036009 (2023) : A and A_c TMDs,...
- Kaur et al., Phys. Rev. D 109, 014015 (2024) : Chiral-odd GPDs,...
- Zhang et al., Phys. Rev. D ??? (2024) : Twist-3 GPDs...
- Nair et al., coming soon : GFFs,...
- Peng et al., coming soon : Double parton correlations,...

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000

 $P^-=P^-_{\rm QCD}+P^-_C$

Conclusions 00000000

$\begin{array}{l} \mbox{Proton with One Dynamical Gluon}\\ P^+P^-|\Psi\rangle = M^2|\Psi\rangle & |\mbox{proton}\rangle = \psi_{uud}|uud\rangle + \psi_{uudg}|uudg\rangle \end{array}$

QCD Interaction:

$$\begin{split} P_{\rm QCD}^- &= \int \mathrm{d}x^- \mathrm{d}^2 x^\perp \Big\{ \frac{1}{2} \bar{\psi} \gamma^+ \frac{m_0^2 + (i\partial^\perp)^2}{i\partial^+} \psi \\ &- \frac{1}{2} A_a^i \left[m_g^2 + (i\partial^\perp)^2 \right] A_a^i + g_s \bar{\psi} \gamma_\mu T^a A_a^\mu \psi \\ &+ \frac{1}{2} g_s^2 \bar{\psi} \gamma^+ T^a \psi \frac{1}{(i\partial^+)^2} \bar{\psi} \gamma^+ T^a \psi \Big\}, \end{split}$$

Confinement only in leading Fock:

$$P_{\rm C}^- P^+ = \frac{\kappa^4}{2} \sum_{i \neq j} \left\{ \{ \vec{r}_{ij\perp}^{\ 2} - \frac{\partial_{x_i}(x_i x_j \partial_{x_j})}{(m_i + m_j)^2} \right\}$$

Parameters:

Truncation: Nmax=9, K=16.5 HO parameters: b=0.7GeV, b_{inst}=3GeV

 $^{1}{\rm S.}$ Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023) 094002.

²Brodsky, Teramond, Dosch and Erlich, Phys. Rep. 584, 1 (2015).

³Li, Maris, Zhao and Vary, Phys. Lett. B (2016).

BLFQ DOO $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023) 094002.

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Helicity PDFs BLFQ: PRD 108 (2023) 094002

- Quark spin: $\frac{1}{2}\Sigma_u = 0.438 \pm 0.004, \ \frac{1}{2}\Delta\Sigma_d = -0.080 \pm 0.002.$
- Gluon spin: $\Delta G = 0.131 \pm 0.003$, sizeable to the proton spin.
- PHENIX Collaboration: $\Delta G^{[0.02,0.3]} = 0.2 \pm 0.1$.
- Sea quarks: solely generated from the QCD evolution.

¹LFH: 124 (2020), 082003; PHENIX: PRL 103 (2009) 012003].

- Experimentally, the expected increase of $\Delta u/u$ is observed.
- For d quark: remains negative in the experimentally covered region.
- Global analyses favor negative values of $\Delta d/d$ at large-x.

int	ro	dι	1C	ti	0	n		
	0							

BLFQ DOO $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Gluon GPDs BLFQ : PLB 847 (2023) 138305

Non-skewed GPDs

- Model scale : $\mu_0^2 = 0.23 0.25$ GeV² (by matching $\langle x \rangle$ with global fit at 10 GeV² after scale evolution)
- Total Angular Momentum: $J = \frac{1}{2} \int dx x [H(x, 0) + E(x, 0)];$ $J_g = 0.066, 13.2\%$ of the proton TAM.

Introduction 000

BLFQ

 $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 00000 \bullet 00000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

BLFQ Predictions for Spin Decomposition

Quark and gluon helicities :

$$\Delta \Sigma_q = \int \mathrm{d}x \,\Delta q(x)$$
$$\Delta \Sigma_g = \int \mathrm{d}x \,\Delta G(x)$$

Total AM :

$$J_i = \int \mathrm{d}x \, x \, [H_i(x,0,0) + E_i(x,0,0)]$$

Kinetic OAM :

$$L_q = \int dx \left[x \left\{ H_q(x,0,0) + E_q(x,0,0) \right\} - \tilde{H}_q(x,0,0) \right]$$

Canonical OAM :

$$l^z_i = -\int \mathrm{d}x\,\mathrm{d}^2\vec{p}_{\perp} \, \frac{\vec{p}_{\perp}^{\ 2}}{M^2}\,F^i_{1,4}(x,0,\vec{p}_{\perp}^{\ 2},0,0)$$

¹Hatta's talk: 6th Feb.

²S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023), 094002.

Introduction	BI
000	00

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000

Conclusions 00000000

x-Dependent Squared Radius

$$\langle b_{\perp}^2 \rangle^i(x) = rac{\int d^2 ec{b}_{\perp} b_{\perp}^2 H^i(x, b_{\perp})}{\int d^2 ec{b}_{\perp} H^i(x, b_{\perp})},$$

¹B. Lin, S. Nair, S.Xu, CM, X. Zhao, J. P. Vary, 2308.08275 [hep-ph].

²R. Dupre, M. Guidal and M. Vanderhaeghen, PRD 95, 011501 (2017).

Introd	uction	
000		

BLFQ DOO $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 0000000 \bullet 000000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Gravitational Form Factors

- Interaction with gravitons
- Encode information: momentum densities, energy densities, spin angular momentum, mechanical properties : pressure and force distributions, radius, etc.
- Gravitons not feasible in collider yet
- The graviton-proton coupling is mimicked with a pair of vector bosons interacting with quark and gluon (in DVCS process)

[Fig: Burkert et. al.: 2310.11568]

oduction

BLFQ

 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Nucleon Gravitational Form Factors

• Parametrization of matrix element in terms of GFFs

$$\begin{split} \langle P'|T_i^{\mu\nu}(0)|P\rangle &= \bar{U'} \bigg[-B_i(q^2) \frac{\bar{P}^{\mu} \bar{P}^{\nu}}{M} + (A_i(q^2) + B_i(q^2)) \frac{1}{2} (\gamma^{\mu} \bar{P}^{\nu} + \gamma^{\nu} \bar{P}^{\mu}) \\ &+ C_i(q^2) \frac{q^{\mu} q^{\nu} - q^2 g^{\mu\nu}}{M} + \bar{C}_i(q^2) M g^{\mu\nu} \bigg] U \end{split}$$

- Momentum sum rule : $\sum_{i} A^{i}(0) = 1$
- Gravitomagnetic moment sum rule : $\sum_{i} B^{i}(0) = 0$
- Spin sum rule: $J^{i} = \frac{1}{2} \left[A^{i}(0) + B^{i}(0) \right]$
- $4C(q^2) = D(q^2)$ provides shear forces and the pressure distributions

[Burkert et. al.: Rev. Mod. Phys. 95, 041002 (2023)] [Ji, Phys. Rev. Lett. 78, 610 (1997)]

¹Keh-fei Liu talk's

BLFQ 000 $\begin{array}{l} |qqq\rangle + |qqqg\rangle \\ 000000000 \bullet 0000000 \end{array}$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}$ 00000 Conclusions 00000000

$A(Q^2)$ and $B(Q^2)$

• $A(Q^2)$ and $B(Q^2)$: T^{++} component

• Spin sum rule:
$$J^{i} = \frac{1}{2} \left(A^{i}(0) + B^{i}(0) \right)$$

$$\sum_i A^i(0) = 1$$
 and $\sum_i B^i(0) = 0$

¹S. Nair, CM, et. al. coming soon...

• $D(Q^2) = 4C(Q^2)$: T^{ij} components

¹S. Nair, CM, et. al. coming soon...

BLFQ 000 $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

TMDs of Spin-1/2 Target

Gluon TMDs correlator :

$$\Phi^{g[ij]}(x,\vec{k}_{\perp};S) = \frac{1}{xP^{+}} \int \frac{dz^{-}}{2\pi} \frac{d^{2}\vec{z}_{\perp}}{(2\pi)^{2}} e^{ikz} \langle P;S|F_{a}^{+j}(0)\mathcal{W}_{+\infty,ab}(0;z)F_{b}^{+i}(z)|P;S\rangle \mid_{z^{+}=0^{+}}$$

Parametrization

$$\begin{split} & \Phi^g(x,\vec{k}_{\perp};S) = \delta_{\perp}^{ij} \Phi^{g[ij]}(x,\vec{k}_{\perp};S) \\ &= f_1^g(x,\vec{k}_{\perp}^2) - \frac{\epsilon_{\perp}^{ij}k_{\perp}^i S_{\perp}^j}{M} f_{1T}^{\perp g}(x,\vec{k}_{\perp}^2) \\ & \bar{\Phi}^g(x,\vec{k}_{\perp};S) = i\epsilon_{\perp}^{ij} \Phi^{g[ij]}(x,\vec{k}_{\perp};S) \\ &= S^3 g_{1L}^g(x,\vec{k}_{\perp}^2) + \frac{\vec{k}_{\perp} \cdot \vec{S}_{\perp}}{M} g_{1T}^g(x,\vec{k}_{\perp}^2) \\ & \Phi_T^{ij}(x,\vec{k}_{\perp};S) = -\hat{S} \Phi^{g[ij]}(x,\vec{k}_{\perp};S) \\ &= -\frac{\hat{S} k_{\perp}^i k_{\perp}^j}{2M^2} h_1^{\perp g}(x,\vec{k}_{\perp}^2) + \frac{S^3 \hat{S} k_{\perp}^i c_{\perp}^{ik} k_{\perp}^k}{2M^2} h_{1L}^{\perp g}(x,\vec{k}_{\perp}^2) \\ & + \frac{\hat{S} k_{\perp}^i c_{\perp}^{ik} S_{\perp}^k}{2M} \left(h_{1T}^g(x,\vec{k}_{\perp}^2) + \frac{\hat{k}_{\perp}^2}{2M^2} h_{1T}^{\perp g}(x,\vec{k}_{\perp}^2) \right) \\ & + \frac{\hat{S} k_{\perp}^i c_{\perp}^{ik} (2k_{\perp}^k \vec{k}_{\perp} \cdot \vec{S}_{\perp} - S_{\perp}^k \vec{k}_{\perp}^2)}{4M^3} h_{1T}^{\perp g}(x,\vec{k}_{\perp}^2), \end{split}$$

		PARTON SPIN						
7	GLUONS	$-g_T^{lphaeta}$	$arepsilon_T^{lphaeta}$	$p_T^{\alpha\beta}, \dots$				
SPI	U	$\begin{pmatrix} f_1^g \end{pmatrix}$		$h_1^{\perp g}$				
RGET	L		(g_1^g)	$h_{_{1L}}^{_{\perp g}}$				
Ā	Т	$f_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$	$g^g_{\scriptscriptstyle 1T}$	$h_{\scriptscriptstyle 1}^g$ $h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$				

- ¹A. Accardi *et al.*, Eur.Phys.J.A 52 (2016) 9, 268.
- ²Meißner, et. al. PRD D 76 (2007), 034002.
- ³Pisano's, Khatiza's...talks

BLFQ

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$

Conclusions 00000000

Gluon TMDs

Positivity bounds

$$\begin{split} f_1^g(x, \boldsymbol{k}_{\perp}^2) &> 0, \quad f_1^g(x, \boldsymbol{k}_{\perp}^2) \geq |g_{1L}^g(x, \boldsymbol{k}_{\perp}^2)|, \\ f_1^g(x, \boldsymbol{k}_{\perp}^2) &\geq \frac{|\boldsymbol{k}_{\perp}|}{M} |g_{1T}^g(x, \boldsymbol{k}_{\perp}^2)|, \\ f_1^g(x, \boldsymbol{k}_{\perp}^2) &\geq \frac{|\boldsymbol{k}_{\perp}|^2}{2M^2} |h_1^{\perp g}(x, \boldsymbol{k}_{\perp}^2)| \end{split}$$

• Satisfies Mulders-Rodrigues relations

¹Hongyao Yu, et. al. coming very soon...

21/32

.

BLFQ

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

• Small-x limit

$$\lim_{x \to 0} \frac{\int d\mathbf{k}_{\perp}^2 |\mathbf{k}_{\perp}^2| h_1^{\perp g}(x, \mathbf{k}_{\perp}^2)}{2M^2 \int d\mathbf{k}_{\perp}^2 f_1^g(x, \mathbf{k}_{\perp}^2)} = 1$$

• Helicity asymmetry:

$$\begin{split} &\lim_{x\to 0} \frac{\int d\mathbf{k}_{\perp}^2 g_{1L}^q(x, \mathbf{k}_{\perp}^2)}{\int d\mathbf{k}_{\perp}^2 f_1^g(x, \mathbf{k}_{\perp}^2)} = 0, \\ &\lim_{x\to 1} \frac{\int d\mathbf{k}_{\perp}^2 g_{1L}^g(x, \mathbf{k}_{\perp}^2)}{\int d\mathbf{k}_{\perp}^2 f_1^g(x, \mathbf{k}_{\perp}^2)} = 1 \end{split}$$

• With larger truncation K, satisfies the limiting cases.

 $^{^1 \, {\}rm Hongyao}$ Yu, et. al. coming very soon...

BLFQ

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

• To check compatibility of BLFQ results with the Gaussian ansatz :

$$f_1^g(x, k_\perp^2) \approx a \frac{\exp\left(-\frac{|k_\perp|^2}{r}\right)}{\pi r}$$

where $a = \langle |k_{\perp}|^0 \rangle_{f_1^g}$ and $r = \langle |k_{\perp}|^2 \rangle_{f_1^g}$

• If the Gaussian ansatz holds :

$$\frac{\langle |k_{\perp}|^2 \rangle_{f_1^g} \times \langle |k_{\perp}|^0 \rangle_{f_1^g}}{(\langle |k_{\perp}|^1 \rangle_{f_1^g})^2} \times \frac{\pi}{4} = 1$$

BLFQ results do not support Gaussian ansatz

$^1\,\mathrm{Hongyao}$ Yu, et. al. in preparation

BLFQ

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Twist-2 vs Twist-3 Quark TMDs

¹Zhimin Zhu, et. al. in preparation

BLFC

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$

Conclusions 00000000

IMP

Semi-inclusive DIS

$$\frac{d\sigma}{dxdydzdP_{hT}^{2}d\varphi_{h}d\psi} = \left[\frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right)\right] (F_{UU,T} + \varepsilon F_{UU,L}) \times$$

$$\left[1+\cos\varphi_{h}\left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi}\right) + \cos 2\phi_{h}\left(\varepsilon A_{UU}^{\sin2\phi_{h}}\right) + \varepsilon sin \varphi_{h}\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UL}^{\cos\phi_{h}}\right) + \sin 2\phi_{h}\left(\varepsilon A_{UL}^{\sin2\phi_{h}}\right)\right] + \lambda \sin\phi_{h}\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UL}^{\sin\phi_{h}}\right) + \sin 2\phi_{h}\left(\varepsilon A_{UL}^{\sin2\phi_{h}}\right)\right] + S_{L}\left[\sin\phi_{h}\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UL}^{\sin\phi_{h}}\right) + \sin 2\phi_{h}\left(\varepsilon A_{UL}^{\sin2\phi_{h}}\right)\right] + sin(\phi_{h} - \phi_{S})\left(\varepsilon A_{UT}^{\sin(\phi_{h},\phi_{h})}\right) + \sin(\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_{h}}\right) + \sin(2\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_{h}}\right) + \sin(2\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\phi_{h}}\right) + \sin(2\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos\phi_{h},\phi_{h}}\right) \right] + S_{T}\lambda\left[\cos(\phi_{h} - \phi_{S})\left(\sqrt{1-\varepsilon^{2}}A_{LT}^{\cos(\phi_{h},\phi_{h})}\right) + \cos(2\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos\phi_{h},\phi_{h}}\right) + \cos(2\phi_{h} - \phi_{S})\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos\phi_{h},\phi_{h}}\right) \right]$$

¹Bacchetta, et al, JHEP 02 (2007) 093 ¹Zhimin Zhu, et. al. in preparation $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

IMI

Spin asymmetry in SIDIS process

$$\begin{aligned} \text{twist-2} \quad F_{UUT} = \mathcal{C}[f_1D_1] \quad F_{UU,L} = 0 \quad F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C}[\frac{\hbar \cdot p_T}{M}g_{1T}D_1] \quad \hbar = \frac{P_{h\perp}}{|P_{h\perp}|} \\ \text{twist-3} \quad F_{LT}^{\cos\phi_S} = \frac{2M}{Q}\mathcal{C}\Big\{ -\left(xg_TD_1 + \frac{M_h}{M}h_1\frac{\tilde{E}}{z}\right) + \frac{k_T \cdot p_T}{2MM_h}\Big[\left(xe_TH_1^{\perp} - \frac{M_h}{M}g_{1T}\frac{\tilde{D}^{\perp}}{z}\right) + \left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}\frac{\tilde{G}^{\perp}}{z}\right)\Big]\Big\} \\ & \sim -\frac{2M}{Q}\mathcal{C}[xg_TD_1] \quad \text{supression factor} \\ \end{aligned}$$
EOM relation: $xg_T = x\tilde{g}_T - \frac{p_T^2}{2M^2}g_{1T} + \frac{m}{M}h_1$

Kinematic parameters : M~1 GeV, $Q_{\rm EicC}$ ~ 10 GeV, $Q_{\rm EIC}$ ~ 100 GeV

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ $\bullet 0000$ Conclusions 00000000

IMP

Effective Hamiltonian with Dynamical Gluon and Sea Quarks Fock expansion:

 $|\operatorname{Proton}\rangle = a \mid uud\rangle + b \mid uudg\rangle + c_1 \mid uudu\overline{u}\rangle + c_2 \mid uudd\overline{d}\rangle + c_3 \mid uuds\overline{s}\rangle + \dots$

Light-front QCD Hamiltonian :

$$H_{\rm eff} = \sum_{a} \frac{\vec{p}_{\perp a}^2 + m_a^2}{x_a} + \frac{H_{\rm confinement}}{x_a} + \frac{H_{\rm vertex} + H_{\rm inst}}{x_a}$$

$$H_{\text{vertex}} + H_{\text{inst}} = g_s \bar{\psi} \gamma_\mu T^a A^\mu_a \psi + \frac{1}{2} g_s^2 \bar{\psi} \gamma^+ T^a \psi \frac{1}{(i\partial^+)^2} \bar{\psi} \gamma^+ T^a \psi + \frac{1}{2} g_s^2 \bar{\psi} \gamma^\mu A_\mu \frac{\gamma^+}{(i\partial^+)} A_\nu \gamma^\nu \psi$$

¹Brodsky, Pauli, and Pinsky, Phys. Rep. 301, 299 (1998).

- $\succ \bar{u}$ and \bar{d} GPDs
- ▶ \bar{u} and \bar{d} GPD *E* have small negative region around *x*~0.2

BLFQ

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions 00000000

Sea Quark TMDs

Preliminary results

BLFQ

 $\langle qqq \rangle + \langle qqqg \rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 0000 \bullet Conclusions 00000000

Sea Quark TMDs Asymmetries

 $^{^{0}}$ Hongyao Yu, et. al., in preparation

BLFC

 $\left| qqq \right\rangle + \left| qqqg \right\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions
0000000

Conclusions

- Basis Light-front Quantization : A non-perturbative approach based on light-front QCD Hamiltonian
- LF Hamiltonian \Rightarrow Wavefunctions \Rightarrow Observables.
- Explored gluon and sea quarks within proton based on $|qqq\rangle + |qqqg\rangle$ and $|qqq\rangle + |qqqq\bar{q}\rangle + |qqqq\bar{q}\rangle$, respectively.
- Provides good description of data/global fits for various observables.
- With one dynamical gluon, the quark spin contributes 70%; the gluon spin plays a substantial role (26%) in understanding the nucleon spin.

Outlook

- Include three-gluon and four-gluon interactions in the Hamiltonian.
- This is not a complete picture ... long way to go.

Enormous amount of possibilities with future EICs \ldots ... Thank You

BLFQ

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$

Conclusions

IMF

Unpolarized PDFs

Including dynamical gluon (DG):

- Model scale : $\mu_0^2 = 0.195 \text{ GeV}^2 \Rightarrow \mu_0^2 = 0.23 0.25 \text{ GeV}^2$
- Gluon distribution: closer to global fits.

¹S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, Phys.Rev.D 108 (2023) 094002.

Conclusions 00000000

Overview of TMDs for Spin-1/2 Target

Quark correlator Parameterization: 8 twist-2 TMDs: $\Phi^{\left[\gamma^{+}\right]} = f_{1} - \frac{\epsilon^{ij}_{\perp}k^{i}_{\perp}S^{j}_{\perp}}{M} f^{\perp}_{1T},$ 6 T-even terms $\Phi^{\left[\gamma^{+}\gamma^{5}\right]} = \Lambda g_{1L} + \frac{k_{\perp} \cdot \boldsymbol{S}_{\perp}}{M} g_{1T},$ 2 T-odd terms $\Phi^{\left[i\sigma^{j+}\gamma^{5}\right]} = S^{j}_{\perp}h_{1} + \Lambda \frac{k^{j}_{\perp}}{M}h^{\perp}_{1L} + S^{i}_{\perp} \frac{2k^{\perp}_{\perp}k^{\perp}_{\perp} - (k_{\perp})^{2}\delta^{ij}}{\Omega M^{2}}h^{\perp}_{1T} + \frac{\epsilon^{ji}_{\perp}k^{\perp}_{\perp}}{M}h^{\perp}_{1},$ 16 twist-3 TMDs: $\Phi^{[1]} = \frac{M}{R^+} \left[e - \frac{\epsilon_T^{\rho\sigma} k_{\perp\rho} S_{T\sigma}}{M} e_T^{\perp} \right],$ 8 T-even terms $\Phi^{[i\gamma_5]} = \frac{M}{D_+} \left[S_L \boldsymbol{e}_L - \frac{\boldsymbol{k}_\perp \cdot S_T}{M} \boldsymbol{e}_T \right],$ 8 T-odd terms $\Phi^{[\gamma^{\alpha}]} = \frac{M}{P^+} \left[-\epsilon_T^{\alpha\rho} S_{T\rho} f_T - S_L \frac{\epsilon_T^{\alpha\rho} k_{\perp\rho}}{M} f_L^{\perp} - \frac{k_{\perp}^{\alpha} k_{\perp}^{\rho} - \frac{1}{2} k_{\perp}^2 g_T^{\alpha\rho}}{M^2} \epsilon_{T\rho\sigma} S_T^{\sigma} f_T^{\perp} + \frac{k_{\perp}^{\alpha}}{M} f^{\perp} \right],$ $\Phi^{[\gamma^{\alpha}\gamma_{5}]} = \frac{M}{P^{+}} \left[S_{T}^{\alpha}g_{T} + S_{L}\frac{k_{\perp}^{\alpha}}{M}g_{L}^{\perp} - \frac{k_{\perp}^{\alpha}k_{\perp}^{\rho} - \frac{1}{2}k_{\perp}^{2}g_{T}^{\alpha\rho}}{M^{2}}S_{T\rho}g_{T}^{\perp} - \frac{\epsilon_{T}^{\alpha\rho}k_{\perp\rho}}{M}g_{L}^{\perp} \right],$ $\Phi^{\left[i\sigma^{\alpha\beta}\gamma_{5}\right]} = \frac{M}{P^{+}} \left[\frac{S_{T}^{\alpha}k_{\perp}^{\beta} - k_{\perp}^{\alpha}S_{T}^{\beta}}{M}h_{T}^{\perp} - \epsilon_{T}^{\alpha\beta}h \right],$ $\Phi^{\left[i\sigma^{+-}\gamma_{5}\right]} = \frac{M}{D^{+}} \left[S_{L}h_{L} - \frac{k_{\perp} \cdot S_{T}}{M}h_{T}\right].$

Jaffe-Ji notation:

- f. $e \rightarrow unpolarized quarks$
- g → longitudinally polarized quarks
- h → transverselv polarized quarks

- $1 \rightarrow$ the leading twist
- L → longitudinally polarized hadron
- $T \rightarrow$ transversely polarized hadron
- $\perp \rightarrow$ existing k_{\perp} with a non-contracted index

Meißner, et. al. JHEP08 (2009) 056.

BLFG 000 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions

GPDs and GFFs

• The second Mellin's moment of GPDs:

$$\int dx \, x \, H(x,\xi,t) = A(t) + \xi^2 D(t)$$
$$\int dx \, x \, E(x,\xi,t) = B(t) - \xi^2 D(t)$$

• GPDs in terms of the Compton Form Factors :

$$\operatorname{Re}\mathcal{H}(\xi,t) + i\operatorname{Im}\mathcal{H}(\xi,t) = \int_0^1 \mathrm{d}x \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x + i\epsilon}\right] H(x,\xi,t)$$

- Compton Form Factors are directly related to the observables we can experimentally determine in DVCS measurements.
- In DVCS experiments, GPDs are not directly accessible in the full x-space, but only at $x = \pm \xi$

BLFQ

 $qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000

Conclusions 00000000

IMP

D-term

- Only D(t) = 4C(t) GFF can be extracted via DVCS
- D(t) can be determined from the dispersion relation :

$$D(t) = \operatorname{Re}\mathcal{H}(\xi, t) - \frac{1}{\pi}\mathcal{P}\int_0^1 \mathrm{d}x \left[\frac{1}{\xi - x} - \frac{1}{\xi + x}\right] \operatorname{Im}\mathcal{H}(\xi, t)$$

[Fig: Burkert et. al.: 2310.11568]

Int	ro	du	cti	ion		
00	0					

BLFQ

 $|qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions

IMP

xPDFs: Twist-2 vs Twist-3

 $\int \frac{\mathrm{d}^2 k_\perp}{(2\pi)^2} f(x,k_\perp) = f(x)$

Twist-3 PDFs: more concentrating in small x

similar magnitude to twist-2 PDFs

genuine twist-3 xPDFs

BLFQ

 $\langle qqq \rangle + \langle qqqg \rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000

Conclusions 00000000

IMP

Light-Front QCD with Light-Cone Gauge $(A^+ = 0)$

$$\begin{split} \hat{P}_{\mathrm{LFQCD}} &= \frac{1}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma^{+} \frac{(i\partial^{\perp})^{2} + m^{2}}{i\partial^{+}} \psi + A^{ia}(i\partial^{\perp})^{2}A^{ia} \\ &+ g_{s} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma_{\mu}A^{\mu a}T^{a}\psi \\ &+ \frac{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma_{\mu}A^{\mu a}T^{a} \frac{\gamma^{+}}{i\partial^{+}} \left(\gamma_{\nu}A^{\nu b}T^{b}\psi\right) \\ &+ \frac{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ \overline{\psi}\gamma^{+}T^{a}\psi \frac{1}{(i\partial^{+})^{2}} \left(\overline{\psi}\gamma^{+}T^{a}\psi\right) \\ &- g_{s}^{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ \overline{\psi}\gamma^{+}T^{c}\psi \frac{1}{(i\partial^{+})^{2}} \left(i\partial^{+}A^{\mu a}A^{b}_{\mu}\right) \\ &- g_{s}^{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ i\partial^{\mu}A^{\nu a}A^{b}_{\mu}A^{c}_{\nu} \\ &= \underbrace{g_{s}^{2}}{2} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ if^{ade} \ i\partial^{+}A^{\mu b}A^{c}_{\mu} \frac{1}{(i\partial^{+})^{2}} \left(i\partial^{+}A^{\nu d}A^{e}_{\nu}\right) \\ &- \frac{g_{s}^{2}}{4} \int \mathrm{d}x^{-} \mathrm{d}^{2}x^{\perp} \ if^{abc} \ if^{ade} A^{\mu b}A^{\nu c}A^{d}_{\mu}A^{e}_{\nu}. \end{split}$$

¹S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299-486 (1998).

Ι	n	ιt	r	0	d	u	С	t	0	n	
	0	0	С)							

BLFQ 000 $qqq\rangle + |qqqg\rangle$

 $|qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle$ 00000 Conclusions

Parameters

 $|P,\Lambda\rangle \rightarrow |qqq\rangle + |qqqqg\rangle + |qqqqu\bar{u}\rangle + \left|qqqd\bar{d}\right\rangle + |qqqs\bar{s}\rangle$

> We use following observables to fix the parameters in the first two Fock sectors

- Nucleon mass
- Nucleon electromagnetic form factors

m_u	m_d	m_{f}	g	b	b _{inst}
0.99 GeV	0.94 GeV	5.9 GeV	3.0	0.6 GeV	2.7 GeV

- The parameters effectively parameterize certain non-perturbative dynamics
- In five-quark Fock component, the quark masses are equal to current quark masses

m_u	m_d	m _s		
0.00216 GeV	0.00467 GeV	0.0934 GeV		

Truncation parameters: $N_{\text{max}} = 7$ and $K_{\text{max}} = 16$