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Power Maps

Let G be a totally disconnected locally compact (abbr. as tdlc)
group.

For any integer k ≥ 1, define the k-th power map Pk : G → G by

Pk(g) = gk , g ∈ G .

Aim: Find structural conditions that would provide
necessary/sufficient condition for power map to have dense image
or to be surjective.

Theorem 1 [Wi-94]

If G is a tdlc group and gkn
n → g and kn →∞ as n→∞, then

s(g) = 1, that is, g normalizes a compact open subgroup.
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Power maps contd.,

If Pk has dense image, then for g ∈ G , using the continuity of Pk ,
we can find a sequence gn ∈ G such that gkn

n → g .

By Theorem 1, we conclude that each g ∈ G normalizes a compact
open subgroup.

1 G is abelian

2 G is a affine group.

3 discrete group (such as Q)
1 and 2 no conclusion can be arrived but in case of 2 we can
decide.
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Scale function of tdlc groups

Let G be a tdlc group.
Following are results of G. Willis from [Mat. Ann. 1994]
For each automorphism α of G , scale of α, denoted by s(α) is
defined by

s(α) = mini{[α(U) : U∩α(U)] | U is a compact open subgroup}

and U which attains the minimum is called tidy subgroup of α.
For each g ∈ G , let αg be the inner automorphism of g on G .
Then scale of g , s(g) = s(αg ).
It is easy to see that s(α) = 1 = s(α−1) if and only if α(K ) = K
for some compact open subgroup.

Theorem [Wi-94]

s(αn) = s(α)n.

s is continuous on G .

In general s is not continuous on Aut (G )
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Group actions

Say G is a tdlc group acting continuously on a tdlc group X .
we observe that

Proposition [MaR-20]

If gn, g ∈ G are such that gkn
n → g and kn →∞ as n→∞, g

fixes a compact open subgroup of X .
If Pk has dense image, then each g ∈ G fixes a compact open
subgroup of X .
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Distal

A linear map α on a vector space V over a local field is called distal
if 0 is not a limit point of {αn(v) | n ∈ Z} for any v ∈ V \ {0}.

Theorem [CoG-74]

Let G be a subgroup of GL(V ). Then the following are equivalent:

each α ∈ G is distal on V ;

eigenvalues of each α ∈ G are of absolute value one;

there is a G -invariant flag of subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V

such that all orbits of G in Vi/Vi−1 are bounded.
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Necessary Condition

V to be a finite-dimensional vector space over a non-Archimedean
local field.
G be a tdlc group for which
Pk : G → G is dense for some k > 1 and
ρ : G → GL(V ) is a linear action or representation of G over V .
In this situation we obtain the following necessary condition

Theorem [MaR-20]

There is a flag of subspaces with associated unipotent group U
and compact subgroup L such that ρ(G ) ⊂ LU and the flag is
L-invariant.
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Sufficient condition

We first look at the following useful sufficient condition:

Theorem [DaM-17]

Let L be a compact totally disconnected group and N be a
nilpotent locally compact group. Suppose L acts on N and the
action is linear over a field F. If Pk is surjective on L and k is
coprime to the characteristic of F, then Pk is surjective on Ln K .
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Suff condition contd.,

We obtain the following

Theorem [MaR-20]

Let F be a non-Archimedean local field and G be a group with
linear representation ρ : G → GL(V ). Suppose that Pk is dense in
G for some k > 1. Then we have the following:

there exists a compact subgroup L of GL(V ) and a split
unipotent algebraic group U ⊂ GL(V ) normalized by L such
that L ∩ U is trivial, ρ(G ) ⊂ LU and ρ(G )U is dense in LU.
Moreover, Pk is surjective on the compact group L.

If k is coprime to the characteristic of F, then Pk is surjective
on LU.

If the characteristic p of F divides k , then ρ(G ) is finite.
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Residual characteristic

Suppose the characteristic of F does not divide k .

Let p be the residual characteristic of F.

Theorem [MaR-20]

If p divides k , then L is finite, that is, ρ(G ) is contained in a finite
extension of a split unipotent algebraic group U and Pk is dense in
ρ(G ) ∩ U.
In addition if the characteristic of F is positive, ρ(G ) is finite.
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Lie group

Theorem [MaR-20]

Let G be a Lie group over a non-Archimedean local fileld F and Pk

be dense in G for k > 1. Then we have the following:

(1) G is of type R.

(2) Ad (G ) is contained in a compact extension of an unipotent
normal subgroup.

(3) If G is compactly generated, then G is Ad-compact.

(4) If the residue characteristic divides k and the characteristic of
F is zero, then Ad (G ) is a finite extension of an unipotent
group.

(5) If the characteristic p > 0 divides k , Ad (G ) is finite.

(6) If Pk is dense in G for all k, then Ad (G ) is a F-split
unipotent group, in particular, G is Ad-unipotent. In addition
if the characteristic of F is positive, then Ad is trivial.
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unipotent group, in particular, G is Ad-unipotent.

In addition
if the characteristic of F is positive, then Ad is trivial.
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Lie group

Theorem [MaR-20]
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Linear algebraic groups

G be a linear algebraic group defined over a non-Archimedean local
field F: p-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of F does not divide k . Following are
equivalent:

(1) Pk : G (F)→ G (F) is dense;

(2) G (F)/Rus,F(F) is compact and Pk is surjective on
G (F)/Rus,F(F);

(3) Pk is surjective in G (F).

Theorem [MaR-20]

(1) If Pk is surjective on G (F) and H is an algebraic subgroup of
G defined over F, then Pk is surjective on H(F);

(2) If H is a closed normal subgroup of G (F) such that Pk is
dense in H and G (F)/H, then Pk is surjective on G (F).
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Other results

Any compactly generated linear group for which Pk is dense is
compact.

Similar results are proved for linear groups over Global fields:
If H is a subgroup of GL(d ,E) and Pk is surjective on H for
some k > 1, then H contains a unipotent normal subgroup of
finite index.

If G is a tdlc group acting on a tdlc group X by
automorphisms. Suppose G has a finite co-volume or
cocompact subgroup H and Pk is dense in H. Then every
element of G fixes a compact open subgroup of X . Thus, the
main results remain valid in this case also.
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