Group actions and power maps

C. R. E. Raja

Indian Statistical Institute, Bangalore.

(日)

Based on a joint work with A. Mandal IIT Roorkee

æ

For any integer $k \geq 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, g \in G.$$

For any integer $k \geq 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, g \in G.$$

Aim: Find structural conditions that would provide necessary/sufficient condition for power map to have dense image or to be surjective.

For any integer $k \ge 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, g \in G.$$

Aim: Find structural conditions that would provide necessary/sufficient condition for power map to have dense image or to be surjective.

Theorem 1 [Wi-94]

If G is a tdlc group and $g_n^{k_n} \to g$ and $k_n \to \infty$ as $n \to \infty$, then s(g) = 1, that is, g normalizes a compact open subgroup.

For any integer $k \ge 1$, define the k-th power map $P_k \colon G \to G$ by

$$P_k(g) = g^k, g \in G.$$

Aim: Find structural conditions that would provide necessary/sufficient condition for power map to have dense image or to be surjective.

Theorem 1 [Wi-94]

If G is a tdlc group and $g_n^{k_n} \to g$ and $k_n \to \infty$ as $n \to \infty$, then s(g) = 1, that is, g normalizes a compact open subgroup.

If P_k has dense image, then for $g \in G$, using the continuity of P_k , we can find a sequence $g_n \in G$ such that $g_n^{k^n} \to g$.

1 G is abelian

- 1 G is abelian
- 2 G is a affine group.

- 1 G is abelian
- 2 G is a affine group.
- 3 discrete group (such as Q)

- 1 G is abelian
- 2 G is a affine group.
- 3 discrete group (such as Q)

 $1 \mbox{ and } 2 \mbox{ no conclusion can be arrived but in case of } 2 \mbox{ we can decide.}$

æ

Let G be a tdlc group.

æ

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994]

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(\mathbf{U}) : \mathbf{U} \cap \alpha(\mathbf{U})] \mid \mathbf{U} \text{ is a compact open subgroup}\}$

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(\mathbf{U}) : \mathbf{U} \cap \alpha(\mathbf{U})] \mid \mathbf{U} \text{ is a compact open subgroup}\}$

and U which attains the minimum is called tidy subgroup of α .

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(U) : U \cap \alpha(U)] \mid U \text{ is a compact open subgroup}\}$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, let α_g be the inner automorphism of g on G. Then scale of g, $s(g) = s(\alpha_g)$.

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(U) : U \cap \alpha(U)] \mid U \text{ is a compact open subgroup}\}$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, let α_g be the inner automorphism of g on G. Then scale of g, $s(g) = s(\alpha_g)$. It is easy to see that $s(\alpha) = 1 = s(\alpha^{-1})$ if and only if $\alpha(K) = K$ for some compact open subgroup.

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(\mathbf{U}) : \mathbf{U} \cap \alpha(\mathbf{U})] \mid \mathbf{U} \text{ is a compact open subgroup}\}$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, let α_g be the inner automorphism of g on G. Then scale of g, $s(g) = s(\alpha_g)$. It is easy to see that $s(\alpha) = 1 = s(\alpha^{-1})$ if and only if $\alpha(K) = K$ for some compact open subgroup.

Theorem [Wi-94]

- $s(\alpha^n) = s(\alpha)^n$.
- s is continuous on G.

Let G be a tdlc group.

Following are results of G. Willis from [Mat. Ann. 1994] For each automorphism α of G, scale of α , denoted by $s(\alpha)$ is defined by

 $\boldsymbol{s}(\alpha) = \min\{[\alpha(\mathbf{U}): \mathbf{U} \cap \alpha(\mathbf{U})] \mid \mathbf{U} \text{ is a compact open subgroup}\}$

and U which attains the minimum is called tidy subgroup of α . For each $g \in G$, let α_g be the inner automorphism of g on G. Then scale of g, $s(g) = s(\alpha_g)$. It is easy to see that $s(\alpha) = 1 = s(\alpha^{-1})$ if and only if $\alpha(K) = K$ for some compact open subgroup.

Theorem [Wi-94]

•
$$s(\alpha^n) = s(\alpha)^n$$
.

• s is continuous on G.

In general s is not continuous on Aut (G)

Group actions

æ

イロト イヨト イヨト イヨト

Say G is a tdlc group acting continuously on a tdlc group X.

Say G is a tdlc group acting continuously on a tdlc group X. we observe that

Proposition [MaR-20]

If $g_n, g \in G$ are such that $g_n^{k_n} \to g$ and $k_n \to \infty$ as $n \to \infty$, g fixes a compact open subgroup of X. If P_k has dense image, then each $g \in G$ fixes a compact open subgroup of X.

Distal

A linear map α on a vector space V over a local field is called *distal* if 0 is not a limit point of $\{\alpha^n(v) \mid n \in \mathbb{Z}\}$ for any $v \in V \setminus \{0\}$.

Theorem [CoG-74]

Let G be a subgroup of GL(V). Then the following are equivalent:

- each $\alpha \in G$ is distal on V;
- eigenvalues of each $\alpha \in G$ are of absolute value one;
- there is a G-invariant flag of subspaces

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_m = V$$

such that all orbits of G in V_i/V_{i-1} are bounded.

Necessary Condition

æ

G be a tdlc group for which

- G be a tdlc group for which
- $P_k \colon G o G$ is dense for some k > 1

- G be a tdlc group for which
- $P_k \colon G o G$ is dense for some k > 1 and

G be a tdlc group for which

 $P_k: G \to G$ is dense for some k > 1 and

 $\rho: G \to GL(V)$ is a linear action or representation of G over V.

G be a tdlc group for which

 $P_k: G \to G$ is dense for some k > 1 and

 $\rho: G \to GL(V)$ is a linear action or representation of G over V.

In this situation we obtain the following necessary condition

Theorem [MaR-20]

There is a flag of subspaces with associated unipotent group U and compact subgroup L such that $\rho(G) \subset LU$ and the flag is L-invariant.

Sufficient condition

æ

We first look at the following useful sufficient condition:

Theorem [DaM-17]

Let *L* be a compact totally disconnected group and *N* be a nilpotent locally compact group. Suppose *L* acts on *N* and the action is linear over a field \mathbb{F} . If P_k is surjective on *L* and *k* is coprime to the characteristic of \mathbb{F} , then P_k is surjective on $L \ltimes K$.

We obtain the following

Theorem [MaR-20]

Let \mathbb{F} be a non-Archimedean local field and G be a group with linear representation $\rho: G \to GL(V)$. Suppose that P_k is dense in G for some k > 1. Then we have the following:

We obtain the following

Theorem [MaR-20]

Let \mathbb{F} be a non-Archimedean local field and G be a group with linear representation $\rho: G \to GL(V)$. Suppose that P_k is dense in G for some k > 1. Then we have the following:

 there exists a compact subgroup L of GL(V) and a split unipotent algebraic group U ⊂ GL(V) normalized by L such that L ∩ U is trivial, ρ(G) ⊂ LU and ρ(G)U is dense in LU. Moreover, P_k is surjective on the compact group L.

We obtain the following

Theorem [MaR-20]

Let \mathbb{F} be a non-Archimedean local field and G be a group with linear representation $\rho: G \to GL(V)$. Suppose that P_k is dense in G for some k > 1. Then we have the following:

- there exists a compact subgroup L of GL(V) and a split unipotent algebraic group U ⊂ GL(V) normalized by L such that L ∩ U is trivial, ρ(G) ⊂ LU and ρ(G)U is dense in LU. Moreover, P_k is surjective on the compact group L.
- If k is coprime to the characteristic of \mathbb{F} , then P_k is surjective on LU.

We obtain the following

Theorem [MaR-20]

Let \mathbb{F} be a non-Archimedean local field and G be a group with linear representation $\rho: G \to GL(V)$. Suppose that P_k is dense in G for some k > 1. Then we have the following:

- there exists a compact subgroup L of GL(V) and a split unipotent algebraic group $U \subset GL(V)$ normalized by L such that $L \cap U$ is trivial, $\rho(G) \subset LU$ and $\rho(G)U$ is dense in LU. Moreover, P_k is surjective on the compact group L.
- If k is coprime to the characteristic of \mathbb{F} , then P_k is surjective on LU.
- If the characteristic p of \mathbb{F} divides k, then $\rho(G)$ is finite.

Suppose the characteristic of \mathbb{F} does not divide k.

Suppose the characteristic of \mathbb{F} does not divide k. Let p be the residual characteristic of \mathbb{F} . Suppose the characteristic of \mathbb{F} does not divide k. Let p be the residual characteristic of \mathbb{F} .

Theorem [MaR-20]

If p divides k, then L is finite, that is, $\rho(G)$ is contained in a finite extension of a split unipotent algebraic group U and P_k is dense in $\rho(G) \cap U$. In addition if the characteristic of \mathbb{F} is positive, $\rho(G)$ is finite.

Lie group

< ロ > < 部 > < き > < き > ...

æ

Let G be a Lie group over a non-Archimedean local filed \mathbb{F} and P_k be dense in G for k > 1. Then we have the following:

Let G be a Lie group over a non-Archimedean local filed \mathbb{F} and P_k be dense in G for k > 1. Then we have the following:

(1) G is of type R.

Lie group

Theorem [MaR-20]

Let G be a Lie group over a non-Archimedean local fileld \mathbb{F} and P_k be dense in G for k > 1. Then we have the following:

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.

∍⊳

Lie group

Theorem [MaR-20]

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.
- (3) If G is compactly generated, then G is Ad-compact.

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.
- (3) If G is compactly generated, then G is Ad-compact.

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.
- (3) If G is compactly generated, then G is Ad-compact.
- (5) If the characteristic p > 0 divides k, Ad (G) is finite.

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.
- (3) If G is compactly generated, then G is Ad-compact.
- (5) If the characteristic p > 0 divides k, Ad (G) is finite.
- (6) If P_k is dense in G for all k, then Ad (G) is a 𝔽-split unipotent group, in particular, G is Ad-unipotent.

- (1) G is of type R.
- (2) Ad (G) is contained in a compact extension of an unipotent normal subgroup.
- (3) If G is compactly generated, then G is Ad-compact.
- (5) If the characteristic p > 0 divides k, Ad (G) is finite.
- (6) If P_k is dense in G for all k, then Ad (G) is a F-split unipotent group, in particular, G is Ad-unipotent. In addition if the characteristic of F is positive, then Ad is trivial.

Raja Power maps

æ

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of \mathbb{F} does not divide k. Following are equivalent:

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of \mathbb{F} does not divide k. Following are equivalent:

(1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of \mathbb{F} does not divide k. Following are equivalent:

- (1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;
- (2) $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$;

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of $\mathbb F$ does not divide k. Following are equivalent:

- (1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;
- (2) $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$;
- (3) P_k is surjective in $G(\mathbb{F})$.

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of $\mathbb F$ does not divide k. Following are equivalent:

- (1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;
- (2) $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$;
- (3) P_k is surjective in $G(\mathbb{F})$.

Theorem [MaR-20]

 If P_k is surjective on G(F) and H is an algebraic subgroup of G defined over F, then P_k is surjective on H(F);

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of $\mathbb F$ does not divide k. Following are equivalent:

- (1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;
- (2) $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$;
- (3) P_k is surjective in $G(\mathbb{F})$.

Theorem [MaR-20]

- If P_k is surjective on G(𝔅) and H is an algebraic subgroup of G defined over 𝔅, then P_k is surjective on H(𝔅);
- (2) If H is a closed normal subgroup of $G(\mathbb{F})$ such that P_k is dense in H and $G(\mathbb{F})/H$, then P_k is surjective on $G(\mathbb{F})$.

G be a linear algebraic group defined over a non-Archimedean local field \mathbb{F} : *p*-adic case of the following is proved in Chatterji [Ch-09]

Theorem [MaR-20]

Suppose the characteristic of $\mathbb F$ does not divide k. Following are equivalent:

- (1) $P_k \colon G(\mathbb{F}) \to G(\mathbb{F})$ is dense;
- (2) $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$ is compact and P_k is surjective on $G(\mathbb{F})/R_{us,\mathbb{F}}(\mathbb{F})$;
- (3) P_k is surjective in $G(\mathbb{F})$.

Theorem [MaR-20]

- If P_k is surjective on G(𝔅) and H is an algebraic subgroup of G defined over 𝔅, then P_k is surjective on H(𝔅);
- (2) If H is a closed normal subgroup of $G(\mathbb{F})$ such that P_k is dense in H and $G(\mathbb{F})/H$, then P_k is surjective on $G(\mathbb{F})$.

Other results

æ

▶ < Ξ >

< □ > < □ > < □

• Any compactly generated linear group for which P_k is dense is compact.

- Any compactly generated linear group for which *P_k* is dense is compact.
- Similar results are proved for linear groups over Global fields: If H is a subgroup of GL(d, E) and P_k is surjective on H for some k > 1, then H contains a unipotent normal subgroup of finite index.

- Any compactly generated linear group for which *P_k* is dense is compact.
- Similar results are proved for linear groups over Global fields: If H is a subgroup of GL(d, E) and P_k is surjective on H for some k > 1, then H contains a unipotent normal subgroup of finite index.
- If G is a tdlc group acting on a tdlc group X by automorphisms. Suppose G has a finite co-volume or cocompact subgroup H and P_k is dense in H. Then every element of G fixes a compact open subgroup of X. Thus, the main results remain valid in this case also.

- Ch-09 Chatterjee, P. On the power maps, orders and exponentiality of p-adic algebraic groups. J. Reine Angew. Math. (2009), no. 629, 201 220.
- CoG-74 Conze, J-P. and Guivarc'h, Y. Remarques sur la distalité dans les espaces vectoriels. (French) C. R. Acad. Sci. Paris Sér. 278 (1974), 1083–1086.
- DaM-17 Dani, S. G. and Mandal, A. On the surjectivity of the power maps of a class of solvable groups. J. Group Theory 20 (2017), no. 6, 1089–1101.
- MaR-20 Mandal, A. and Raja, C. R. E. Group actions and power maps for groups over non-Archimedean local fields, preprint.
 - Wi-94 Willis, G.A. The structure of totally disconnected locally compact groups Math. Ann. 300 (1994), 341–363.

Thanks for your attention!!!

æ