Convergence of limit shapes for 2D near-critical first-passage percolation

Chang-Long Yao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

July 21, 2022

Outline

- Background
- 2 Rescaled limit shape converges to a Euclidean ball as $p \uparrow p_c$
- $oxed{3}$ Asymptotics for Bernoulli FPP at p_c
- 4 Asymptotics for Bernoulli FPP as $p\downarrow p_c$

- Background
- 2 Rescaled limit shape converges to a Euclidean ball as $p \uparrow p_c$
- $oxed{3}$ Asymptotics for Bernoulli FPP at p_c
- 4 Asymptotics for Bernoulli FPP as $p \downarrow p_c$

Bond percolation

Let G(V, E) be an infinite connected graph and let $p \in [0, 1]$.

In Bernoulli(p) bond percolation, we let each bond (edge) of G be independently open with probability p and closed with probability 1-p.

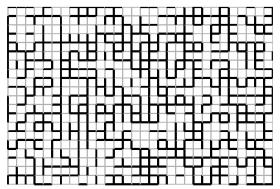


Figure: Bond percolation on the square lattice \mathbb{Z}^2

Site percolation

Let G(V, E) be an infinite connected graph and let $p \in [0, 1]$.

In Bernoulli(p) site percolation, we let each site (vertex) of G be independently open with probability p and closed with probability 1-p.

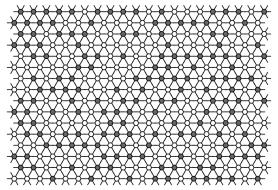


Figure: Site percolation on the **triangular lattice** $\mathbb T$

Site percolation

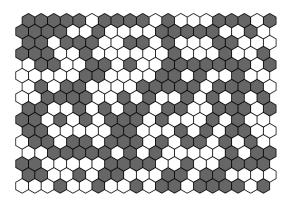


Figure: Site percolation on the triangular lattice can be considered as a random **two-coloring** of the faces of the dual **hexagonal lattice**.

First-passage percolation (FPP)

Assign to each bond (edge) e of the lattice \mathbb{Z}^d i.i.d. **nonnegative passage** time t(e). Site version of FPP is defined analogously. Given a path γ , define its passage time as $T(\gamma) = \sum_{e \in \gamma} t(e)$. Define the **point-to-point** passage times by

$$T(x,y)=\inf\{T(\gamma): \gamma \text{ is a path from } x \text{ to } y\}.$$

Triangular inequality: $T(x,y) \le T(x,z) + T(z,y)$

If $\mathbf{E}[t(e)] < \infty$, then subadditive ergodic theorem gives

$$\lim_{n o\infty}rac{T(0,n)}{n}=\mu$$
 a.s. and in L^1 . [Smythe-Wierman '78]

The constant $\mu = \mu(F)$ is called the **time constant**.

$$\mu = 0$$
 if $\mathbf{P}[t(e) = 0] \ge p_c(d)$; $\mu > 0$ if $\mathbf{P}[t(e) = 0] < p_c(d)$. [Kesten '86]

Remarks:

ullet One dimension, FPP on \mathbb{Z} , $\mathbf{E}[t(e)^2]<\infty$

$$T(0,n) = \sum_{i=1}^{n} t(e_i) \approx n \mathbf{E}[t(e_1)] + n^{1/2} \sqrt{\operatorname{Var}[t(e_1)]} Z, \quad Z \sim \mathcal{N}(0,1)$$

So $\mu = \mathbf{E}[t(e)].$

- Two dimensions, FPP on general 2D lattice, ${f P}[t(e)=0] < p_c, \dots$ It is expected that $T(0,n) \approx n\mu + n^{1/3}\sigma Z, \quad Z \sim {f Tracy-Widom\ distribution}$
- Directed last-passage percolation on \mathbb{Z}^2 (paths have non-decreasing coordinates) is exactly solvable when $t(v) \sim$ exponential or geometric distribution ("memoryless property").
 - Related to interacting particle systems, random matrices, ...
- KPZ (Kardar-Parisi-Zhang) universality class, KPZ equation describing surface growth models (Parisi, 2021 Nobel Prize in Physics)

The set of points reached from the origin 0 within a time $t \ge 0$ is

$$B(t) := \{ z \in \mathbb{R}^d : T(0, z) \le t \}.$$

We are interested in the limiting behavior of this set.

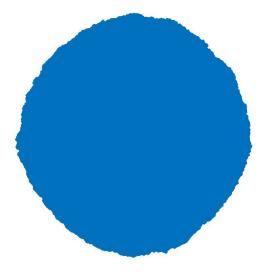
Theorem (Shape Theorem, Cox-Durrett '81)

Consider FPP on \mathbb{Z}^d (or \mathbb{T}). Suppose that $\mathbf{P}[t(e)=0] < p_c(d)$ and $\mathbf{E}[t(e)^d] < \infty$. There exists a **deterministic**, convex, compact set \mathcal{B} (depending on the distribution of t(e) and the lattice) with non-empty interior, such that for each $\epsilon \in (0,1)$,

$$\mathbf{P}\left[(1-\epsilon)\mathcal{B}\subset rac{B(t)}{t}\subset (1+\epsilon)\mathcal{B} ext{ for all large } t
ight]=1.$$

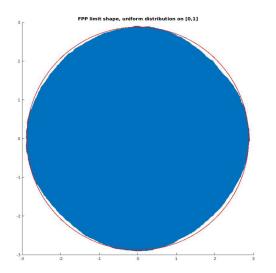
What does the limit shape look like? This is **one of the main questions for FPP**. Little is known about the geometry of the limit shape.

Simulation of B(t) on \mathbb{Z}^2 , with $t(e) \sim \text{uniform distribution}$ on [0,1]



Is the limit shape a Euclidean ball?

Simulation of B(t)/t, with $t(e) \sim$ uniform distribution on [0,1]



Problem: Prove that the time constant $\mu(\theta)$ is **strictly increasing** in $\theta \in [0, \pi/4]$, perhaps for some suitable class of passage time distributions.

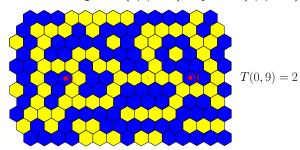
Bernoulli first-passage percolation on the triangular lattice \mathbb{T} :

Consider Bernoulli(p) site percolation on \mathbb{T} . For each $v \in V(\mathbb{T})$,

$$t(v) = \begin{cases} 0 & \text{if } v \text{ is open,} \\ 1 & \text{if } v \text{ is closed.} \end{cases}$$

$$\mathbf{P}_p[t(v) = 0] = p, \quad \mathbf{P}_p[t(v) = 1] = 1 - p.$$

We represent it as a **random coloring** of the faces of the dual hexagonal lattice, each face centered at v being **blue** (t(v) = 0) or **yellow** (t(v) = 1).



Bernoulli Percolation: study connectivity properties, such as

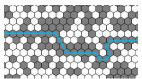
box-crossing and annulus-crossing (i.e., 1-arm) events

Bernoulli FPP: study first-passage times, such as

box-crossing and annulus-crossing times

A path realizing the box-crossing time has minimal number of **closed sites**, which can be seen as a crossing with minimal number of **defects**.

Consider Bernoulli site percolation on $\delta \mathbb{T}$, where δ is the mesh size.



 $\lim_{\delta \to 0} \mathbf{P}_{p,\delta}[\text{there is an open left-right crossing in } [0,1] \times [0,r]]$

$$= \left\{ \begin{array}{ll} 0 & p < p_c, \\ f(r) & p = p_c, \\ 1 & p > p_c. \end{array} \right. \label{eq:fc} \mbox{(Cardy's formula, proved by Smirnov '01)}$$

For $p < p_c$, let $\mathcal{B}(p)$ denote the limit shape for Bernoulli(p) FPP on \mathbb{T} .

- Little is known about the geometry of $\mathcal{B}(p)$ for fixed p. It is believed that $\mathcal{B}(p)$ is not a Euclidean ball, since the anisotropy of \mathbb{T} may persist in the limit. It is easy to show that for small p, $\mathcal{B}(p)$ approximates the regular hexagon $\mathcal{B}(0)$. We shall show that as $p \uparrow p_c$, appropriately re-scaled $\mathcal{B}(p)$ varies from a regular hexagon to a Euclidean ball.
- FPP on \mathbb{Z}^d for large d.

[Auffinger-Tang '16]: Limit shapes are not Euclidean balls for very general distributions, including uniform distribution on [0,1], exponential distribution.

- Background
- 2 Rescaled limit shape converges to a Euclidean ball as $p \uparrow p_c$
- 3 Asymptotics for Bernoulli FPP at p_c
- 4 Asymptotics for Bernoulli FPP as $p \downarrow p_c$

Consider Bernoulli(p) percolation on the triangular lattice.

Correlation length L(p) is a scale:

- below it the system "looks like" critical percolation. For instance, the crossing probabilities remain bounded away from 0 and 1.
- above it "notable" super/sub-critical behavior emerges.

Power law: $L(p) = |p - p_c|^{-4/3 + o(1)}$ as $p \to p_c$. [Smirnov-Werner '01]

Definition: Fix $\epsilon \in (0, 1/2)$. For $p < p_c$, let

$$L_{\epsilon}(p):=\inf\{R\geq 1: \mathbf{P}_p[\text{there is an open left-right crossing of }[0,R]^2]\leq \epsilon\}.$$

Another version:

$$L(p) := \inf \left\{ R \ge 1 : R^2 \mathbf{P}_{p_c}[\mathcal{A}_4(1, R)] \ge \frac{1}{p_c - p} \right\} \text{ for } p < p_c.$$

Let $\theta \in [0, 2\pi]$. There exists a **time constant** $\mu(p, \theta)$, such that

$$\lim_{n\to\infty}\frac{T(0,ne^{i\theta})}{n}=\mu(p,\theta)\qquad \mathbf{P}_p\text{-a.s. and in }L^1.$$

[Chayes-Chayes-Durrett '86]: $\mu(p,\theta) \approx L(p)^{-1}$ as $p \uparrow p_c$.

Let $\mathbb{D}_r=\{z\in\mathbb{C}:|z|\leq r\}$ denote the Euclidean ball of radius r.

The following theorem says that $\mathcal{B}(p)$ is asymptotically circular as $p \uparrow p_c$.

Theorem (Y. 2021)

There exists a constant $\nu > 0$, such that

$$\lim_{p\uparrow p_c}L(p)\mu(p,\theta)=\nu\quad \text{uniformly in }\theta\in[0,2\pi].$$

When $p \uparrow p_c$, the re-scaled limit shape $L(p)^{-1}\mathcal{B}(p)$ tends to the Euclidean ball $\mathbb{D}_{1/\nu}$ in the Hausdorff metric.

The **Hausdorff distance** between two subsets A,B of $\mathbb C$ is defined by $d_H(A,B) := \inf\{\epsilon > 0 : \forall x \in A, \exists y \in B \text{ such that } |x-y| \le \epsilon \text{ and vice versa}\}.$

Related works in the near-critical case (near-critical scaling limit in [Garban-Pete-Schramm '18] was used to extract geometric information about the discrete model and construct scaling limits of other objects):

• Duminil-Copin '13: The Wulff crystal for subcritical percolation converges to a Euclidean disk as $p \uparrow p_c$. Roughly speaking, the typical shape of a cluster conditioned to be large becomes round as $p \uparrow p_c$.

Key ingredient: rotational invariance of the near-critical scaling limit

- Garban-Pete-Schramm '18 (AOP): Construct the scaling limits of the minimal spanning tree and the invasion percolation tree.
 - In our proof, we will construct the scaling limit of the collection of clusters, and then define continuum FPP on this scaling limit.

Step 1. Construction of scaling limit for cluster ensemble as $p\uparrow p_c$

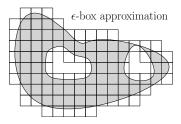
- (1) Scaling limit of critical percolation:
 - Camia-Newman '06: collection of cluster boundary loops
 - Schramm-Smirnov '11: collection of quad-crossings
 - Camia-Conijn-Kiss '19: collection of open clusters
- (2) Scaling limit of near-critical percolation:
 - Garban-Pete-Schramm '18: collection of quad-crossings

Using [GPS18] and [CCK19], we show that the collection of open clusters on the re-scaled lattice $L(p)^{-1}\mathbb{T}$ has a scaling limit as $p \uparrow p_c$, which is a collection of random compact sets called "continuum clusters".

Idea of the construction of continuum clusters

Two approximations of macroscopic open clusters:

• Use the union of ϵ -boxes which intersect the cluster



• Use arm events related to ϵ -boxes to characterize the cluster Advantage: it can also be defined in the near-critical quad-crossing scaling limit ω^{∞} . Letting $\epsilon \to 0$, one can construct the collection of continuum clusters $\mathscr C$ which is a measurable function of ω^{∞} .

For $L(p)^{-1}\mathbb{T}$ with p close to p_c , the **two approximations coincide** with high probability. Under a coupling s.t. $L(p)^{-1}\omega_p\to\omega^\infty$ a.s. as $p\uparrow p_c$, the collection of open clusters on $L(p)^{-1}\mathbb{T}$ converges in probability to $\mathscr C$ (in some metric).

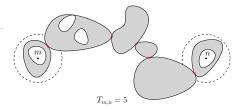
Step 2. First-passage percolation for the continuum cluster ensemble

Continuum chain: a sequence Γ of continuum clusters with any two consecutive clusters in Γ touching each other.

Write $T(\Gamma) := \#\{\text{clusters in } \Gamma\} - 1$.

Let C(n) be the outermost cluster surrounding the point n in the unit ball centered at n. Define the "point-to-point" passage time:

 $T_{m,n} := \inf\{T(\Gamma) : \Gamma \text{ is a continuum chain from } \mathcal{C}(m) \text{ to } \mathcal{C}(n)\}.$



Discrete chain: a sequence Γ^p of blue clusters in $L(p)^{-1}\mathbb{T}$, s.t. for any two consecutive clusters \exists a yellow hexagon touching both of them.

 $T_{m,n}^p := T(\mathcal{C}^p(m), \mathcal{C}^p(n))$. For p close to p_c , with high probability $T_{m,n}^p = \inf\{T(\Gamma^p) : \Gamma^p \text{ is a discrete chain from } \mathcal{C}^p(m) \text{ to } \mathcal{C}^p(n)\}.$

For **FPP on the cluster-ensemble scaling limit**, there is a constant $\nu>0$ such that

$$\lim_{n \to \infty} \frac{T_{0,n}}{n} = \nu \quad \text{a.s.}$$

Verify that $(T_{m,n})_{0 \le m < n}$ satisfies conditions of subadditive ergodic theorem:

- Triangle inequality: $T_{0,n} \leq T_{0,m} + T_{m,n}$ for all 0 < m < n.
- The distributions of $(T_{m,m+j})_{j>1}$ and $(T_{m+1,m+j+1})_{j>1}$ are the same.
- $(T_{nj,(n+1)j})_{n\geq 1}$ is a stationary ergodic sequence for each $j\geq 1$.
- $\mathbb{E}[T_{0,1}] < \infty$. **Proof**: Show that $\mathbf{P}_p[T_{0,1}^p \geq k] \leq C_1 \exp(-C_2 k)$ uniformly in $p \in (p_0, p_c)$ and $T_{0,1}^p \to T_{0,1}$ in distribution as $p \uparrow p_c$.

For FPP on the scaled lattice $L(p)^{-1}\mathbb{T}$, control passage times in fixed boxes uniformly in p by using results for FPP on the continuum cluster ensemble:

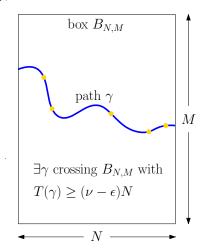
(1) "point-to-point" passage time in a box:

For all $p \in (p_0, p_c)$ and fixed large N, with **high probability** (in \mathbf{P}_p),



(2) box-crossing time:

For all $p \in (p_0, p_c)$ and fixed large N, M with $M \ge N$, with **high** probability (in \mathbf{P}_p),

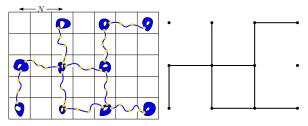


Step 3. Convergence of $L(p)\mu(p,\theta)$ to ν .

By Step 2, for any fixed n, with high probability $T^p_{0,n} \approx T_{0,n} \approx \nu n$ for p close to p_c . We need a **uniform "global" control** of $T^p_{0,n}$ for all large n and p close to p_c .

(1) Upper bound of $T_{0,n}^p$: use a renormalization argument

Consider box $B_N(e)$ corresponding to bond e of \mathbb{Z}^2 . Say e is **good** if there is a path γ in $B_N(e)$ joining the two corresponding clusters with $T(\gamma) \leq (1+\epsilon)\nu N$.

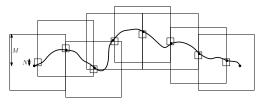


 $T^p_{0,Nn} \leq (1+\epsilon)\nu N \cdot D(0,n) \leq (1+\epsilon)\nu N \cdot (1+\epsilon)n$ (with high probability) D(0,n) is the **graph distance** in the bond percolation configuration on \mathbb{Z}^2 , and $\mathbf{P}^{bond}_{\mathbb{Z}^2,p}[D(0,n) \leq (1+\epsilon)n] \geq 1-\epsilon$ for p close to 1.

This implies $\limsup_{p\uparrow p_c} L(p)\mu(p) \leq \nu$ since $\frac{T_{0,Nn}^p}{Nn} \to L(p)\mu(p)$ a.s.

(2) Lower bound of $T_{0,n}^p$: also by a type of renormalization method

[Grimmett-Kesten '84] used a "block approach" to obtain exponential large deviation bounds for passage times for a single FPP model. We apply it to the family of Bernoulli FPP on $L(p)^{-1}\mathbb{T}$ for all p close to p_c .



Idea: A path joining 0 to a point far away from 0 with a "very short" passage time should cross "many" annuli which have "very short" annulus-crossing times, and by estimates of box-crossing times and a counting argument we show that it is unlikely that such a path exists.

So $T_{0,n}^p \geq (1-\epsilon)\nu n$ with high probability for large n and p close to p_c .

This implies $\liminf_{p\uparrow p_c} L(p)\mu(p) \geq \nu$ since $\frac{T_{0,n}^p}{n} \to L(p)\mu(p)$ a.s.

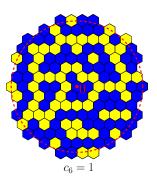
These arguments works for any direction $\theta \in [0, 2\pi]$ by rotating \mathbb{Z}^2 .

- 1 Background
- 2 Rescaled limit shape converges to a Euclidean ball as $p\uparrow p_c$
- $oldsymbol{3}$ Asymptotics for Bernoulli FPP at p_c
- 4 Asymptotics for Bernoulli FPP as $p \downarrow p_o$

 \mathbb{D}_n : the disk of radius n centered at 0.

Point-to-circle passage times:

 $c_n = \inf\{T(\gamma) : \gamma \text{ is a path from 0 to } \partial \mathbb{D}_n\}.$



At p_c , with high probability $c_n \approx T(0,n)/2$ for large n.

Critical first-passage percolation in 2D

- Bernoulli critical FPP: $\mathbf{E}c_n \asymp \log n$ [Chayes-Chayes-Durrett '86]
- General critical FPP: $c_n/\mathbf{E}c_n \to 1$ a.s. [Kesten-Zhang '97]
- General critical FPP: **Central limit theorem** for c_n [Kesten-Zhang '97], [Damron-Lam-Wang '17]:

$$\frac{c_n - \mathbf{E}c_n}{\sqrt{\mathrm{Var}[c_n]}} \xrightarrow{d} \mathcal{N}(0,1) \quad \text{as } n \to \infty.$$

Remark: It is expected that for general subcritical FPP the limiting distribution is **Tracy-Widom**.

Can we say anything finer on $c_n/\log n$?

Theorem (Y. '18)

$$\lim_{n \to \infty} \frac{c_n}{\log n} = \frac{1}{2\sqrt{3}\pi} \ a.s., \ \lim_{n \to \infty} \frac{\mathbf{E}c_n}{\log n} = \frac{1}{2\sqrt{3}\pi}, \ \lim_{n \to \infty} \frac{\mathrm{Var}[c_n]}{\log n} = \frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2}.$$

This confirms a conjecture made by Kesten-Zhang '97 in the Bernoulli case.

Generalization [Damron-Hanson-Lam '22]: For **general critical FPP** on \mathbb{T} (i.e., the distribution function F of t(v) satisfies $F(0) = p_c$), let $I := \inf\{x > 0 : F(x) > p_c\}$. Then

$$\lim_{n \to \infty} \frac{c_n}{\log n} = \frac{1}{2\sqrt{3}\pi} \quad a.s.$$

So the time constant is **universal** for site version of critical FPP on \mathbb{T} and depends only on the value of I. It is expected that similar result holds for bond version of critical FPP on \mathbb{Z}^2 with the same limiting value as above.

Critical Bernoulli FPP in high dimensions

- Bramson '78: k-ary tree, $k \ge 2$ (every vertex has k children). "minimal displacement of branching random walk" $\lim_{n\to\infty} c_n/\log_2\log n = 1$ a.s.
- Chayes '91: \mathbb{Z}^d , $d \geq 3$. If $\epsilon > 0$, then $\lim_{n \to \infty} c_n/n^{\epsilon} = 0$ a.s.
- Addario-Berry, Hanson (in preparation): \mathbb{Z}^d , $d \geq 7$. Under assumption $\mathbf{P}[0 \leftrightarrow x] \asymp |x|^{2-d}$ (proved for $d \geq 11$ in [Fitzner-Hofstad '17]):
 - $d \ge 8$: $\lim_{n \to \infty} c_n / \log_2 \log n = 1$ a.s.
 - d = 7: $\lim_{n \to \infty} c_n / \log_{3/2} \log n = 1$ a.s.

Sketch of proof for point-to-circle passage time on the triangular lattice

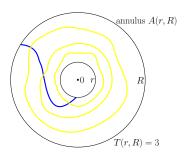
Consider annulus A(r,R) of inner radius r and outer radius R.

Define the annulus-crossing time:

$$T(r,R) := \inf\{T(\gamma) : \gamma \text{ is a path connecting the two boundary pieces of } A(r,R)\}.$$

Topological observation:

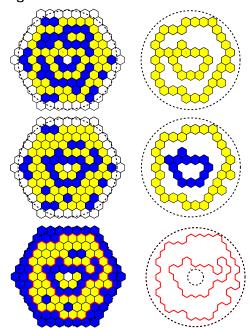
T(r,R)= maximal number of disjoint **yellow circuits** surrounding 0 in A(r,R).



The following three random variables have the same distribution.

- maximal number of disjoint **yellow circuits** surrounding 0 in A(r,R)
- maximal number of disjoint circuits with color sequence **yellow, blue, yellow, blue,** ..., surrounding 0 in A(r,R) from outside to inside
- number of cluster boundary loops surrounding 0 in A(r,R) with boundary condition: the discrete outer site-boundary is blue
 - **Idea of proof**: "color switching trick". Analogous trick appeared in [Aizenman-Duplantier-Aharony '99] and [Smirnov '01].

Color Switching



For $0 < \epsilon < 1$, let

 $N(\epsilon,1) :=$ number of CLE₆ loops surrounding 0 in the annulus $A(\epsilon,1)$.

Using the moment generating function of the **conformal radius** about CLE_6 loops [Schramm-Sheffield-Wilson '09] and **renewal process** theory, we obtain

$$\begin{split} &\lim_{\epsilon \to 0} \frac{\mathbb{E}[N(\epsilon,1)]}{\log(1/\epsilon)} = \frac{1}{2\sqrt{3}\pi}, &\lim_{\epsilon \to 0} \frac{N(\epsilon,1)}{\log(1/\epsilon)} = \frac{1}{2\sqrt{3}\pi} \quad a.s., \\ &\lim_{\epsilon \to 0} \frac{\operatorname{Var}[N(\epsilon,1)]}{\log(1/\epsilon)} = \frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2}. \end{split}$$

Based on [Camia-Newman '06]'s theorem for the scaling limit of cluster boundary loops, by **dividing the ball** \mathbb{D}_n **into nested annuli**, it is easy to derive the limit theorem for c_n and $\mathbf{E}[c_n]$ from the above result.

It is more involved for the variance. We use a **martingale method** from [Kesten-Zhang '97].

Combining our explicit limit theorem for Bernoulli critical FPP and the CLT of [Kesten-Zhang '97] gives:

Corollary

There is a function $\delta(n)$ with $\delta(n) \to 0$ as $n \to \infty$, such that

$$\frac{c_n - (1 + \delta(n)) \frac{\log n}{2\sqrt{3}\pi}}{\sqrt{\left(\frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2}\right) \log n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad \text{as } n \to \infty.$$

Problem: Show that one can choose $\delta(n) \equiv 0$.

For this, one needs to show that $\mathbf{E}c_n = \frac{1}{2\sqrt{3}\pi} \log n + o(\sqrt{\log n}).$

Theorem (Y. '19)

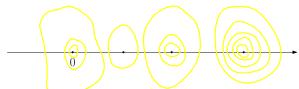
$$\lim_{n\to\infty}\frac{T(0,n)}{\log n}=\frac{1}{\sqrt{3}\pi}\quad\text{in probability but not a.s.}$$

Let $C_0 > 1/(2\sqrt{3}\pi)$ be a constant from [Miller-Watson-Wilson '16]. Almost surely, for each $C \in [0,C_0]$, there is a random subsequence $\{n_i: i \geq 1\}$ such that

$$\lim_{i \to \infty} \frac{T(0, n_i)}{\log n_i} = \frac{1}{2\sqrt{3}\pi} + C.$$

Loosely speaking, we can find many subsequences of sites with different growth rate, growing unusually quickly or slowly.

Idea of proof: Use a large deviation estimate on extreme nesting in $\mathsf{CLE}_6.$



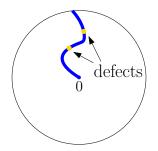
Problem: Show that for all functions $\delta(n) \downarrow 0$ sufficiently slowly as $n \to \infty$,

$$\left\{ \begin{split} \mathbf{P}\left[\nu \leq \frac{c_n}{\log n} \leq \nu + \delta(n)\right] &= n^{-\gamma(\nu) + o(1)}, \quad \text{for } \nu > 0, \\ \mathbf{P}\left[\frac{\delta(n)}{2} \leq \frac{c_n}{\log n} \leq \delta(n)\right] &= n^{-5/48 + o(1)}, \end{split} \right.$$

where $\gamma(\nu)$ is the function from [Miller-Watson-Wilson '16].

- We have obtained the lower bounds for these probabilities.
 It remains to get the upper bounds.
- 5/48 is the 1-arm exponent. So $P[c_n = 0] = n^{-5/48 + o(1)}$.

Nolin '08 studied **arms with "defects"** (i.e. sites of the opposite color). $\{c_n \leq j\} = \{\exists \text{ 1-arm from 0 to } \partial \mathbb{D}_n \text{ with } \# \text{ yellow defects } \leq j\}.$



[Nolin '08]: $\mathbf{P}[c_n \leq j] \asymp (\log n)^j \mathbf{P}[c_n = 0]$ for fixed $j \geq 0$. Note that $\mathbf{P}[c_n = 0] = n^{-5/48 + o(1)}$.

Problem: Show that $P[c_n \le j] = C(j)(\log n)^j n^{-5/48}(1 + o(1))$ for fixed $j \ge 0$.

Related works: By using the power law convergence rate of percolation exploration path towards SLE₆ [Binder-Richards '21],

[Du-Gao-Li-Zhuang '22] get **sharp asymptotics for arm probabilities**, partly answering a problem in [Schramm '06, ICM].

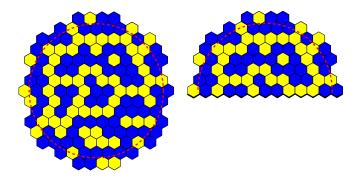


Figure: $c_n = 1, c_n^+ = 2$

Let \mathbb{D}_n^+ denote the upper half-disk of radius n centered at 0. Define the **point to** half-circle passage times:

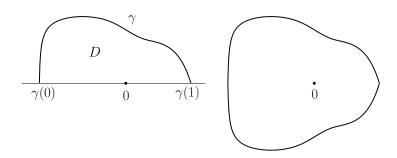
$$c_n^+ = \inf\{T(\gamma) : \gamma \text{ is a path from 0 to } \partial \mathbb{D}_n \text{ in } \mathbb{D}_n^+\}.$$

Theorem (Jiang-Y. '19)

$$\lim_{n \to \infty} \frac{c_n^+}{\log n} = \frac{\sqrt{3}}{2\pi} \ a.s., \ \lim_{n \to \infty} \frac{\mathbf{E}[c_n^+]}{\log n} = \frac{\sqrt{3}}{2\pi}, \ \lim_{n \to \infty} \frac{\mathrm{Var}[c_n^+]}{\log n} = \frac{2\sqrt{3}}{\pi} - \frac{9}{\pi^2}.$$

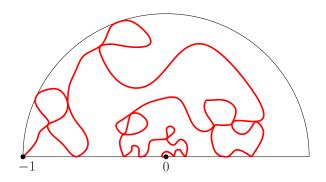
Therefore, with high probability $c_n^+ \approx 3c_n$ for large n.

The proof is similar to that for c_n by using "half-circuits", "half-loops" and a color switching trick. We just need to study the **reflected conformal radius** related to half-loops.

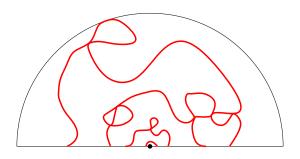


Let $\gamma=\gamma[0,1]$ be a path in the half-plane, starting and ending at x-axis, and surrounding 0. Let D be the domain that is surrounded by γ and x-axis. The **reflected conformal radius** of D viewed from 0 is the conformal radius of $\{D\}\cup\{D \text{ reflected }\}\cup\{\overline{\gamma(0)\gamma(1)}\}$ viewed from 0.

(Suppose D is a simply connected domain and $z \in D$. The **conformal** radius of D viewed from z is $|f'(z)|^{-1}$, where f is any conformal map from D to the unit disk $\mathbb D$ that sends z to 0.)



We run a chordal SLE $_6$ from -1 to 0 in $\overline{\mathbb{D}^+}$ to explore the **half-loops** surrounding 0 in the half-disk $\overline{\mathbb{D}^+}$.



We just need to calculate the **reflected conformal radius** of the domain that is surrounded by the **outermost half-loop** together with the *x*-axis. Use the SDE in [Lawler '15] and the result in [Schramm-Sheffield-Wilson '09] to derive its distribution.

- Background
- 2 Rescaled limit shape converges to a Euclidean ball as $p \uparrow p_c$
- $oxed{3}$ Asymptotics for Bernoulli FPP at p_c
- 4 Asymptotics for Bernoulli FPP as $p\downarrow p_c$

Coupling of percolation measures

There is a standard **coupling** of the percolation measures $\mathbf{P}_p, 0 \leq p \leq 1$: Take i.i.d. random variables U_v for each site v, with U_v uniformly distributed on [0,1]. For each p, we obtain \mathbf{P}_p by declaring each site v to be p-open (t(v)=0) if $U_v \leq p$, and p-closed (t(v)=1) otherwise.

Let $\mathcal{C}_{\infty}(p)$ denote the **infinite** p-open cluster when $p > p_c$.

Almost surely the passage time $T_p(0,\infty):=T_p(0,\mathcal{C}_\infty(p))$ is finite.

How does $T_p(0,\infty)$ vary as $p \downarrow p_c$?

Theorem (Y. 19)

$$\begin{split} & \lim_{p \downarrow p_c} \frac{T_p(0,\infty)}{-\frac{4}{3} \log(p-p_c)} = \frac{1}{2\sqrt{3}\pi} \quad \text{a.s.,} \\ & \lim_{p \downarrow p_c} \frac{\mathbf{E}_p[T_p(0,\infty)]}{-\frac{4}{3} \log(p-p_c)} = \frac{1}{2\sqrt{3}\pi}, \\ & \lim_{p \downarrow p_c} \frac{\mathrm{Var}_p[T_p(0,\infty)]}{-\frac{4}{3} \log(p-p_c)} = \frac{2}{3\sqrt{3}\pi} - \frac{1}{2\pi^2}. \end{split}$$

Note that $L(p)=(p-p_c)^{-4/3+o(1)}$ as $p\downarrow p_c$ (Smirnov-Werner '01). So $T_p(0,\infty)\approx T_{p_c}(0,\partial\mathbb{D}_{L(p)})$ as $p\downarrow p_c$.

Idea of proof.

- $T_p(0,\infty) \approx T_p(0,\partial \mathbb{D}_{L(p)})$ as $p \downarrow p_c$.
- Use Russo's formula to show that $T_p(0,\partial \mathbb{D}_{L(p)}) \approx T_{p_c}(0,\partial \mathbb{D}_{L(p)})$ as $p \downarrow p_c$. This combined with the limit theorem for the critical case gives the result.

Key ingredient:

Lemma

There is a universal constant C>0 such that for all $p>p_c$,

$$\begin{aligned} & \left| \mathbf{E}_{p_c}[T_{p_c}(0, \partial \mathbb{D}_{L(p)})] - \mathbf{E}_p[T_p(0, \partial \mathbb{D}_{L(p)})] \right| \le C, \\ & \left| \operatorname{Var}_{p_c}[T_{p_c}(0, \partial \mathbb{D}_{L(p)})] - \operatorname{Var}_p[T_p(0, \partial \mathbb{D}_{L(p)})] \right| \le C. \end{aligned}$$

Related papers:

- Chang-Long Yao: Convergence of limit shapes for 2D near-critical first-passage percolation. arXiv:2104.01211 (2021)
 (We will give a simplified proof in an updated version of this article. In particular, we will not use the scaling limit of the collection of portions of clusters in a region, avoiding some technical arguments.)
- Chang-Long Yao: Asymptotics for 2D critical and near-critical first-passage percolation. PTRF (2019)
- Jianping Jiang, Chang-Long Yao: Critical first-passage percolation starting on the boundary. SPA (2019)
- Chang-Long Yao: Limit theorems for critical first-passage percolation on the triangular lattice. SPA (2018)

Thanks!