

Generalised Symmetries and vortices

Mathew Bullimore

Durham University, UK

Introduction

Introduction

Recent generalisation of the notion of symmetry in quantum field theory.

- Ordinary symmetries are groups and act on *local* operators.
- Generalised symmetries may form *n*-groups acting on *extended* operators of dimension $0, 1, \dots, n-1$.
- Symmetries may even by non-invertible!

This is the paradigm of categorical symmetry.

1

Introduction II

I will discuss connections with moduli spaces in quantum field theory.

- Groups act by automorphisms of moduli spaces.
- Higher groups act by automorphisms of higher stacks.
- Captures spontaneous breaking of higher-group symmetries.

Introduction

I would like to present some connections to topics at this workshop.

I will focus on 3d $\mathcal{N}=2$ supersymmetric gauge theory.

- 1. Symmetries in 3d gauge theory
- 2. Moduli stacks in 3d gauge theory¹
- 3. Applications to quantum K-theory²

3

¹WIP: Lakshya Bhardwaj, MB, Andrea Ferrari, Sakura Schäfer-Nameki

²WIP: MB, Luca Cassia

Gauge Theory

A supersymmetric gauge theory

Consider the following 3d $\mathcal{N}=2$ supersymmetric gauge theory.

- Gauge group G = U(1).
- Chiral multiplets Φ_1, \ldots, Φ_N of charge q > 0.
- Critical CS level $k = -\frac{N}{2}q^2$.

The critical CS level means gauge charges of all monopole operators are multiples of ${\it N}$.

0-form symmetries I

Ordinary or 0-form symmetries act on local operators.

- A fundamental role played throughout by the *topological* symmetry.
- This U(1) symmetry measures magnetic flux.
- It is the analogue of θ -angle in two dimensions.
- Monopole operator T_m with $m \ge 0$ has topological charge m.

0-form symmetries II

Additionally, there is a PSU(N) flavour symmetry.

- Chiral multiplets Φ_1, \ldots, Φ_N in fundamental of $\mathfrak{su}(N)$.
- Gauge invariant local operators:

$$\overline{\Phi_i}\Phi_j$$
, $T_{-1}(\Phi_{i_1}\Phi_{j_1})\cdots(\Phi_{i_N}\Phi_{j_N})$

- Always in powers of adjoint representation of $\mathfrak{su}(N)$.
- The symmetry acting faithfully is PSU(N).

2-group symmetry I

Three-dimensional theories may have generalised symmetries:

- 1-form symmetries.
- 0,1-form symmetries may combine to form a 2-group.³

This captures the following phenomena:

- 1. Some line operators cannot end.
- 2. Line operators may end on local operators transforming in central extensions of 0-form symmetry.

³Cordova-Dumitrescu-Intriligator '19, Benini-Cordova-Hsin '19

2-group symmetry II

Consider supersymmetric Wilson lines W_n of charge n:

- It cannot end unless $q \mid n \Rightarrow \mathbb{Z}_q$ 1-form symmetry.
- If $q \mid n$, it ends on operators transforming in SU(N) representations unless $qN \mid n$.

$$\begin{array}{c} W_1 \\ \hline W_2 \\ \vdots \\ \hline W_q \\ \hline \end{array}$$

The 2-group symmetry depends on whether q, N are co-prime.

2-group symmetry III

The symmetries combine into a 2-group determined by data:

- 1. 0-form symmetry PSU(N)
- 2. 1-form symmetry \mathbb{Z}_q .
- 3. Postnikov class $\Theta \in H^3(BPSU(N), \mathbb{Z}_q)$.

Important point:

• The structure depends on short exact sequence

$$1 \to \mathbb{Z}_q \to \mathbb{Z}_{qN} \to \mathbb{Z}_N \to 1$$

- $\Theta = 0$ if sequence splits $\Leftrightarrow \gcd(q, N) = 1$.
- $\Theta \neq 0$ if sequence is extension $\Leftrightarrow \gcd(q, N) > 1$.

9

Structure Group I

A convenient way to encode symmetries is via the structure group:

$$S = \frac{U(1) \times SU(N)}{\mathbb{Z}_{qN}}.$$

- This is the most general combination of gauge and flavour symmetries whose bundles may be coupled to consistently.
- Quotient by central subgroup $\mathbb{Z}_{qN} \subset U(1) \times \mathbb{Z}_N$.
- This is generated by central element

$$\left(e^{2\pi i/qN},e^{2\pi i/N}1_N\right).$$

Structure Group I

The symmetries are recovered from the structure group as follows.

$$S = \frac{U(1) \times SU(N)}{\mathbb{Z}_{qN}}.$$

• The 0-form symmetry is the quotient $PSU(N) = SU(N)/\mathbb{Z}_N$ by elements $e^{2\pi i/N}i_N$ in the image of \mathbb{Z}_{qN} under

$$p: U(1) \times \mathbb{Z}_N \to \mathbb{Z}_N$$
.

- The 1-form symmetry is intersection $\mathbb{Z}_q = \mathbb{Z}_{qN} \cap U(1)$.
- There is natural short exact sequence

$$1 \to \mathbb{Z}_q \to \mathbb{Z}_{qN} \to \mathbb{Z}_N \to 1 \,.$$

Geometry

Sigma model + TQFT

Now introduce real FI parameter t > 0:

ullet Flows to a supersymmetric sigma model $\sigma:\mathbb{R}^3 o X_0$ to projective space

$$X_0 = \mathbb{P}^{N-1}$$
.

• This is coupled to a \mathbb{Z}_q gauge field A,

$$\exp\frac{2\pi i}{q}\int\sigma^*c\cup A\,,$$

with non-trivial class $c \in H^2(\mathbb{P}^{N-1},\mathbb{Z}_q)$.

• This reflects unbroken \mathbb{Z}_q gauge symmetry.

Sigma model to stack

This is a supersymmetric sigma model to weighted projective stack

$$X = \mathbb{P}^{N-1}(q, \dots, q) = \left[(\mathbb{C}^N - \{0\}) / \mathbb{C}^{\times} \right]$$

• There is a morphism to underlying course moduli space

$$\pi: X \to X_0 = \mathbb{P}^{N-1}$$
.

- The fibers $\pi^{-1}(x) = B\mathbb{Z}_q$ capture unbroken \mathbb{Z}_q gauge symmetry.
- ullet The stack is a gerbe with non-trivial class $c\in H^2(\mathbb{P}^{N-1},\mathbb{Z}_q).$

Action of symmetries

2-group symmetry acts by automorphisms of stack $X=\mathbb{P}^{N-1}(q,\ldots,q)$.

- 0-form symmetry PSU(N) acts by Kähler isometries of coarse moduli space $X_0 = \mathbb{P}^{N-1}$.
- 1-form symmetry $B\mathbb{Z}_q$ on fibers $\pi^{-1}(x) = B\mathbb{Z}_q$.
- Postnikov class Θ is obstruction to PSU(N)-equivariant structure of \mathbb{Z}_q -gerbe $\pi:X\to X_0$.

The moduli stack captures spontaneous symmetry breaking of full symmetry group.

Back to Wilson lines

Let us try to make contact with previous discussion via line operators.

- Wilson lines W_n correspond to line bundles $\mathcal{O}(n)$ on $X = \mathbb{P}^{N-1}(q, \dots, q)$.
- The local operators on which they end are sections $\Gamma(X, \mathcal{O}(n))$.
- The line bundles are fractional unless $q \mid n$.
- They only admit PSU(N)-equivariant structure if $qN \mid n$.

Quasi-map K-theory

Compactification

Now compactify on $S^1 \times \mathbb{R}^2$.

- Introduce mass parameters associated to 0-form symmetries and integrate out chiral multiplets.
- Obtain effective 2d $\mathcal{N}=(2,2)$ theory for twisted vector multiplet σ .
- Twisted effective superpotential $W(\sigma)$.
- Supersymmetric vacua given by

$$\exp\frac{\partial W}{\partial \sigma} = 1\,.$$

Example

Supersymmetric vacua in example given by solutions to

$$\prod_{j=1}^{N} (1 - P^q X_j^{-1})^q = Q.$$

Parameters are supersymmetric Wilson lines wrapping S^1 :

- Dynamical Wilson line $P = e^{-\beta \sigma}$.
- Background Wilson lines for symmetries Q, X_j with $\prod_i X_j = 1$.
- ullet The number of solutions q^2N , in agreement with Witten index.

A trick

Consider first the supersymmetric vacuum equations for q=1,

$$\prod_{j=1}^{N} (1 - PX_j^{-1}) = Q.$$

- Now gauge subgroup $\mathbb{Z}_q \in U(1)$ of topological symmetry.
- This is equivalence to multiplying charges by q.
- ullet Implemented here by transformation $(P,Q)\mapsto (P^q,Q^{1/q}).$

$$\prod_{j=1}^{N} (1 - P^q X_j^{-1})^q = Q.$$

Structure group

Recall the form of the structure group

$$S = \frac{U(1) \times SU(N)}{\mathbb{Z}_{qN}}$$
.

- P is supersymmetric Wilson line for U(1).
- X_i are supersymmetric Wilson lines for SU(N).
- Denominator acts by

$$(P,X_j) \rightarrow (e^{2\pi i/qN}P,e^{2\pi i/N}X_j).$$

• Invariant combinations $P^q X_j^{-1}$ are supersymmetric Wilson lines for structure group S.

Degeneracy

Is there a symmetry based argument for q^2 degeneracy?

ullet The 1-form symmetry implies two independent \mathbb{Z}_q -actions on solutions of the vacuum equations by

$$P
ightarrow e^{2\pi i/q}P$$
 $Q
ightarrow e^{2\pi i/q}Q$

- The first is from $\mathbb{Z}_q \subset \mathbb{Z}_{qN}$ transformation on (P, X_j) .
- The second is a consequence of fractional gauge vortices / discrete Wilson lines when gauging $\mathbb{Z}_q \subset U(1)$.

Quais-map K-theory

What is the mathematical interpretation of the supersymmetric vacuum equations?

$$\prod_{j=1}^{N} (1 - P^q X_j^{-1})^q = Q.$$

- Introduce symplectic form $d \log P \wedge d \log Q$ on $T^*\mathbb{C}^{\times}$.
- Family of Lagrangians $L_X \subset T^*\mathbb{C}^{\times}$.
- Equivariant quasi-map K-theory of weighted projective stack

$$X = \mathbb{P}^{N-1}(q,\ldots,q)$$
.

Quais-map K-theory II

The partition function on $S^1 \times \Sigma_g$ with $g \geq 1$ may be expressed as a sum over supersymmetric vacua:

$$\operatorname{Tr}_{\mathcal{H}_{\Sigma_g}}(-1)^F = \sum_m Q^m \int \widehat{A}(\mathcal{M}_m) = \sum_{P_*} f(P_*; Q, X_j)$$

ullet Here \mathcal{M}_m is moduli stack of vortices or stable quasi-maps

$$\Sigma_g \to X = \mathbb{P}^{N-1}(q,\ldots,q)$$
.

- Vortex number or degree $m \in \pi_1(G) = \mathbb{Z}$.
- Equivariant parameters X_1, \ldots, X_N .

Quais-map K-theory III

The supersymmetric partition function takes the form

$$q^{2g} \times \{ \text{rational function of } Q, X_j \}$$

- Topological lines generating \mathbb{Z}_q 1-form symmetry.
- ullet They may be supported on 2g 1-cycles in Σ_g
- ullet Symmetry based argument for q^{2g} degeneracy.

Categorification

Why categorify?

We have seen experimentally that 1-form / 2-group symmetry plays a role in quasi-map K-theory of stacks.

- Systematic understanding?
- 2-groups act via automomorphisms of categories.

The very rough idea is⁴

- 1. Quantum K-theory of $X \rightarrow$
- 2. K-theory of loop space of $X \rightarrow$
- 3. Coherent sheaves on loop space of X.

⁴Following Givental's loop space formalism.

Line defects

A natural candidate is category of line defects in 3d $\mathcal{N}=2$ theories.

- Consider vortices or quasi-maps $\mathbb{D}^{\times} \to X = \mathbb{P}^{N-1}(q, \dots, q)$.
- Consider sheaves on moduli stack M.
- Pass to universal cover $\widetilde{\mathbb{M}}$ and work equivariantly with respect to deck transformations $\pi_1(G) \cong \mathbb{Z}$.

Claim: 2-group acts by automorphisms of this category.

Example

There is an algebraic model for $\widetilde{\mathbb{M}}$ as toric arc stack ΛX ⁵.

- Sequence of sub-stacks $\cdots \Lambda^a X \subset \Lambda^{a+1} X \cdots$
- Q^a corresponds to sheaf $\mathcal{O}_{\Lambda^a X}$.
- ullet Resolution of morphism $\mathcal{O}_{\Lambda^0 X} o \mathcal{O}_{\Lambda^1 X}$ categorifies product

$$\prod_{j=1}^{N} (1 - P^q X_j^{-1})^q$$

⁵Arkhipov-Kapranov '04

Thanks!