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Many-body physics studies the behavior of ensembles 
of interacting quantum particles. This is a broad area 
encompassing almost all condensed-matter physics, but 

also nuclear and high-energy physics. Despite the immense suc-
cesses obtained over recent decades, many phenomena observed 
experimentally still do not have a fully satisfactory explanation. At 
the origin of the difficulty to derive macroscopic properties from 
the microscopic laws governing the interactions between particles 
lies the exponential scaling of the size of the Hilbert space with their 
number. In practice, the best known ab initio methods allow the 
calculation of the evolution of fewer than 50 particles. To investi-
gate relevant questions involving a much larger number of particles 
(after all, even 1 mg of usual matter already contains 1018 atoms!), 
one must rely on approximations, and the art of solving the many-
body problem largely relies on mastering them. However, using 
approximations is not always possible and it may be hard to assess 
their range of validity.

One approach to move forward was suggested by Richard 
Feynman1 and consists of building a synthetic quantum system in 
the lab and implementing a model of interest for which no other 
way to solve it is known. The model may be an approximate descrip-
tion of a real material, but it can also be a purely abstract one. In 
this case, its implementation leads to the construction of an arti-
ficial many-body system, which becomes an object of study on its 
own. One appealing feature of this approach is the ability to vary 
the parameters of the model in ranges inaccessible otherwise, thus 
providing a way to better understand their respective influence. For 
example, if one is interested in the role of interatomic interactions 
on the phase of a given system, synthetic systems become inter-
esting as they allow the variation of their strength in a way that is 
usually impossible in real materials. The approach introduced by 
Feynman is usually referred to as quantum simulation2,3, but it can 
be viewed more generally as exploring many-body physics with 
synthetic systems: in the same way chemists design new materials 
exhibiting interesting properties (such as magnetism, superconduc-
tivity), physicists assemble artificial systems and study their proper-
ties, with the hope of observing new phenomena.

For a long time, this idea remained theoretical as the experi-
mental control over quantum objects was not advanced enough. 
The situation has changed radically in the past 20 years with the 

development of experimental techniques that allow the control of 
the quantum state of individual quantum objects, be they atoms, 
molecules, ions, photons or even artificial atoms such as quantum 
dots, superconducting circuits or excitons in semiconductors, to 
name a few3. For all these platforms, physicists designed sets of 
tools that allow the control of individual ‘atoms’, as well as the abil-
ity to tune their interactions. This led to the idea of programmable 
quantum simulation where all the parameters of the Hamiltonian 
one wants to implement are tunable. But these synthetic systems 
can also be viewed as machines able to prepare quantum states that 
are useful for many applications. For example, they can generate 
large entangled states, whose correlations are useful to beat the 
standard quantum limit, hence leading to clocks or sensors with 
enhanced precision4. In the long-term, they could lead to quantum 
computers, with each ‘atom’ carrying a quantum bit5,6. Interestingly, 
machines able to implement spin models could be useful to answer 
computationally hard problems well beyond physics, such as 
combinatorial optimization problems—the travelling salesman’s 
problem being one prominent example. Many of these optimiza-
tion problems can be cast as Ising models7, which most quantum 
simulators implement naturally. By varying the parameters in the 
experiment, one could drive the system into a state encoding the 
solution of the problem.

Among all the platforms being developed (many of which have 
been reviewed recently8–12), this Review focuses on ensembles of 
individual atoms trapped in optical lattices or in arrays of micro-
scopic dipole traps separated by a few micrometres. In this platform, 
the atoms are almost fully controllable by optical addressing tech-
niques. To make them interact at distances larger than a microme-
tre, they are excited to Rydberg states, that is, states with large 
principal quantum numbers n (refs. 13,14). When in this state, they 
feature two important properties. First, their lifetime, scaling as n3, 
is much longer than that of the low-lying transitions (typically in the 
100 μs range for n ≈ 50). Second, they exhibit large dipole moments 
between states n and n − 1 with opposite parity, scaling as n2. This 
leads to large interaction strengths V, corresponding to frequencies 
V=h≳1
I

 MHz (where h is Planck’s constant) for n ≈ 50 at distances 
around 5 μm. As we will see in this Review, these ensembles of inter-
acting atoms naturally implement spin models, one of the simplest 
(and probably most thoroughly studied) many-body systems.
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After introducing the concept of the Rydberg blockade and 
the techniques used to prepare and manipulate arrays of single 
atoms, we describe the various types of interactions at play between 
Rydberg atoms. We then review quantum simulation experiments 
dealing with the Ising and XY spin models, and conclude by dis-
cussing the perspectives opened by the recent developments of the 
field.

Rydberg blockade
The study of Rydberg atoms played an important role in the early 
days of atomic physics and in the development of quantum mechan-
ics. A second ‘golden age’ of Rydberg physics started when tun-
able lasers became available in the 1970s—the strong coupling of 
Rydberg atoms to electromagnetic fields made them an ideal test-
bed for understanding atom–light interactions, culminating in the 
birth of cavity quantum electrodynamics15. At this stage, interac-
tions between Rydberg atoms, although observed as early as 1981 in 
dense Rydberg gases16, did not play a crucial role.

This changed at the end of the 1990s, when progress in laser 
cooling of atoms allowed the realization of frozen Rydberg gases17,18, 
in which thermal motion is negligible over the timescales where 
interactions take place. Soon after, it was proposed that the strong 
interactions between Rydberg atoms could be harnessed to imple-
ment fast and robust quantum gates between neutral atoms19,20. The 
key ingredient for this implementation is the so-called Rydberg 
blockade (Box 1), where the interaction prevents the simultaneous 
Rydberg excitation of two nearby atoms. This allows for conditional 
logic, as the excitation of a second atom is governed by the excita-
tion of a first one21.

However, at the time, the control of neutral atoms at the indi-
vidual level was still in its infancy22, and only a few groups took up 
the challenge to demonstrate the Rydberg blockade between indi-
vidually controlled atoms. This was finally achieved in 200923–26. 
In the meantime, many groups had observed clear effects of the 
Rydberg blockade in large ensembles of atoms without individual 
control (see ref. 27 and references therein). One soon realized that 
the theoretical description of these systems naturally mapped onto 
that of the quantum Ising model28–32, one of the simplest models 
used to describe quantum magnetism. This suggested that systems 
of neutral atoms in the Rydberg blockade regime could be used for 
quantum simulation, provided individual control of a large number 
of atoms was available.

In parallel, the progress in the manipulation and detection of 
individual neutral atoms has made tremendous progress, either by 
using quantum gas microscopes33,34 or by creating arrays of optical 
tweezers35–38. Combined with Rydberg excitation to induce control-
lable interactions between the atoms, this provides an almost ideal 
platform to realize quantum spin models, as we will see below.

Arrays of individual atoms
The first experimental platform that allowed the control of ordered 
assemblies of neutral atoms at the single-particle level became 
available in 2010 and is the quantum gas microscope39 (Fig. 1a). 
This ‘top-down’ approach relies on the loading of a two-dimen-
sional ultracold atom cloud, typically a Bose–Einstein conden-
sate—although fermions can also be used—into an optical lattice, 
the periodic optical potential obtained by interfering several laser 
beams. Atoms can tunnel between neighbouring sites of the lat-
tice, and when the on-site contact interaction between the atoms 
overcomes the kinetic energy given by the tunnelling rate, the sys-
tem undergoes a superfluid-to-Mott-insulator transition40. Deep in 
the Mott phase, the system is characterized by a fixed number of 
atoms per site, which can be exactly one for an appropriate choice 
of parameters. To obtain single-site resolution when imaging the 
atomic fluorescence, a high-numerical-aperture microscope objec-
tive is required, as two neighbouring sites are separated by typically 

500 nm (refs. 33,34). In this way, one realizes two-dimensional square 
arrays of up to a few hundred single atoms, with filling fractions that 
can exceed 95%. Individual control of the atoms can be achieved 
by applying local light shifts tailored with a spatial light modulator 
(SLM) such as a digital micromirror device41.

More recently, a novel, ‘bottom-up’ platform has emerged based 
on arrays of optical tweezers (Fig. 1b). Trapping of a single laser-
cooled atom in a tightly focused dipole trap, or optical tweezers, 
was demonstrated as early as 200122. An optical dipole trap with 
a tight focus of about 1 μm is immersed in a magneto-optical 
trap (MOT). In the course of its random motion, an atom from 

Box 1 | The Rydberg blockade

The strong interactions between atoms excited to a Rydberg state 
can be exploited to suppress the simultaneous excitation of two 
atoms and to generate entangled states, in a regime called Ry-
dberg blockade. Consider a resonant laser field coherently cou-
pling the ground state gj i

I
 and a given Rydberg state rj i

I
, with a 

Rabi frequency Ω (panel a). In the case of two atoms separated 
by a distance R (panel b), the doubly excited state rrj i

I
 is shifted 

in energy by the quantity C6/R6 due to the van der Waals interac-
tion with C6 being the interaction coefficient (all the other pair 
states have an energy nearly independent of R). We assume that 
the blockade condition ℏΩ� C6=R6

I
 is fulfilled, that is, R� Rb

I
 

where the blockade radius is defined by Rb ¼ C6=ℏΩð Þ1=6
I

. Then, 
starting from the ground state ggj i

I
, the system evolves to the col-

lective state ψþ
 

¼ grj i þ rgj ið Þ
ffiffiffi
2
p

I
 with a coupling 

ffiffiffi
2
p

Ω
I

. The 
coupling to rrj i

I
 is now non-resonant and thus suppressed. This 

leads to a collective Rabi oscillation at the frequency 
ffiffiffi
2
p

Ω
I

 be-
tween ggj i

I
 and the entangled state ψþ

�� �

I
.

The above considerations can be extended to an ensemble 
of N atoms all included within a blockade volume. In this case, 
at most one Rydberg excitation is possible, leading to collective 
Rabi oscillations with an enhanced frequency 

ffiffiffiffi
N
p

Ω
I

 between 
the collective ground state g¼ gj i

I
 and the entangled state P

i
g¼ grig¼ gj i=

ffiffiffiffi
N
p

I

 where the Rydberg excitation is shared 
among all the atoms. In the case of a system whose size is larger 
than the blockade radius (panel c), several Rydberg atoms can 
be excited, but their positions will be strongly correlated due 
to the blockade constraint, giving rise to complex many-body 
dynamics.

The Rydberg blockade. a, The ground and Rydberg states gj i
I

 and rj i
I

  
are coupled by a resonant laser with Rabi frequency Ω. b, For two 
atoms separated by a distance R < Rb, the collective ground state ggj i

I
 

is coupled only to ψþ
 

¼ grj i þ rgj ið Þ=
ffiffiffi
2
p

I
, but not to rrj i

I
, which is 

shifted out of resonance by the van der Waals interaction UvdW. c, In a 
large ensemble of atoms, for example a regular array with spacing a, 
an atom excited in rj i

I
 (red dot) prevents the excitation of all the atoms 

contained in a sphere of radius Rb.
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the MOT cloud enters the optical tweezers and gets trapped there. 
Since it is still under the illumination of the near-resonant MOT 
beams, it continuously scatters fluorescence light, which can be 
collected on a sensitive camera, thus signalling the presence of an 
atom in the tweezers. If now a second atom enters the trap, very 
fast light-assisted collisions give rise to the almost immediate 
loss of both atoms, and the tweezers are empty again. Therefore 
the number of atoms in the microtrap is either zero or one: this 
is a single-atom source, albeit non-deterministic since one cannot  
predict when the trap is occupied. The occupation probability is 
p ~ 1/2, as the same random event—namely an atom randomly 
entering the trap—induces the transitions either from one to zero 
atoms or from zero to one atom.

The next step is to produce arrays of microtraps. One method 
relies on an SLM35,42, which imprints an appropriate phase pattern 
on the trapping beam before focusing, thus allowing the realization 
of almost arbitrary arrays of traps in the focal plane of the objective. 
Other methods use arrays of microlenses43,44 or interference tech-
niques45. However, for a long time, the stochastic loading of microtraps 
limited the use of this platform to just a few atoms, since the prob-
ability of having all N traps simultaneously filled decreases as 1/2N.  

Careful engineering of the light-assisted collisions to lose just one 
atom of the pair46,47 was shown to enhance p to values up to ~0.9, but 
the probability pN of an N-trap array to be defect-free still decreases 
very quickly with N.

This problem was circumvented simultaneously in 2016 by three 
groups. The idea is to start from a large array with 2N traps, load 
it randomly with ~N atoms, take an image of this configuration, 
and finally actively sort the atoms into an ordered, target configu-
ration48. This was achieved by two methods. In the first method, 
loaded tweezers are dynamically moved using acousto-optic deflec-
tors to assemble one-dimensional chains38 (Fig. 1c) as well as two-
dimensional49 and three-dimensional36 arrays by slowly varying the 
phase pattern of the SLM creating the array. In the second method, 
atoms are moved one at a time using moving optical tweezers to 
catch and release atoms within a fixed two-dimensional array pro-
duced by an SLM37 or microlenses50. More recently, the latter tech-
nique was extended to the assembly of three-dimensional arrays51. 
The assembly approach offers a fast repetition rate of the experi-
ment (a few per second), filling fractions in excess of 98% even in 
large arrays and a great flexibility in geometry; the number of atoms 
reached so far is around 100 atoms. This sorting of atoms has also 
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Fig. 1 | Experimental platforms for realizing arrays of individually controlled neutral atoms. a, In a quantum gas microscope, a high-numerical-aperture 
(NA) objective is used to observe the fluorescence of ultracold atoms trapped in an optical lattice obtained by interfering several laser beams. To achieve 
a filling of exactly one atom per site, one drives the superfluid-to-Mott-insulator transition34. b, In the tweezer array platform, an SLM imprints an 
appropriate phase on a trapping beam before focusing with a high-NA lens, resulting in arrays of traps with almost arbitrary geometries35. Single, laser-
cooled atoms are loaded in the optical tweezers from a magneto-optical trap, resulting in a random loading array at half filling, which can be actively 
reordered into a target array using a moving optical tweezers37. Bottom: single shot fluorescence image of an array of traps before and after assembly.  
c, Alternatively, in one dimension, the tweezers can be generated using an acousto-optic deflector fed with multiple radio-frequency tones, which  
allows rearrangment of the atoms in a single step38. Panels adapted from: a, ref. 34, Springer Nature Ltd; b, top, ref. 35 under a Creative Commons licence 
(https://creativecommons.org/licenses/by/3.0/); b, bottom, ref. 37, AAAS; c, ref. 38, AAAS.
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Box 2 | Interactions between Rydberg atoms

Two atoms separated by a distance R much larger than the size 
of the electronic wavefunction interact mainly via the electric 
dipole–dipole Hamiltonian V̂dd  d̂1d̂2=ð4πε0R3Þ

I
 where d̂i

I
 is the 

electric dipole moment of atom i and ε0 the permittivity of a vac-
uum. The effect of this Hamiltonian on a pair of Rydberg atoms 
depends on how the pair is prepared.

In the most common case, the two atoms are excited in the same 
Rydberg level, for instance nSj i

I
. In this case, V̂dd

I
 has no effect at 

first order in perturbation theory, as an atomic state has a vanishing 
average electric dipole moment. The effect of the interaction is thus 
of second order: the pair state nS; nSj i

I
 is coupled, via V̂dd

I
, to other 

pair states of opposite parity, with a matrix element V / d1d2=R3

I, where the energy of those states differ from that of nS; nSj i
I

 by a 
quantity Δ (panel a). This gives rise to a van der Waals shift of the 
considered pair state nS; nSj i

I
 scaling as V2=Δ / C6=R6

I
 (ref. 112). 

The C6 coefficient is on the order of d4/Δ, and thus scales roughly 
as n11 since d ~ n2 and Δ ~ n−3. The dependence on the distance 
of the van  der Waals interaction was directly measured for the 
cleanest system of a pair of single atoms at controlled positions in 
ref. 113, as was its angular dependence in ref. 114.

The van  der Waals interaction between two Rydberg atoms 
is huge: it can reach tens of megahertz for atomic separations 
of several micrometres. However, Rydberg states have a lifetime 
on the order of a few hundreds of microseconds. To reach much 

longer lifetimes, at the expense of reducing the interaction 
strength, the idea of Rydberg dressing has been proposed75–79. It 
consists of driving off-resonantly the transition from the ground 
to the Rydberg state, in a regime where the Rabi frequency is 
smaller than the detuning. The Rydberg state population remains 
negligible, but the ground state being weakly admixed with 
the Rydberg state, a pair of ground-state atoms acquire sizable 
interactions, with a long-distance tail decaying as 1/R6 beyond 
the Rydberg blockade radius, and a flat-top interaction at shorter 
distances. Panel b shows this soft-core potential, measured on a 
pair of single atoms trapped in optical tweezers, for two different 
detunings of the dressing laser60.

In contrast, when the two atoms are prepared in two different, 
dipole-coupled Rydberg states, such as nSj i

I
 and nPj i

I
, the pair state 

nS; nPj i
I

 is directly coupled to the same-energy state nP; nSj i
I

 by 
V̂dd
I

 (panel c). This gives rise to new eigenstates nS; nPj i± nP; nSj i
I

 
with energies ±C3/R3. A pair of atoms initially prepared in nS; nPj i

I
 

will coherently evolve into nP; nSj i
I

 and back, with a ‘flip-flop’ 
oscillation frequency ∝R−3 (panel c). Moreover the interaction is 
anisotropic, varying as 1 − 3cos2Θ with Θ the angle between the 
internuclear axis and the quantization axis (inset of panel c).

Finally, online calculators are now available to compute the 
interactions in all regimes, including in the presence of external 
electric and magnetic fields55,56.
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Interactions between Rydberg atoms. a, The van der Waals interaction between two identical Rydberg states, for instance, nSj i
I

 states, arises due to 
non-resonant dipolar interactions with other dipole-coupled Rydberg states. The C6 coefficient varies extremely quickly with the principal quantum 
number n, as illustrated by this measurement for two atoms separated by R, excited to nD states113, in agreement with ab initio calculations (solid lines). 
b, Soft-core potential between Rydberg dressed atoms, measured for a pair of single atoms, as a function of the atomic separation61. c, The resonant 
dipole–dipole interaction U arises when two atoms are in different, dipole-coupled Rydberg states, such as nSj i

I
 and n0Pj i

I
. It varies as C3/R3 with the 

distance89, with the angular dependence C3∝1−3cos2θ typical of the dipole–dipole interaction as revealed by the polar plot (inset). The interaction 
vanishes at the angle θm. Panels adapted from: a, ref. 113, APS; b, ref. 61, Springer Nature Ltd; c, ref. 89 under a Creative Commons licence (https://
creativecommons.org/licenses/by/3.0/); c, inset, ref. 93, AAAS.
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been applied in two and three dimensions in optical lattices with 
large spacing between sites52,53.

Mapping Rydberg states onto spin systems
The large electric dipole moment of atoms excited to Rydberg states 
leads to strong dipole–dipole interactions between them54–56, even 
for atoms separated by micrometre-large distances as in the lat-
tices and arrays described above. Two types of interaction naturally 
occur between two Rydberg atoms (Box 2). In the context of quan-
tum simulation, this leads to a mapping onto different spin models.

Let us consider first the case where the two atoms are placed in 
the same Rydberg state. There, the dipole–dipole interaction leads to 
the van der Waals interaction, which induces an energy shift of the 
pair state jrri

I
 scaling as C6/R6, with R the atom separation (Box 2). 

This shift occurs only when both atoms are excited to the Rydberg 
state. If we now map the ground and Rydberg states jgi

I
 and jri

I
 of 

each atom onto a spin-1/2 model following #j i ¼ gj i
I

 and "j i ¼ rj i
I

, 
the Hamiltonian of an ensemble of atoms driven by a coherent laser 
(Rabi frequency Ω, frequency detuning δ) is28

H ¼ ℏΩ
2

X

i

σix � ℏδ
X

i

ni þ
X

i< j

Vijninj; with Vij ¼
C6

R6
ij
ð1Þ

Here ħ is the reduced Planck’s constant, ni is the operator counting 
the number of Rydberg excitations at site i, and σx is the usual Pauli 
matrix. As ni is related to the σz Pauli matrix by ni ¼ σiz þ 1

� �
=2

I
, 

equation (1) has the form of the quantum Ising model, with a trans-
verse field B? / Ω

I
, a longitudinal field Bjj / �δ

I
 and Ising cou-

plings Jij decaying as 1=R6
ij

I
 with distance. In practice, for the alkali 

atoms used so far, the laser excitation leading to the Rabi frequency 
Ω is often achieved on a two-photon transition, with one of the 
lasers in the infrared and the other one in the blue, far-detuned with 
respect to an intermediate state to avoid spontaneous emission57,58. 
In this way, the excitation is coherent to a good approximation. The 
Hamiltonian of equation (1) assumes that the excitation laser covers 
uniformly the atomic array, but owing to the single-site addressabil-
ity, the detunings and Rabi frequency can be made site dependent 
by adding local laser control59. Finally, it is also possible to real-
ize the quantum Ising model by using a technique called Rydberg 
dressing and encoding the two spin states in ground-state long-lived 
levels60. In this case, the couplings Jij have a soft-core spatial depen-
dence (Box 2).

We now consider the second case where the atoms are prepared 
in two different Rydberg states that are dipole-coupled, such as 
jnSi
I

 and jnPi
I

, separated by a transition frequency typically in the 
10 GHz range. There, the dipole–dipole interaction gives rise to a 
coherent exchange of the internal states of the atoms and the inter-
action potential scales as C3/R3. The mapping onto a spin-1/2 model 
is then #j i ¼ nSj i

I
 and "j i ¼ nPj i

I
. Microwave radiation can be used 

to manipulate the spin and thus acts as an external magnetic field.

H ¼ ℏΩμw

2

X

i

σix �
ℏδμw
2

X

i

σiz þ
X

i≠j

C3

R3
ij

σiþσ
j
� þ σi�σ

j
þ

 
ð2Þ

which is the XY spin Hamiltonian with transverse and longitudinal 
fields given by the Rabi frequency Ωμw and the detuning δμw of the 
microwave field.

Both the Ising and the XY Hamiltonians have been extensively 
studied over the past 60 years in various contexts, such as magnetism 
and excitation transport. However, many important open questions 
remain the subject of active research, such as the nature of the phase 
diagram when the spins are placed in arrays featuring geometri-
cal frustration, the dynamics of the system after the sudden varia-
tion of parameters of the Hamiltonian, the role of disorder in the 
couplings, their combination with situations where topology plays 
a role, and so on. Furthermore, as explained in the introduction,  

many combinatorial optimization problems can be mapped onto 
spin models7, and their interest thus extends beyond the traditional 
realm of many-body physics. All these questions can be studied 
using the Rydberg platforms described here, as we now show.

Quantum simulation of the Ising model
To study many-body systems experimentally one can, for example, 
vary suddenly one parameter of the Hamiltonian and study the 
resulting dynamics of the closed many-body system. One can also 
prepare the ground state using an adiabatic variation of the param-
eters of the Hamiltonian, and study its properties. The experiments 
performed on Rydberg quantum simulators in the Ising model 
regime used these two approaches.

Let us first discuss qualitatively the generic phase diagram of the 
quantum Ising model described by equation (1), at zero tempera-
ture and for spins placed on a chain or on two-dimensional square 
arrays. We first consider the case of nearest-neighbour couplings 
only (Vi,i+1 = V and 0 otherwise) and assume V > 0, so that the inter-
actions favour antiferromagnetic ordering. The phase diagram con-
sists of two regions, a paramagnetic and an antiferromagnetic one, 
separated by a quantum phase transition, as represented in Fig. 2a. 
Two limiting cases are easy to understand: for Ω; δ� V

I
, the ground 

state is paramagnetic, that is, the spins align along the effective mag-
netic field; for Ω = 0, the phase results from the minimization of the 
energy of the classical configuration. When we relax the constraint of 
nearest-neighbour couplings only (as is the case for a van der Waals 
interaction), the phase diagram exhibits several phases around the 
line separating the paramagnetic from the antiferromagnetic phases. 
For example, on a chain, if Vi;iþ1; Vi;iþ2  δ Ω Vi;iþ3

I
, the 

ground state corresponds to one excitation separated by two ground-
state atoms (Z3 symmetry). This situation corresponds to a block-
ade radius Rb = 2a, with a the spacing between atoms. Similarly, 
Vi;iþ1; Vi;iþ2; Vi;iþ3  δ Ω Vi;iþ4
I

 leads to a phase with Z4-
symmetry, and so on. By controlling the detuning δ and Rabi fre-
quency Ω, one can explore the phase diagram of this Ising model.

The sudden variation of a parameter in the Hamiltonian (also 
called a quench) is the easiest method to implement experimentally. 
In the case of the Rydberg platform, all the experiments realized 
so far suddenly applied the Rydberg excitation laser mimicking the 
transverse magnetic field, usually at resonance (δ = 0), after hav-
ing prepared the atoms in their ground state, corresponding to spin 
#j i
I

. They then measure two quantities relevant to the study of spin 
systems: first, the average magnetization, namely, the average num-
ber of atoms excited to the Rydberg states, or equivalently in the 
spin state "j i

I
; second, the spin–spin correlation function, which is 

the probability of finding a Rydberg excitation at site j when one is 
already present at site i. The measurement of this correlation func-
tion is only made possible owing to the fact that the quantum gas 
microscope and the tweezer array platforms allow for single-site 
readout of the atomic state.

The first implementation of this method was reported in ref. 
61, and made use of a quantum gas microscope. The system was 
operated in a regime with the blockade radius Rb much larger than 
the intersite distance a ~ 500 nm. The effect of the blockade was 
observed by the fact that the emergent Rydberg excitations were 
separated typically by a distance Rb. The dynamics of the appearance 
of the excitation could be followed and compared with the theoreti-
cal prediction of the Ising model. Later, the 

ffiffiffiffi
N
p
I

 enhanced coupling 
for an ensemble of up to 200 atoms all within a blockade radius was 
also demonstrated62.

The case Rb � a
I

, as explored in refs. 61,62, is an extreme situation 
where the interaction dominates all the energy scales in the prob-
lem. It is also interesting to explore the case where the interaction 
energy between neighbouring atoms is on the order of the energy 
scale associated with the transverse field, that is, operating at Rb ~ 
a. The tweezer arrays are naturally in this regime. As an example, 
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a one-dimensional chain of ~20 atoms with periodic boundary 
conditions (Fig. 2b) was explored63. The dynamics observed after 
suddenly turning on the excitation laser and the pair correlation 
functions measured in the experiment were compared with the 
solution of the Schrödinger equation for this many-body system, 
including all the experimental imperfections. The agreement with 
the data was very good, and this theory–experiment comparison 
can be considered as a benchmark for this Rydberg quantum simu-
lator in a regime where ab initio calculations are still possible. In 
particular, the appearance of a steady-state regime for the mag-
netization at long time results from the beating of all the eigen-
frequencies of this interacting system. The behaviour of the pair 
correlation function (also observed in two dimensions in ref. 61) 
with its suppression at short distance and its oscillatory behaviour 
at larger distance is reminiscent of the pair correlation function of a 
liquid of hard rods with an effective particle size of Rb. The quench 
experiment in a 7 × 7 array was repeated in ref. 64. To draw a com-
parison between the observed dynamics and theory, approxima-
tions had to be made as the number of particles involved in this 
case is too large to allow for ab initio calculations. These studies 
have been refined in refs. 65,66, where the appearance of a steady 
state at long evolution times was considered as an evidence of ther-
malization of the system.

Finally an out-of-equilibrium situation was also studied in ref. 
67. But in contrast to the experiments described above, the ground 

state of the many-body system was obtained from an adiabatic 
preparation detailed below. By suddenly changing the detuning of 
the laser to cross a quantum phase transition, non-trivial dynamics 
was observed with long-lived collective oscillations that have been 
modelled (Fig. 2c).

A second method to study many-body systems consists of 
preparing the ground state of the system. To do so, one starts 
from the state where all atoms are prepared in their ground state: 
ψ inij i ¼ ggg¼j i
I

. By sweeping the Rabi frequency Ω(t) and detun-
ing δ(t) on a timescale that is long with respect to the inverse of the 
energy gap with the first excited state, the system is driven adiabati-
cally in the ground state of the interacting system for a given final 
value of Ω and δ. This approach, initially suggested in ref. 68, was 
first demonstrated in the regime Rb � a

I
 (ref. 69): there, a controlled 

number of excitations separated by Rb in one and two dimensions 
was observed, a situation reminiscent of a crystal (Fig. 3a).

The regime Rb ~ a was then explored in three experiments. The 
one-dimensional case with up to 51 atoms was investigated in ref. 67 
(Fig. 3b). Several phases with Zn symmetries were found to be acces-
sible by varying the ratio Rb/a between 2 and 4. The two-dimen-
sional case was explored in refs. 70,71 using atoms in tweezer arrays 
and in optical lattices, respectively (Fig. 3d). Both observed the 
appearance of antiferromagnetic correlations. Reference70 also stud-
ied the propagation of these correlations during the adiabatic ramp 
of the parameters. Let us note that this adiabatic approach becomes 
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I
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Rb=a ’ 4
I

 (ref. 63). The dotted area represents the chain configuration and the filled oval represents the blockade volume. The magnetization of the chain 
(left), corresponding to the fraction fR of atoms excited to the Rydberg state, and the spin–spin correlation function g(2)(k) (right), with k being the spin 
separation, show clear effects of the Rydberg blockade. The solid lines are simulations of the Schrödinger equation without any adjustable parameter. c, In 
ref. 67, a quasi-adiabatic sweep was used, in the regime Rb=a ’ 1:5

I
, to prepare an ‘antiferromagnet’ state "#"#   j i

I
. This state was then suddenly quenched 

(at 2.2 μs) by driving it on resonance, resulting in surprisingly long-lived collective oscillations between "#"#   j i
I

 and #"#"   j i
I

. Insets: Rydberg 
excitations along the line for various pulse durations. d, Rydberg dressing can also be used to study quenches of Ising magnets. In ref. 80, a chain of ten 
atoms all initially prepared in  j i ¼ "j i þ #j ið Þ=

ffiffiffi
2
p

I
 was suddenly subjected to the Ising Hamiltonian, giving rise to a dynamical evolution showing collapse 

and revivals of the magnetization along x. Inset: initial dynamics of the mean transverse magnetization density. Panels adapted from: b, ref. 63, Springer 
Nature Ltd; c, ref. 67, Springer Nature Ltd; d, ref. 80 under a Creative Commons licence (https://creativecommons.org/licenses/by/3.0/).
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harder and harder as the system size increases, as the energy gap 
vanishes at the quantum phase transition.

Of course, the transition between the quenched and adiabatic 
regimes is continuous. Reference 72 studied what happens at the 
quantum phase transition when the parameters are varied at dif-
ferent rates. It was found that if the ramp is too fast, defects with 
respect to the ideal Zn symmetry appear. These defects can be  
studied according to a model introduced by Kibble and Zurek in 
the 1980s73,74. In particular, the correlation length obtained as a 
function of the speed at which the parameters are ramped follows 
a universal law with a critical exponent that can be extracted from 
the experiment (Fig. 3c). An experimental value was found to be in 
excellent agreement with the theoretical prediction from the Ising 
model, nicely illustrating that synthetic quantum systems can be 
used to measure the properties of quantum phase transitions with 
high precision.

As pointed out at the beginning of this Review, Rydberg atoms 
have lifetimes in the hundreds of microseconds, which is long enough 
to observe interaction-driven dynamics. However, revivals in the 
dynamics, occurring at long times for large systems, may be hard to 
observe, as the atoms decay to their ground states before the revival 
occurs. The Rydberg dressing introduced earlier was proposed as 
an alternative to circumvent this problem75–79. First experiments  

in this direction were performed in refs. 80,81. There, the spin is 
encoded in two hyperfine ground states of rubidium atoms. The 
atoms arranged along a chain (containing around ten atoms) are 
initially all prepared in a superposition state / "j i þ #j i

I
. A laser is 

then switched on to admix the state "j i
I

 with a Rydberg state rj i
I

, 
thus making the atoms interact. The system evolves under the influ-
ence of the interactions. After some time, the laser is switched off 
and the state of each atom is read out. One can then compute the 
average magnetization and the correlations. As shown in Fig. 2d, 
revivals of the magnetization were observed. Although this result 
is very encouraging as it shows the potential of Rydberg dressing, 
it remains unclear at present how large the system sizes can be, as 
unwanted losses appear during the dressing when the number of 
atoms increases81–83.

Quantum simulation using resonant exchange interactions
As explained above, the resonant dipole–dipole interaction between 
two Rydberg states naturally realizes the XY spin-1/2 model. Besides 
its interest for the study of quantum magnetism, this model is also 
useful to describe transport properties in many situations. Let us 
think, for example, about a chain of spin-1/2 particles all prepared 
in their state #j i

I
 and able to interact by the XY interaction. If one 

now flips the spin of one of them to "j i
I

, this spin excitation will 
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propagate along the chain under the influence of the exchange inter-
action, in the same way that a single particle can tunnel between 
neighbouring sites in a lattice. This transport of excitations driven 
by the resonant dipolar interaction is, for example, the process that 
takes place in photosynthesis, where the energy deposited by light 
in a light-harvesting cell is carried towards a reaction centre84.

This example suggests using a different language to describe the 
transport of spin excitations under the influence of the resonant 
dipole interaction. Let us now view the #j i

I
 state as the absence of 

a particle (the ‘vacuum’), and rename it 0j i
I

. The state "j i
I

 now cor-
responds to the presence of a particle, that we call 1j i

I
. In a chain, 

the state 0000¼j i
I

 corresponds to no particle on any site, while, 
for example, 0100¼j i

I
 indicates the situation where one particle is 

present on the second site of the chain. We can also consider the sit-
uation where two excitations are present in the chain, for example, 
by preparing the state 0110¼j i

I
. Importantly, these particles inter-

act very strongly: as one atom cannot carry more than one excita-
tion, it is not possible to find two particles on the same lattice site. 
Therefore, spin excitations behave as artificial particles with infinite 
on-site interactions—a hard-core constraint. It turns out that the 
spin excitations have the same commutation relations as those of 
bosons. Therefore, the problem of an ensemble of two-level Rydberg 
atoms interacting by the resonant dipole–dipole interaction can be 
equivalently mapped onto a spin-1/2 XY model or onto a system of 
hard-core bosons85. But one should keep in mind that the resonant 
dipolar interaction that drives the transport of an excitation leads 
to a single-particle problem when considering a single excitation. 
What makes the excitations interact is the fact that the atoms only 
have two levels, and not the fact that the atoms carrying the excita-
tions interact.

The first experiments performed with Rydberg atoms in a 
laser-cooled gas were actually a study of the transport of excita-
tions driven by the dipole–dipole interaction in a situation where 
the atoms’ positions are frozen17,18. Since then, several experiments 
refined our understanding of the dynamics of the propagation in 
atomic ensembles with random positions86,87. The case where the 
atoms are placed in regular arrays with individual control has been 

much less studied experimentally, and, so far, only two experiments 
have used the resonant dipole–dipole interaction to perform a 
quantum simulation.

One of them was a proof-of-principle experiment demonstrat-
ing the propagation of a spin excitation in a chain of three atoms88. 
Preparing three atoms all in the same nDj i

I
 Rydberg state, we flipped 

the state of the first one into a state n0Pj i
I

 and observed how the ‘P’ 
excitation moved in the chain. The results, shown in Fig. 4a, indicate 
that despite the simplicity of the situation, the dynamics is already 
non-trivial: this comes from the fact that the two energy scales in 
the problem, C3/a3 and C3/8a3, lead to three incommensurate eigen-
values of the Hamiltonian.

The goal of the second experiment was to implement the Su–
Schrieffer–Heeger (SSH) model, initially developed in the late 1970s 
to explain the conductivity of some organic polymers89,90. Its sim-
plest setting consists of a one-dimensional chain of sites that are 
coupled by alternating strong and weak links and where an exci-
tation can hop in the chain. Since then, the SSH model has been 
recognized as one of the simplest examples of a system exhibiting 
topological properties.

Let us consider the two configurations of a finite chain repre-
sented in Fig. 4b: either the chain ends up with the strongest link J, 
or with the weakest one Jʹ. One can show that in the first configura-
tion, the single-particle spectrum consists of two bands with width 
Jʹ, separated by an energy gap |J − Jʹ|. In contrast, in the second 
configuration, two states at zero energy appear in the middle of the 
gap, and correspond to states localized on the edges of the chain. 
The fact that they have zero energy is rather intuitive in the extreme 
case where Jʹ = 0, as adding a particle on each edge does not cost 
energy. It turns out that this remains true even when Jʹ ≠ 0. The two 
configurations correspond to two different topological classes of the 
system: it is impossible to vary the ratio J/Jʹ and continuously trans-
form one configuration into the other without closing the gap91.

Implementing this model in a chain of Rydberg atoms allows the 
study of both single-particle properties and the genuinely many-body 
properties arising from the hard-core constraint92. Microwave spec-
troscopy was used to measure the single-particle energy spectrum  
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(Fig. 4). The many-body regime has been reached by preparing 
the ground state of the chain comprising N/2 excitations (where N 
is the number of sites), using an adiabatic preparation relying on 
slow sweeps of the amplitude and frequency of a microwave. The 
many-body ground state studied in the topological configuration 
was found to display a characteristic robustness with respect to the 
breaking of certain symmetries of the Hamiltonian. The prepared 
state is probably the first experimental realization of a type of topo-
logical order for bosons introduced in 201293, called symmetry-pro-
tected topological phases, which are the only topological orders that 
can exist in one dimension.

Perspectives
Finally, we discuss short- and longer-term perspectives on the use 
of Rydberg atoms for quantum simulation. The field is rapidly 
evolving, and here we merely identify a few emerging directions  
of research.

Obvious trends in the short term, on the technical side, are (1) 
to improve the fidelity of the simulations and (2) to scale up the 
number of atoms in the arrays. The first objective requires not only, 
at the single-particle level, understanding the limitations of the 
Rydberg excitation schemes94 and overcoming them, for instance, 
using different schemes for the two-photon transitions95, but also, 
at the two-atom level, optimizing the mapping of the complex level 
structure of interacting Rydberg atoms onto simple two-level sys-
tems64. In addition, the possibility to scale up the number of atoms 
to several hundreds is one of the crucial assets of Rydberg arrays 
when compared with other platforms. To do so, the recently dem-
onstrated use of gray-molasses loading of optical tweezers96 opens 
up exciting prospects as, for a given trap depth, the required opti-
cal power per trap is strongly reduced, and, at the same time, the 
loading probability p is significantly enhanced. Cryogenic platforms 
such as the ones recently developed for trapped ion chains97 could 
help increase the atomic trapping lifetime and thus help in scaling 
up the number of atoms.

The second short-term prospect is the extension of the tech-
niques that have so far been applied to alkali atoms to new atomic 
species with two valence electrons. Arrays of single strontium98–100 
and ytterbium101 atoms have been reported recently. Although so 
far no quantum simulation has been performed with these novel 
systems, the richer internal structure of these species might allow 
new ways to manipulate, control and probe them102,103.

A longer-term goal would consist of using arrays of circular 
Rydberg states for quantum simulation. Not only would they allow 
the implementation of more complex spin models, such as the 
Heisenberg Hamiltonian, in a more natural way, but also they may, 
with their much longer lifetimes, open up the possibility to study 
long-time dynamics with Rydberg quantum simulators104.

Finally, one exciting prospect for Rydberg array quantum sim-
ulators is the fact that their applications may extend to a much 
broader class of problems than that of the mere implementation of 
spin Hamiltonians inspired by quantum magnetism, as they could 
be used to study optimization problems by quantum annealing105,106. 
While for general optimization problems Rydberg arrays may 
have limitations comparable to other platforms, they could be, for 
instance, particularly adapted to solving a classical combinatorial 
problem in graph theory, namely finding the maximum indepen-
dent set of a graph107.

A hybrid, closed-loop approach, combining a Rydberg quantum 
simulator with increased degree of control and a classical computer, 
could be used to implement variational quantum simulation. There, 
the quantum machine is used for efficiently generating many-body 
quantum states depending on a small number of variational param-
eters and measuring the average value of non-trivial observables, 
while classical hardware is used to optimize these parameters, mak-
ing it possible to find in an iterative way, for example, the ground 

state of spin Hamiltonians that cannot be realized physically with 
the platform at hand108. This type of architecture blurs the dis-
tinction between programmable quantum simulators and noisy, 
intermediate-scale quantum computers109, for which Rydberg atom 
arrays are also a promising platform110,111.

Received: 1 August 2019; Accepted: 3 November 2019;  
Published online: 20 January 2020

References
	1.	 Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 

467–488 (1982).
	2.	 Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
	3.	 Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. 

Phys. 86, 153–185 (2014).
	4.	 Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. 

Nat. Photon. 5, 222–229 (2011).
	5.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum 

Information (Cambridge Univ. Press, 2010).
	6.	 Preskill, J. Quantum computing and the entanglement frontier. Preprint at 

https://arxiv.org/abs/1203.5813 (2012).
	7.	 Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
	8.	 Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 

8, 277–284 (2012).
	9.	 Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with 

ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
	10.	 Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with 

superconducting circuits. Nat. Phys. 8, 292–299 (2012).
	11.	 Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 

285–291 (2012).
	12.	 Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics 

— photon by photon. Nat. Photon. 8, 685–694 (2014).
	13.	 Gallagher, T. F. Rydberg Atoms (Cambridge Univ. Press, 1994).
	14.	 Sibalić, N. & Adams, C. S. Rydberg Physics (IOP, 2018); https://iopscience.

iop.org/book/978-0-7503-1635-4.
	15.	 Haroche, S. Controlling photons in a box and exploring the quantum to 

classical boundary. Rev. Mod. Phys. 85, 1083–1102 (2013).
	16.	 Raimond, J.-M., Vitrant, G. & Haroche, S. Spectral line broadening due to 

the interaction between very excited atoms: ‘the dense Rydberg gas’.  
J. Phys. B 14, L655–L660 (1981).

	17.	 Anderson, W. R., Veale, J. R. & Gallagher, T. F. Resonant dipole-dipole 
energy transfer in a nearly frozen Rydberg gas. Phys. Rev. Lett. 80,  
249–252 (1998).

	18.	 Mourachko, I. et al. Many-body effects in a frozen Rydberg gas. Phys. Rev. 
Lett. 80, 253–256 (1998).

	19.	 Jaksch, D., Cirac, J. I., Zoller, P., Côté, R. & Lukin, M. D. Fast quantum 
gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

	20.	 Lukin, M. D. et al. Dipole blockade and quantum information processing in 
mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

	21.	 Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with 
Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

	22.	 Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian 
loading of single atoms in a microscopic dipole trap. Nature 411, 
1024–1027 (2001).

	23.	 Urban, E. et al. Observation of Rydberg blockade between two atoms.  
Nat. Phys. 5, 110–114 (2009).

	24.	 Gaëtan, A. et al. Observation of collective excitation of two individual 
atoms in the Rydberg blockade regime. Nat. Phys. 5, 115–118 (2009).

	25.	 Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg 
blockade. Phys. Rev. Lett. 104, 010502 (2010).

	26.	 Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT 
quantum gate. Phys. Rev. Lett. 104, 010503 (2010).

	27.	 Comparat, D. & Pillet, P. Dipole blockade in a cold Rydberg atomic sample. 
J. Opt. Soc. Am. B 27, A208–A232 (2010).

	28.	 Robicheaux, F. & Hernández, J. V. Many-body wave function in a dipole 
blockade configuration. Phys. Rev. A 72, 063403 (2005).

	29.	 Weimer, H., Löw, R., Pfau, T. & Büchler, H. P. Quantum critical behavior in 
strongly interacting Rydberg gases. Phys. Rev. Lett. 101, 250601 (2010).

	30.	 Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A 
Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

	31.	 Olmos, B., González-Férez, R. & Lesanovsky, I. Collective Rydberg 
excitations of an atomic gas confined in a ring lattice. Phys. Rev. A 79, 
043419 (2009).

	32.	 Lesanovsky, I. Many-body spin interactions and the ground state of a dense 
Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011).

	33.	 Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the 
single-atom level. Science 329, 547–550 (2010).

Nature Physics | VOL 16 | FebruarY 2020 | 132–142 | www.nature.com/naturephysics140

https://arxiv.org/abs/1203.5813
https://iopscience.iop.org/book/978-0-7503-1635-4
https://iopscience.iop.org/book/978-0-7503-1635-4
http://www.nature.com/naturephysics


Review ArticleNatuRe PHySicS

	34.	 Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic 
Mott insulator. Nature 467, 68–72 (2010).

	35.	 Nogrette, F. et al. Single-atom trapping in holographic 2D arrays of 
microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014).

	36.	 Lee, W., Kim, H. & Ahn, J. Three-dimensional rearrangement of single 
atoms using actively controlled optical microtraps. Opt. Express 24, 
9816–9825 (2016).

	37.	 Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An 
atom-by-atom assembler of defect-free arbitrary two-dimensional atomic 
arrays. Science 354, 1021–1023 (2016).

	38.	 Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional 
cold atom arrays. Science 354, 1024–1027 (2016).

	39.	 Gross, C. & Bloch, I. Quantum simulation with ultra-cold atoms in optical 
lattices. Science 357, 995–1001 (2017).

	40.	 Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum 
phase transition from a superfluid to a Mott insulator in a gas of ultracold 
atoms. Nature 415, 39–44 (2002).

	41.	 Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. 
Nature 471, 319–324 (2011).

	42.	 Bergamini, S. et al. Holographic generation of micro-trap arrays for single 
atoms. J. Opt. Soc. Am. B 21, 1889–1894 (2004).

	43.	 Dumke, R. et al. Micro-optical realization of arrays of selectively 
addressable dipole traps: a scalable configuration for quantum computation 
with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002).

	44.	 Schlosser, M. et al. Fast transport, atom sample splitting, and single-atom 
qubit supply in two-dimensional arrays of optical microtraps. New J. Phys. 
14, 123034 (2012).

	45.	 Piotrowicz, M. J. et al. Two-dimensional lattice of blue-detuned  
atom traps using a projected Gaussian beam array. Phys. Rev. A 88,  
013420 (2013).

	46.	 Grünzweig, T., Hilliard, A., McGovern, M. & Andersen, M. F. Near-
deterministic preparation of a single atom in an optical microtrap.  
Nat. Phys. 6, 951–954 (2010).

	47.	 Lester, B. J., Luick, N., Kaufman, A. M., Reynolds, C. M. & Regal, C. A. 
Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. 
Lett. 115, 073003 (2015).

	48.	 Miroshnychenko, Y. et al. An atom sorting machine. Nature 442, 151 (2007).
	49.	 Kim, H. et al. In situ single-atom array synthesis using dynamic 

holographic optical tweezers. Nat. Commun. 7, 13317 (2016).
	50.	 Ohl de Mello, D. et al. Defect-free assembly of 2D clusters of more than 100 

single-atom quantum systems. Phys. Rev. Lett. 122, 203601 (2019).
	51.	 Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. 

Synthetic three-dimensional atomic structures assembled atom by atom. 
Nature 561, 79–82 (2018).

	52.	 Nelson, K. D., Xiao, L. & David, S. Weiss. Imaging single atoms in a 
three-dimensional array. Nat. Phys. 3, 556–560 (2007).

	53.	 Kumar, A., Wu, T.-Y., Giraldo, F. & Weiss, D. S. Sorting ultracold atoms  
in a 3D optical lattice in a realization of Maxwell’s demon. Nature 561, 
83–87 (2018).

	54.	 Browaeys, A., Barredo, D. & Lahaye, T. Experimental investigations of the 
dipolar interactions between a few individual Rydberg atoms. J. Phys. B 49, 
152001 (2016).

	55.	 Sibalic, N., Pritchard, J. D., Adams, C. S. & Weatherill, K. J. ARC: an 
open-source library for calculating properties of alkali Rydberg atoms. 
Comput. Phys. Commun. 220, 319–331 (2017).

	56.	 Weber, S. et al. Calculation of Rydberg interaction potentials. J. Phys. B 50, 
133001 (2017).

	57.	 Johnson, T. A. et al. Rabi oscillations between ground and Rydberg  
states with dipole–dipole atomic interactions. Phys. Rev. Lett. 100,  
113003 (2008).

	58.	 Miroshnychenko, Y. et al. Coherent excitation of a single atom to a Rydberg 
state. Phys. Rev. A 82, 013405 (2010).

	59.	 Labuhn, H. et al. Single-atom addressing in microtraps for quantum-state 
engineering using Rydberg atoms. Phys. Rev. A 90, 023415 (2014).

	60.	 Jau, Y.-Y., Hankin, A. M., Keating, T., Deutsch, I. H. & Biedermann, G. W. 
Entangling atomic spins with a Rydberg-dressed spin-flip blockade.  
Nat. Phys. 12, 71–74 (2016).

	61.	 Schauss, P. et al. Observation of spatially ordered structures in a two-
dimensional Rydberg gas. Nature 491, 87–91 (2012).

	62.	 Zeiher, J. et al. Microscopic characterization of scalable coherent Rydberg 
superatoms. Phys. Rev. X 5, 031015 (2015).

	63.	 Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms 
for realizing quantum Ising models. Nature 534, 667–670 (2016).

	64.	 de Léséleuc, S. et al. Accurate mapping of multilevel Rydberg atoms on 
interacting spin-1/2 particles for the quantum simulation of Ising models. 
Phys. Rev. Lett. 120, 113602 (2018).

	65.	 Kim, H., Park, Y. J., Kim, K., Sim, H.-S. & Ahn, J. Detailed balance of 
thermalization dynamics in Rydberg-atom quantum simulators. Phys. Rev. 
Lett. 120, 180502 (2018).

	66.	 Lee, W., Kim, M., Jo, H., Song, Y. & Ahn, J. Coherent and dissipative 
dynamics of entangled few-body systems of Rydberg atoms. Phys. Rev. A 
99, 043404 (2019).

	67.	 Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum 
simulator. Nature 551, 579–584 (2017).

	68.	 Pohl, T., Demler, E. & Lukin, M. D. Dynamical crystallization in the dipole 
blockade of ultracold atoms. Phys. Rev. Lett. 104, 043002 (2010).

	69.	 Schauss, P. et al. Crystallization in Ising quantum magnets. Science 347, 
1455–1458 (2015).

	70.	 Lienhard, V. et al. Observing the space- and time-dependent growth of 
correlations in dynamically tuned synthetic Ising antiferromagnets.  
Phys. Rev. X 8, 021070 (2018).

	71.	 Guardado-Sanchez, E. et al. Probing the quench dynamics of 
antiferromagnetic correlations in a 2D quantum Ising spin system.  
Phys. Rev. X 8, 021069 (2018).

	72.	 Keesling, A. et al. Probing quantum critical dynamics on a programmable 
Rydberg simulator. Nature 568, 207–211 (2019).

	73.	 Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 
1387–1398 (1976).

	74.	 Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 
505–508 (1985).

	75.	 Bouchoule, I. & Mølmer, K. Spin squeezing of atoms by the dipole 
interaction in virtually excited Rydberg states. Phys. Rev. A 65,  
041803(R) (2002).

	76.	 Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I. & Zoller, P. Strongly 
correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. 
Phys. Rev. Lett. 104, 223002 (2010).

	77.	 Johnson, J. E. & Rolston, S. L. Interactions between Rydberg-dressed atoms. 
Phys. Rev. A 82, 033412 (2010).

	78.	 Balewski, J. B. et al. Rydberg dressing: understanding of collective 
many-body effects and implications for experiments. New J. Phys. 16, 
063012 (2014).

	79.	 Glaetzle, A. W. et al. Quantum spin-ice and dimer models with Rydberg 
atoms. Phys. Rev. X 4, 041037 (2014).

	80.	 Zeiher, J. et al. Coherent many-body spin dynamics in a long-range 
interacting Ising chain. Phys. Rev. X 7, 041063 (2017).

	81.	 Zeiher, J. et al. Many-body interferometry of a Rydberg-dressed spin lattice. 
Nat. Phys. 12, 1095–1099 (2016).

	82.	 Goldschmidt, E. A. et al. Anomalous broadening in driven dissipative 
Rydberg systems. Phys. Rev. Lett. 116, 113001 (2016).

	83.	 Boulier, T. et al. Spontaneous avalanche dephasing in large Rydberg 
ensembles. Phys. Rev. A 120, 180502 (2018).

	84.	 Clegg, R. M. The history of FRET. Rev. Fluoresc. 2006, 1–45 (2006).
	85.	 Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 

2004).
	86.	 Günter, G. et al. Observing the dynamics of dipole-mediated energy 

transport by interaction-enhanced imaging. Science 342, 954–956 (2013).
	87.	 Maxwell, D. et al. Storage and control of optical photons using Rydberg 

polaritons. Phys. Rev. Lett. 110, 103001 (2013).
	88.	 Barredo, D. et al. Coherent excitation transfer in a “spin chain” of three 

Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).
	89.	 Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene.  

Phys. Rev. Lett. 42, 1698–1701 (1979).
	90.	 Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W.-P. Solitons in 

conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).
	91.	 Asbóth, J. K., Oroszlány, L. & Pályi, A. A short course on topological 

insulators: band-structure topology and edge states in one and two 
dimensions. Preprint at https://arxiv.org/abs/1509.02295 (2015).

	92.	 de Léséleuc, S. et al. Observation of a symmetry-protected topological 
phase of interacting bosons with Rydberg atoms. Science 365,  
775–780 (2019).

	93.	 Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected 
topological orders in interacting bosonic systems. Science 338,  
1604–1606 (2012).

	94.	 de Léséleuc, S., Barredo, D., Lienhard, V., Browaeys, A. & Lahaye, T. 
Analysis of imperfections in the coherent optical excitation of single atoms 
to Rydberg states. Phys. Rev. A 97, 053803 (2018).

	95.	 Levine, H. et al. High-fidelity control and entanglement of Rydberg atom 
qubits. Phys. Rev. Lett. 121, 123603 (2018).

	96.	 Brown, M. O., Thiele, T., Kiehl, C., Hsu, T.-W. & Regal, C. A. Gray-molasses 
optical-tweezer loading: controlling collisions for scaling atom-array 
assembly. Phys. Rev. X 9, 011057 (2019).

	97.	 Pagano, G. et al. Cryogenic trapped-ion system for large scale quantum 
simulation. Quantum Sci. Technol. 4, 014004 (2019).

	98.	 Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and 
detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 
041054 (2018).

	99.	 Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 
041055 (2018).

Nature Physics | VOL 16 | FebruarY 2020 | 132–142 | www.nature.com/naturephysics 141

https://arxiv.org/abs/1509.02295
http://www.nature.com/naturephysics


Review Article NatuRe PHySicS

	100.	 Jackson, N. C., Hanley, R. K., Hill, M., Adams, C. S. & Jones, M. P. A. 
Number-resolved imaging of 88Sr atoms in a long working distance optical 
tweezer. Preprint at https://arxiv.org/abs/1904.03233 (2019).

	101.	 Saskin, S., Wilson, J. T., Grinkenmeyer, B. & Thomson, J. D. Narrow-line 
cooling and imaging of ytterbium atoms in an optical tweezer array.  
Phys. Rev. Lett. 122, 143002 (2019).

	102.	 Mukherjee, R., Millen, J., Nath, R., Jones, M. P. A. & Pohl, T. Many-body 
physics with alkaline-earth Rydberg lattices. J. Phys. B 44, 184010 (2011).

	103.	 Dunning, F. B., Killian, T. C., Yoshida, S. & Burgdörfer, J. Recent advances 
in Rydberg physics using alkaline-earth atoms. J. Phys. B 49, 112003 (2016).

	104.	 Nguyen, T. L. et al. Towards quantum simulation with circular Rydberg 
atoms. Phys. Rev. X 11, 011032 (2017).

	105.	 Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with 
all-to-all connectivity from local interactions. Sci. Adv. 1, e1500838 (2015).

	106.	 Glaetzle, A. W., van Bijnen, R. M. W., Zoller, P. & Lechner, W. A coherent 
quantum annealer with Rydberg atoms. Nat. Commun. 8, 15813 (2017).

	107.	 Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum 
optimization for maximum independent set using Rydberg atom arrays. 
Preprint at https://arxiv.org/abs/1808.10816 (2018).

	108.	 Kokail, C. et al. Self-verifying variational quantum simulation of lattice 
models. Nature 569, 355–360 (2019).

	109.	 Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 
79–99 (2018).

	110.	 Saffman, M. Quantum computing with atomic qubits and Rydberg 
interactions: progress and challenges. J. Phys. B 49, 202001 (2016).

	111.	 Weiss, D. S. & Saffman, M. Quantum computing with neutral atoms. Phys. 
Today 70, 44–50 (2017).

	112.	 Reinhard, A., Cubel Liebisch, T., Knuffman, B. & Raithel, G. Level shifts of 
rubidium Rydberg states due to binary interactions. Phys. Rev. A 75,  
032712 (2007).

	113.	 Béguin, L., Vernier, A., Chicireanu, R., Lahaye, T. & Browaeys, A. Direct 
measurement of the van der Waals interaction between two Rydberg atoms. 
Phys. Rev. Lett. 110, 263201 (2013).

	114.	 Barredo, D. et al. Demonstration of a strong Rydberg blockade in 
three-atom systems with anisotropic interactions. Phys. Rev. Lett. 112, 
183002 (2014).

Acknowledgements
We thank the members of our group at Institut d’Optique, as well as all our  
colleagues of the Rydberg community, and in particular M. Lukin, M. Saffman,  
G. Biederman, C. Gross and I. Bloch, for many inspiring discussions over the years. 
This work benefited from financial support by the EU (FET-Flag 817482, PASQUANS), 
by ‘Investissements d’Avenir’ LabEx PALM (ANR-10-LABX-0039-PALM, projects 
QUANTICA and XYLOS), and by the Région Île-de-France in the framework of DIM 
SIRTEQ (project CARAQUES).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© Springer Nature Limited 2020

Nature Physics | VOL 16 | FebruarY 2020 | 132–142 | www.nature.com/naturephysics142

https://arxiv.org/abs/1904.03233
https://arxiv.org/abs/1808.10816
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	Many-body physics with individually controlled Rydberg atoms

	Rydberg blockade

	The Rydberg blockade


	Arrays of individual atoms

	Mapping Rydberg states onto spin systems

	Interactions between Rydberg atoms


	Quantum simulation of the Ising model

	Quantum simulation using resonant exchange interactions

	Perspectives

	Acknowledgements

	Fig. 1 Experimental platforms for realizing arrays of individually controlled neutral atoms.
	Fig. 1 Interactions between Rydberg atoms.
	Fig. 2 Quantum quench experiments for the Ising model.
	Fig. 3 Quasi-adiabatic sweeps experiments for the Ising model.
	Fig. 4 Quantum simulation of the XY model.




