BOUNDARY CHAOS
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Is there an analogy to Poincare map reduction
In quantum many-body dynamics?
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Solvable paradigms of quantum many body dynamics?

So far, beyond Integrability and Random Systems,
only one game in town: DUAL UNITARY CIRCUITS



Brickwork vs. IRF unitary circuits
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Brickwork VS. IRF unitary circuits
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Folded circuit representation of correlation functions

Brickwork circuits IRF circuits
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Dual Unitarity

Brickwork circuits IRF circuits
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Dual unitarity and exact channel repr. of dynamical correlators

Brickwork circuits IRF circuits
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Nontrivial results and applications of dual unitary circuits
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But here we will discuss even much simpler many-body dynamics,
where interactions are confined to system’s boundaries...



Boundary Chaos Circuit
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Boundary circuit to Helical tensor network mapping
t =Lt + 0

Computation of correlators are easy for t ~ L iterating the transfer matrix!



Unitality and identity preservation of the operator gate (both consequence of unitarity of the impurity gate):

W =4 and =99
imply trivial eigenvalue 1 € spec(7;) with eigenvector |o)®”

Moreover, unitality implies nesting of the spectra of transfer matrices

spec(7r) < spec(Tr+1)

75, 8) = [0)®° @ |r,) ® [0)®”7T7° and for each eigenvalue there is an integer Tj : A € spec(7s, ) but A ¢ spec(Ts, 1)



T-dual impurity gate

Impurity gate U being T-dual (unitary partial transpose) is equivalent to V being dual-unitary
In this case, all |r,,s) = [0)® ® |r) ® |0)®”~ "% are proper eigenvctors of 7; with eigenspace projectors
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FIG. 3. Probability p(|Ao(t + 1)| > |Ao(T)|), 1.€., fOr the largest
nontrivial eigenvalue to grow when advancing from t to t + 1 for
various g and for both the T-dual and the generic case. Here we
use more than 2000 realizations and 500 for the largest accessible
values of 7, respectively, from the same ensembles as used for Fig. 1.
The maximum system size is given by 1+ 1 =11, 7 + 1 =8, and
T+ 1 =35 for g =2, 3,4, respectively. In particular, for g = 2,
the probability is found to be zero, when there is no bar depicted.
For g = 4, this holds only up to T =4 as we compute the leading

eigenvalue onlyuptor + 1 = 3.
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Generic impurity gate

7:; ceases to be diagonalizable; has Jordan blocks of dimension 7 — 75, + 1

only {/x, O] remains a proper left eigenvector (and analogously for the right eigenvector)

Hence, the trivial eigenprojector o) (o]|®7 (contrary to the T-dual case) does contribute in the leading order:
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For some rigorous handle, see

[Bertini, Kos, TP, PRX’21]
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FIG. 1. Distribution p(|A|) of (a) the largest nontrivial eigenvalue \ /
Ao and (b) the largest relevant eigenvalue A; for T-dual impurity 1
interactions for g = 2, 3, 4 (with corresponding t given by (a) T = 1 0 Rey 1-

10,6,4 and (b) T = 6,4, 3). (¢) depicts the distribution p(|A|) of
the largest nontrivial eigenvalue A( for generic impurity interactions
for g = 2, 3, 4 (with corresponding 7 given by t = 10, 6, 4). Dotted FIG. 6. Histogram of the nontrivial eigenvalues forg = 2,7 =7
lines correspond to |A¢| = 1/g. All histograms are created from (a), (b). g = 3.7 =4(c). (d),and g = 4,7 = 3 (¢), (1) for the T-dual

. : : . case (a), (¢), (e) as well as the generic case (b), (d), (f) for 500
>1000 realizations with Haar random U 1n the gCNCTIC Case, and U realizations of the circuit for each case. The black circles have radii

with Haar random local unitaries uy, vy and fixed J = 1/2 in the 1 and 1/q, respectively. Each eigenvalue 1s weighted by the degree

T-dual case; see Eq. (11). of its degeneracy in the T-dual case and by the dimension of the
corresponding Jordan block in the generic case.
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see also: F. Fritzsch and TP, arXiv: 2312.12452
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FIG. 5. Level spacing distribution p(s) for (a) the systems shown 1n Fig. 2 and (b) for the ensemble average over Haar-Random generic
impurities and T-dual impurities at fixed J = 1/2 and Haar-random local unitaries u4 and vy, see Eq. (11). The dashed black line corresponds
to the RMT result for the CUE and the dotted black line to the COE. Panel (¢) depicts the normalized spectral form factor averaged over 1000
realizations of impurities. The data are further smoothed by a moving average over a window of 20 time steps. For the T-dual case with g = 2
times t = tL are excluded from the moving time average. The inset shows the spectral form factor for T-dual impurities with g = 2 without
smoothing. Black lines indicate the respective RMT spectral form factor with the dashed lines corresponding to the CUE and dotted lines

corresponding to the COE. Time and K (¢) are scaled by the Heisenberg time t5 = g“*!.



Entanglement dynamics

q—1 qg—1
Reduced density matrix (for bipartition [0,I] + [I+1,L+1]) pi(t) = Z Z
8 a;=0 5 ..... 5120
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Transfer matrix formulation of Renyi entanglement entropies
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Figure 3: Second Rényi entropy for ¢ = 2 with (a) I =0 and (b) [ = 2 for a generic
impurity interaction for various system sizes. (a) The dashed line corresponds to
the maximum entropy (I + 1)In(q). Orange dots depict Ry obtained from a direct
computation via Eq. (14).

Figure 2: Second Rényi entropy for ¢ = 2 and J = w/4 — 0.05 in Eq. (42) with (a)
| =0 and (b) [ = 2 for a T-dual impurity interaction for various system sizes. (a)
The dashed line corresponds to the maximum entropy given by Eq. (63). Orange
dots depict Ry obtained from a direct computation via Eq. (14).



Operator-entanglement dynamics
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Figure 5: Second Renyi entropy for ¢ = 2, a T-dual impurity interaction wit J =  Figure 4: Second operator Rényi entropy for ¢ = 2 and [ = 2 for a generic impurity

m/4 —0.05 in Eq. (42), and a the spin-z operator with (a) { = 0 and (b) [ =1 for  interaction, a being the spin-z operator, for various system sizes in (a) linear and (b)

various system sizes. The dashed lines corresponds to (a) Eq. (114) and (b) Eq. (107) semi-logarithmic scale. (b) The dash-dotted lines illustrates the asymptotic scaling
as well as the maximum entropy (I +1)1In (¢*). The inserts show a magnification for Nol®.

initial times.



Conclusions

1. We introduced minimalist chaotic quantum many-body dynamics akin to
chaotic billiards In classical single-particle chaos theory

2. Two “universality classes” of boundary chaos: T-dual and Generic
impurity (boundary) interaction

3. 2-point correlation functions, Renyi-2 entropies (semi)analytically
calculated

4. Future work: Proving RMT SFF more challenging. Also multipoint time

correlators?
Are there quantities which are classically hard (in t for fixed L/t)?



