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Stochastic approximation (Robbins and Monro ’51)

Objective: Find the root of a nonlinear function

h : Rd 7→ Rd, i.e., solve h(x) = θ := the zero vector,

given noisy observations.

That is, a black box outputs ‘h(x)+ noise’ on input x.

The Robbins-Monro scheme is: Take stepsizes a(n) > 0

such that
∑
n a(n) = ∞ and

∑
n a(n)2 < ∞. For n ≥ 0, do:

x(n+1) = x(n) + a(n)[h(x(n)) +M(n+1)].



Here, M(n), n ≥ 1, is a martingale difference noise, i.e.,

integrable random variables adapted to increasing σ-fields

{Fn} such that σ(X(m),m ≤ n) ⊂ Fn ∀n, with

E[M(n+1)|Fn] = θ.

The expression in red is the noisy measurement of h(x(n)).

That is, h(x(n)) and M(n+1) are not separately known,

only their sum is.



This is more general than it appears. A typical algorithm

has the form

x(n+1) = x(n) + a(n)f(x(n), ξ(n+1))

where {ξ(n)} are i.i.d. Then set h(x) := E[f(x, ξ(n))]

and M(n+1) := f(x(n), ξ(n+1))− h(x(n)).

The classical, purely probabilistic, approach for analyzing

this scheme is based on the Siegmund-Robbins theorem

on a.s. convergence of ‘almost supermartingales’ and

allied results.



In contrast, I shall describe the so called ‘ODE approach’

(Meerkov-Derevetsky-Fradkov-Ljung-Benaim, early ′70s

onwards).

Consider a(n) as a time step. Then the iteration

x(n+1) = x(n) + a(n)[h(x(n)) +M(n+1)].

is a noisy Euler scheme for the ordinary differential equa-

tion (ODE)

ẋ(t) = h(x(t))

with decreasing stepsize.



To make this precise, define the algorithmic time scale:

t(0) = 0, t(n) =
n−1∑
m=0

a(m),m ≥ 1.

Consider the continuous, piecewise linear interpolation

x̄(t) = x(n) +

 t− t(n)

t(n+1)− t(n)

 (x(n+1)− x(n)),

for n ≥ 0.

Consider xs(t), t ≥ s, for s ≥ 0 defined by

ẋs(t) = h(xs(t)), t ≥ s, xs(s) = x̄(s),

i.e., a solution of the ODE on [s,∞) with initial condition

at s matched with x̄(s).



Then using Gronwall inequality, one can prove that

max
y∈[s,s+T ]

∥x̄(y)− xs(y)∥ → 0 a.s. ∀ T > 0.

1. a(n) → 0 =⇒ discretization errors go to zero.

2.
∑
n a(n)2 < ∞ =⇒ under suitable hypotheses,

martingale convergence theorem implies that a.s.,∑
n a(n)M(n+1) < ∞ =⇒ ∑∞

m=n a(m)M(m+1) → 0

=⇒ errors due to noise go to zero, a.s.

3.
∑
n a(n) = ∞ =⇒ t(n) ↑ ∞. (entire time axis covered)



An invariant set A of the ODE is said to be internally

chain transitive if given y, z ∈ A, T > 0 and ϵ > 0, we

can find n ≥ 1 and points xi ∈ A, 0 ≤ i ≤ n, such that

x0 = y, xn = z, and there exist trajectories xi(·),0 ≤ i < n

of the ODE of duration ≥ T , such that

∥xi(0)−xi∥ < ϵ,0 ≤ i < n, and ∥xi(T )−xi+1∥ < ϵ, 1 ≤ i < n.

Main result (Benaim): x(n) converges a.s. to an

internally chain transitive invariant set of the ODE.



For algorithms, we typically desire convergence a.s. to

specific points, which then must be equilibria of the

ODE, i.e., zeros of h.

Suppose the only possible ω-limit sets are isolated equi-

libria. If the equilibria are hyperbolic (i.e., the Jacobian

matrix Dxh of h at the equilibrium x does not have eigen-

values on the imaginary axis), they are isolated.

If in addition the noise is ‘rich enough’ in all directions,

one can claim a.s. convergence to stable equilibria of the

ODE. (Usually the desired equilibria are stable.).



Benaim, M., 1996. A dynamical system approach to

stochastic approximations. SIAM Journal on Control and

Optimization, 34(2), pp. 437-472.

Benaim, M., 2006. Dynamics of stochastic approxima-

tion algorithms. In Seminaire de probabilites XXXIII (pp.

1-68). Springer Berlin-Heidelberg.

Borkar, V. S. Stochastic approximation: a dynamical sys-

tems viewpoint. Hindustan Publishing Agency (2022)

and Springer Nature (2024).



Distributed synchronous algorithms:

N processors/agents sitting on the nodes of a directed

graph G = (V, E) where V is the node set, |V| = N , and

E is the edge set.

An edge from i ∈ V to j ∈ V is denoted (i, j) ∈ E.

The ith node, 1 ≤ i ≤ N , computes xi(n) ∈ Rd, n ≥ 0,

based on delayed information from other nodes.

Consider a complete graph.



General scheme:

N concurrent iterations in R given by∗ :

for 1 ≤ i ≤ N and n ≥ 0,

xi(n+1) = xi(n) + a(n)I{i ∈ Yn} ×

[hi(x1(n− τ1i(n)), x
2(n− τ2i(n)), · · · , xN(n− τdi(n))

+ M i(n+1)].

Here, a(n) > 0 satisfies the ‘Robbins-Monro conditions’

∑
n
a(n) = ∞,

∑
n
a(n)2 < ∞.

∗Generalization to Rd is possible.



Here,

1. 0 ≤ τji(n) ≤ n, i, j ∈ V, n ≥ 0, are random delays, such

that at time n, ith node (≈ processor / agent) knows

xj(n− τji(n)), but not xj(m) for m > n− τji(n),

2. Yn := the set of indices that got updated at time

n. The rest retain their previous value (i.e., i /∈ Yn =⇒
xi(n+1) = xi(n)).

This requires ‘time-stamping’. Other models are also

possible (e.g., inclusion of data loss corresponding to

infinite delay, no time stamping, etc.).



If the delay τ at time n is bounded by some K < ∞, it

causes an error of O
(∑n

k=n−K a(k)
)
→ 0 as n → ∞. Hence

it does not affect the convergence properties, only the

speed thereof. More generally, a convenient conditional

moment bound suffices.

The fact that not all components are updated at each

time is more problematic. It leads to a limiting ODE of

the type

ẋ(t) = Λ(t)h(x(t))

where t 7→ Λ(t) ∈ Rd×d takes values in diagonal d × d

matrices with non-negative diagonal entries.



Intuitively, λj(t) := the jth diagonal entry of Λ(t) reflects

the ‘instantaneous relative frequency’ of updates of the

ith component at time t. This can affect the asymptotic

behaviour adversely except in special cases.

For example, for stochastic gradient descent, i.e., h(x) =

−∇f(x), we have

df

dt
(x(t)) = −

∑
i
λi(t)

 ∂f

∂xi
(x(t))

2

< 0

away from critical points as long as λi(·) remain bounded

away from zero.



For this, one needs the ‘relative frequencies’

ν(i, n) :=
∑n−1
m=0 I{i ∈ Ym}

n

to remain bounded away from zero a.s. as n ↑ ∞, i.e., all

components should be sampled comparably often.

Another case when this works is h(x) = F (x) − x where

∥F (x) − F (y)∥∞ ≤ α∥x − y∥∞ for some α ∈ (0,1). Then

the ODE is

ẋ(t) = F̃t(x(t))− x(t)

where F̃t(x) = (I − Λ(t))x+Λ(t)F (x) remains an ∥ · ∥∞-

contraction with a common fixed point.



A common scenario in reinforcement learning is when

{Yn} is an irreducible Markov chain on the index set

{1,2, · · · , d},

or,

it is a controlled Markov chain coupled with a control

choice that is ‘ϵ-greedy’, i.e., with probability 1− ϵ, it is

the current guess for the optimal choice for the current

state, and with probability ϵ, it is uniform over the set of

available controls (‘exploration’ vs ‘exploitation’).



An alternative is to use sufficiently rapidly decreasing

a(n) and replace a(n) in the algorithm by a(ν(i, n)). Then

one has

lim
n↑∞

∑n
m=0 a(ν(i,m))I{i ∈ Ym}∑n
m=0 a(ν(j,m))I{j ∈ Ym}

→ 1 a.s., 1 ≤ i, j ≤ d,

and the time scales of different components are ‘matched’,

leading to the limiting ODE

ẋ(t) =
1

d
h(x(t)).

Examples are a(n) = 1
n,

1
1+n logn etc., whereas 1

n2/3
won’t

work.



For example, for a(n) = 1
n, the RHS above is

=
log

(∑ν(i,n)
m=0 a(m)

)
log

(∑ν(j,n)
m=0 a(m)

) ≈
log(ν(i, n)/n) + logn

log(ν(j, n)/n) + logn
→ 1

when the sampling of components is ‘comparably

frequent’.

One can think of {ν(i, n)} as the ‘local clock’ at i. This

formulation becomes essential when the computation is

fully asynchronous and the ‘global clock’ n = 0,1,2, · · · ,

can be an artifice as long as the causal dependences are

respected.



Federated learning:

Here a central server pools together the outputs of mul-

tiple processors and computes a consolidated result, then

sends it back to them.

A typical formulation involves periodic updates by the

server based on computations which are ready by the

time the processors are polled.

The processors are asynchronous and heterogeneous.



Problem of ‘stragglers’: ameliorated by duplicating data

across processors, sometimes combined with coding. Other

problems such as changing graph topology etc. may also

occur. Also, there can be privacy issues.

Variations such as batch processing, adaptive synchro-

nization and adaptive step-sizes are used.

Joshi, G., 2022. Optimization Algorithms for Distributed

Machine Learning. Springer Nature.



Algorithms for consensus:

Tsitsiklis-Bertsekas-Athans model: N (i) := the set of

neighbours of i. Assume i ∈ N (j) ⇐⇒ j ∈ N (i).

xi(n+1) =
∑

j∈N (i)
p(j|i)xj(n)+a(n)[hi(x(n))+M i(n+1)].

Here P := [[p(j|i)]]i,j∈V is an irreducible stochastic matrix

with stationary distribution π.

Tsitsiklis, J., Bertsekas, D. and Athans, M., 1986.

Distributed asynchronous deterministic and stochastic

gradient optimization algorithms. IEEE Transactions

on Automatic Control, 31(9), pp. 803-812.



1.
∑
j∈N (i) p(j|i)xj(n) is the ‘Gossip’ component for the

averaging / consensus effect that operates on the fast

‘natural’ time scale. Goes back to:

Degroot, M., 1974. Reaching a consensus. Journal of

American Statistical Association, 69, pp. 118-121.

2. a(n)[hi(x(n)+M i(n+1)] is the ‘Learning’ component,

operating on the slow ‘algorithmic’ time scale given by

t(0) = 0, t(n) =
n−1∑
m=0

a(m), n ≥ 0.

For example, a(n) = 1
n =⇒ t(n) ≈ logn.



Intuition: By itself, gossip forces the iterates to the set

of its fixed points, i.e., the one dimensional invariant

subspace of constant vectors.

Combined with the slow time scale of the learning scheme,

this confines the learning dynamics to this subspace asymp-

totically, implying consensus.

For example, for h = −∇f , we get convergence to a

common local minimum.



Assume that the iterates are bounded (this needs a proof).

Then asymptotically, the individual iterates can be shown

to track a common trajectory of the ODE

ẋ(t) =
∑
i
π(i)hi(x(t))

where π is the stationary distribution of P := [[p(j|i)]].

This amounts to a dynamic consensus and in case of

convergence, consensus, i.e., convergence to a common

limit for all processors.

Related models are used for studying opinion dynamics,

dynamics of robotic swarms, etc.



Other possibilities exist, see the following for an excellent

survey, but a bit dated already.

Nedich, A., 2015. Convergence rate of distributed aver-

aging dynamics and optimization in networks. Founda-

tions and Trends® in Systems and Control, 2(1),

pp. 1-100.



Another general model is:

yi(n) =
∑

j∈N (i)
p(j|i)xi(n),

xi(n+1) = yi(n) + a(n)[hi(y(n)) +M i(n+1)].

For more, see:

Sayed, A.H., 2014. Adaptation, learning, and optimiza-

tion over networks. Foundations and Trends® in Ma-

chine Learning, 7(4-5), pp. 311-801.



Other variants include polling, i.e., each node (say) i,

turns ‘on’ according to an independent Poisson clock

with rate 1, samples one neighbour j ∈ N (i) with equal

probability, and replaces xi(n) by

xi(n+1) = yij(n)+
1

ν(i, n)
(−∇fi(y

ij(n))−xi(n)+M i(n+1)),

xj(n+1) = yij(n)+
1

ν(j, n)
(−∇fj(y

ij(n))−xj(n)+Mj(n+1)),

where yij(n) := 1
2(x

i(n) + xj(n)).

The components of xi, xj other than the ith, jth remain

unchanged.



This leads to π ≈ the uniform distribution. This is useful,

e.g., for the minimization of a sum of functions, which

is of great importance in machine learning. See

Ram, S. S., Nedić, A. and Veeravalli, V. V., 2009. Asyn-

chronous gossip algorithms for stochastic optimization.

Proceedings of the 48h IEEE Conference on Decision

and Control (CDC) held jointly with 2009 28th Chinese

Control Conference, pp. 3581-3586.

More generally, any desired π can be obtained by using

a Metropolis-Hastings type p(j|i)’s.



More generally, one can consider a time-varying sequence

of transition probabilities Pn = [[pn(j|i)]], n ≥ 0. An

important generalization covered thereby is to chang-

ing graph topologies, requiring time-dependent selection

probabilities p(j|i).

‘Polling’ based schemes are also possible.

Say that πn, n ≥ 0, is an absolute probability sequence for

{Pn} if πT
n = πT

n+1Pn ∀n ≥ 0 (Kolmogorov).

Every {Pn} has an absolute probability sequence

(Blackwell).



Say that {Pn} is ergodic if ∃ϕn ∈ P(S), n ≥ 0, such that

lim
N↑∞

N∏
m=n

Pm = 1ϕTn ,

where 1 := [1,1, · · · ,1]T . Then {ϕn} is the unique

absolute probability sequence (Kolmogorov).

Under additional conditions on the graph structure, there

exists 0 < β < 1 such that for n ≥ n0 ≥ 0,

∥xn − ϕTn0xn01∥
2 ≤ βn−n0∥xn0 − ϕTn0xn01∥

2.

(Touri)



Sufficient conditions for ergodicity are given in:

Chatterjee, S. and Seneta, E., 1977. Towards consen-

sus: Some convergence theorems on repeated averaging.

Journal of Applied Probability, 14(1), pp.89-97.



Another algorithm for computing arithmetic means is the

‘Push-sum’ algorithm.

Let N in
i,k denote the in-neighbourhood of node i and douti

its out-degree, at time k. The scheme is

xi(n+1) =
∑

j∈N in
i,k

xj(k)

doutj

, yi(n+1) =
∑

j∈N in
i,k

yj(k)

doutj

.

with xi(0)’s is as prescribed, and yi(0) = 1 ∀i. Then

∑n
k=0 x

i(k)∑n
k=0 y

i(k)
→

1

d

d∑
i=1

xi(0).



Kempe, D., Dobra, A. and Gehrke, J., 2003. Gossip-

based computation of aggregate information. In Pro-

ceedings of the 44th Annual IEEE Symposium on Foun-

dations of Computer Science, pp. 482-491.

Bénézit, F., Blondel, V., Thiran, P., Tsitsiklis, J. and

Vetterli, M., 2010. Weighted gossip: Distributed aver-

aging using non-doubly stochastic matrices. In Proceed-

ings of the IEEE International Symposium on Information

Theory (pp. 1753-1757).



A general scheme for changing graph topology or

randomly transmitting agents (without ‘gossip’):

xi(n+1) = xi(n) +
∑

j∈N (i)
a(ν(n, i, j))ξij(n)×

(hij(x
1(n− τ1i(n)), · · · , xd(n− τdi(n))) +Mij(n+1)),

where ξij(n) = 1 if j communicates with i at time n, 0

otherwise. We make suitable assumptions on the delays

and stepsizes. If ξij(n)’s are IID with E[ξij] = qij, then

the iterates track a time-scaled version of the ODE

ẋi(t) =
∑

j∈N (i)
hj(x(t)).



As expected, convergence rates of consensus algorithms

depend on the graph topology. They have been worked

out for specific classes of graphs.

Nedić, A., Olshevsky, A. and Rabbat, M.G., 2018.

Network topology and communication-computation

tradeoffs in decentralized optimization.

Proceedings of the IEEE, 106(5), pp. 953-976.



One can also use selection probabilities that are

modulated by the iterates themselves, i.e., Px := [[px(j|i)]].

Suppose Px is irreducible ∀x and thus has a unique sta-

tionary distribution πx that is Lipschitz in x. Then the

iterates track a common ODE

ẋ(t) =
∑
i
πx(t)(i)h

i(x(t)).

Example: hi(x) = −∇f(xi), πx(i) ∝ e−
f(xi)
T . This scheme

augments a distributed gradient descent with simulated

annealing like weights, putting a higher weight on the

outputs of better performing processors.



A further generalization:

xi(n+1) = fi(x(n))+ a(n)[hi(x(n))+M i(n+1)], n ≥ 0,

where f(·) = [f1(·), · · · , fd(· · ·)] : Rd 7→ Rd is such that

the iterates

y(n+1) = f(y(n)) (∗)

converge to C := the set of fixed points of f(·). Then

the effect is to restrict the dynamics ẋ(t) = h(x(t)) to C.



Both these cases are analyzed in :

Mathkar, A.S. and Borkar, V.S., 2016. Nonlinear

gossip. SIAM Journal on Control and Optimization,

54(3), pp.1535-1557.

In fact, a further generalization is to replace (∗) by a

stochastic approximation on a faster time scale induced

by stepsizes {b(n)} that satisfy, in addition to satisfying

the Robbins-Monro conditions, the additional condition:

a(n) = o(b(n)), i.e., a(n)
b(n) → 0.



Special case: Consider (∗) := a stochastic approximation

version of a distributed version of the Boyle-Dykstra-Han

algorithm for projection on the intersection of convex

sets. A stochastic approximation version thereof on a

faster time scale also works. This leads to projected

stochastic approximation.

Shah, S.M. and Borkar, V.S., 2018. Distributed stochas-

tic approximation with local projections. SIAM Journal

on Optimization, 28(4), pp. 3375-3401.



Further possibilities:

Can more general ‘regularly perturbed’ ODEs be put to

good use? See, e.g.,

Artstein, Z., Kevrekidis, I. G., Slemrod, M. and Titi,

E. S., 2007. Slow observables of singularly perturbed

differential equations. Nonlinearity, 20(11), 2463-2481.

Finer analysis of the time scale separation, limit theo-

rems, concentration phenomena etc.?



THANK YOU!

BEDANKT!


