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Systoles

The systole of a compact Riemannian manifold is the least length of a non-
contractible geodesic loop in the manifold.

● It is easy to construct manifolds with arbitrarily small systoles.

● It is also easy to construct manifolds with arbitrarily large systoles. But naive 
constructions tend to yield manifolds with very large volumes.



Why are they called “systoles”?



Why are they called “systoles”?

The medical term systole comes from the Greek word for 
“contraction”. (If you have extra systolic beats in the 
medical and not geometrical sense, you had better consult 
your cardiologist.) The mathematical term systole was 
coined in 1980.

- Marcel Berger, What is… a systole



Why are they called “systoles”?

I was looking at the time for a word of the type ‘iso-???-ic’ both for the 
systoles and for the injectivity radius. I looked at Greek language 
dictionaries and found various wordings. Luckily, I was doing physical 
education together with a Greek literature colleague; he told me what I 
was proposing was ‘low Greek’. I explained to him, in ordinary words, 
what a systole and the injectivity radius are. At the next week’s 
physical education session, he came back with two proposals: 
‘isoclysteric’ and ‘isosphincteric’. I was still young in the bad sense, say 
provocative, and I was [amused]; but I told these two wordings to the 
Besse seminar that week, they were horrified and told me ‘Marcel, you 
cannot use that’. So, at the next session I asked him to find less bad 
taste ‘ic’ words. The following week he came back with ‘isosystolic’
and ‘isoembolic’. The seminar people were happy; you understand 
that in short, I switched from proctology to cardiology. 



Systole inequalities

Theorem (Loewner, 1949) – If  (𝑇𝑇2,𝑔𝑔) is a  2- dimensional 
torus with a Riemannian metric, then the systole of (𝑇𝑇2,𝑔𝑔)
obeys the inequality

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇2,𝑔𝑔 ≤ 𝐶𝐶 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇2,𝑔𝑔
1
2, 

where 𝐶𝐶 = 2
1
23−

1
4.



Systole inequalities

Theorem (Besicovitch, 1952) – If  (𝑆𝑆,𝑔𝑔) is a closed 
oriented surface with 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑆𝑆,𝑔𝑔) ≥ 1, then

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆,𝑔𝑔 ≤ √2 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆,𝑔𝑔 1/2.



Systole inequalities

Mais c’est fondamental! 
- René Thom in 1961, referring to the aforementioned 
systole inequalities in conversation with Berger, who would 
go on to popularize systoles and systole inequalities.



Systole inequalities

Theorem (Gromov, 1983) – If  𝑀𝑀 is a closed 
aspherical 𝑛𝑛-manifold, then there exists a constant 
𝑐𝑐 = 𝑐𝑐(𝑛𝑛) such that  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀 ≤ 𝑐𝑐 ⋅ 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀 1/𝑛𝑛.



Systole inequalities

If 𝑆𝑆 is a compact hyperbolic surface, then one can easily obtain a better estimate:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆 ≤ 2 ⋅ log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆 ).

The reason for the logarithmic character of this bound is that the area of a disk in the 
hyperbolic plane is exponential in the radius.

A virtually identical argument proves a logarithmic upper bound for the systole of a 
compact locally symmetric space of noncompact type. 



Systole Growth Along Congruence Covers

Theorem (Buser – Sarnak, 1994) – There exist 
hyperbolic surfaces 𝑆𝑆 such that for every prime 𝑝𝑝
the congruence cover  𝑆𝑆𝑝𝑝 of  𝑆𝑆 satisfies 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆𝑝𝑝 ≥
4
3 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆𝑝𝑝 − 𝑐𝑐

for some constant 𝑐𝑐 that is independent of 𝑝𝑝.



Systole Growth Along Congruence Covers

The surfaces of Buser and Sarnak are among the 
strangest and most interesting examples in 
(Riemannian) geometry.

-Larry Guth, Metaphors in Systolic Geometry, 
Proceedings of the International Congress of 
Mathematicians, Hyderabad, India, 2010 



Systole Growth Along Congruence Covers

Arithmetic hyperbolic surfaces are remarkably 
hard to picture. When I meet a mathematician 
who studies the geometry of surfaces, I often ask 
them if they have any ideas about visualizing 
arithmetic hyperbolic surfaces. They just laugh. 
Part of the problem is that the systole of an 
arithmetic hyperbolic surface is only ~ 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺. 
That means that to get interesting behavior, we 
need to look at huge values of  𝐺𝐺. Naturally, it is 
not easy to imagine a surface of genus 106. 



Systole Growth Along Congruence Covers

Let us say that a family 𝑆𝑆𝑖𝑖 of compact hyperbolic surfaces has a large systole if there are 
constants 𝛾𝛾 > 0 and 𝑐𝑐, which do not depend on 𝑖𝑖, such that 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆𝑖𝑖 ≥ 𝛾𝛾 ⋅ log 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆𝑖𝑖 − 𝑐𝑐.

The  construction of Buser and Sarnak shows that principal congruence covers of certain 
fixed compact hyperbolic surfaces have large systoles, and that for these families of 
surfaces, the “best possible” associated value of 𝛾𝛾 is at least 4

3
.

On the other hand, our naive systole bound 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀 ≤ 2 ⋅ log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆 ) shows that 
this optimal value of 𝛾𝛾 is at most 2.



Systole Growth Along Congruence Covers

Theorem (Makisumi, 2012) – For the family of principal 
congruence covers of a fixed compact hyperbolic surface, the 
best possible multiplicative constant is 𝛾𝛾 = 4/3. 



Systole Growth Along Congruence Covers

Theorem (Katz - Schaps - Vishne, 2007) – If 𝑆𝑆 is a compact arithmetic hyperbolic surface, 
then there is a constant 𝑐𝑐 = 𝑐𝑐(𝑆𝑆) such that the congruence covers 𝑆𝑆𝐼𝐼of 𝑆𝑆 satisfy

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆𝐼𝐼 ≥ 4
3
⋅ log 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑆𝑆𝐼𝐼 − 𝑐𝑐.

Moreover, an analogous result holds for hyperbolic 3-manifolds, with the constant  4
3

replaced by  2
3

and genus replaced by simplicial volume.



Systole Growth Along Congruence Covers

Theorem (Murillo, 2016) – If 𝑀𝑀 is Hilbert modular variety 
of real dimension 2𝑛𝑛, then there is a constant 𝑐𝑐 = 𝑐𝑐(𝑀𝑀)
such that  the systole of the principal congruence 
coverings 𝑀𝑀𝐼𝐼satisfy 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝐼𝐼 ≥ 4
3 𝑛𝑛

⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝐼𝐼 − 𝑐𝑐.



Systole Growth Along Congruence Covers

Theorem (Murillo, 2016) – If 𝑀𝑀 is an arithmetic hyperbolic 
𝑛𝑛-manifold of the first type, then there is a constant 𝑐𝑐 =
𝑐𝑐(𝑀𝑀) such that  the systole of the principal congruence 
coverings 𝑀𝑀𝐼𝐼satisfy 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝐼𝐼 ≥ 8
𝑛𝑛(𝑛𝑛+1)

⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝐼𝐼 − 𝑐𝑐.



Systole Growth Along Congruence Covers

Theorem (Murillo, 2016) – If 𝑀𝑀 is an arithmetic hyperbolic 
𝑛𝑛-manifold of the first type, then there is a constant 𝑐𝑐 =
𝑐𝑐(𝑀𝑀) such that  the systole of the principal congruence 
coverings 𝑀𝑀𝐼𝐼satisfy 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝐼𝐼 ≥ 8
𝑛𝑛(𝑛𝑛+1)

⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝐼𝐼 − 𝑐𝑐.

In an appendix to the paper in which this result is proven, Murillo 

and Cayo Dória prove that the bound of  8
𝑛𝑛 𝑛𝑛+1

is best possible.   



Systole Growth Along Congruence Covers

Theorem (Lapan – L. - Meyer,  2021) – The growth of the systoles of congruence covers of 
arithmetic simple locally symmetric manifolds is logarithmic in volume.

In particular, the aforementioned results hold for finite-volume real, complex, and 
quaternionic arithmetic hyperbolic manifolds. 



The Buser - Sarnak Construction

Let A be a quaternion division algebra over 𝐐𝐐 generated by 1, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, where 

𝑖𝑖2 = 𝑎𝑎, 𝑗𝑗2 = 𝑏𝑏, 𝑖𝑖𝑖𝑖 = 𝑘𝑘 = −𝑗𝑗𝑗𝑗.

An arbitrary element of A is of the form 𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑗𝑗 + 𝑥𝑥3𝑘𝑘 for 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ∈ 𝑸𝑸.

The reduced norm of 𝐴𝐴 is the function 𝑁𝑁 𝑥𝑥 = 𝑥𝑥02 − 𝑎𝑎𝑥𝑥12 − 𝑏𝑏𝑥𝑥22 + 𝑎𝑎𝑎𝑎𝑥𝑥32.

Define Γ = { 𝑥𝑥 ∈ 𝐴𝐴 ∶ 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ∈ 𝒁𝒁, 𝑁𝑁 𝑥𝑥 = 1}.



The Buser - Sarnak Construction

For an odd prime 𝑝𝑝, define the principal congruence subgroup Γ 𝑝𝑝 of Γ by 

Γ 𝑝𝑝 = {𝑥𝑥 ∈ Γ: 𝑥𝑥 ≡ 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 }.

Consider the embedding of 𝐴𝐴 into 𝑀𝑀2 𝑹𝑹 given by 

𝑥𝑥0 + 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑗𝑗 + 𝑥𝑥3𝑘𝑘 ↦
𝑥𝑥0 + 𝑥𝑥1 𝑎𝑎 𝑥𝑥2 + 𝑥𝑥3√𝑎𝑎

𝑏𝑏(𝑥𝑥2 − 𝑥𝑥3 𝑎𝑎) 𝑥𝑥0 − 𝑥𝑥1 𝑎𝑎
.

The image of Γ under this embedding is a lattice in 𝑆𝑆𝐿𝐿2(𝑹𝑹).



The Buser - Sarnak Construction

Because 𝐴𝐴 is a division algebra and Γ 𝑝𝑝 is torsion-free, Γ 𝑝𝑝 \𝑯𝑯2 is a compact Riemann 
surface. Its genus is 𝑔𝑔𝑝𝑝 = 𝑝𝑝 𝑝𝑝 − 1 𝑝𝑝 + 1 𝑣𝑣 + 1 for some 𝑣𝑣 > 0 which does not depend on 
𝑝𝑝.

But what is the systole of Γ 𝑝𝑝 \𝑯𝑯2 ?

If 𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥1𝑖𝑖 + 𝑥𝑥2𝑗𝑗 + 𝑥𝑥3𝑘𝑘 ∈ Γ 𝑝𝑝 , then 𝑥𝑥 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) implies that 𝑝𝑝 ∣ 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3.

Because 1 = 𝑁𝑁 𝑥𝑥 = 𝑥𝑥02 − 𝑎𝑎𝑥𝑥12 − 𝑏𝑏𝑥𝑥22 + 𝑎𝑎𝑎𝑎𝑥𝑥32, it must be that 𝑥𝑥0 ≡ ±1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝2).



The Buser - Sarnak Construction

If 𝑥𝑥 ≠ ±1, then 𝑥𝑥0 ≠ ±1 (since Γ has no parabolic elements) , hence 𝑥𝑥0 ≥ 𝑝𝑝2 − 1 and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 ≥ 2(𝑝𝑝2 − 1).

Recall that the translation length ℓ𝑥𝑥 of 𝑥𝑥 satisfies the formula cosh ℓ𝑥𝑥
2

= ± 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥
2

.

It follows that 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ 𝑝𝑝 \𝑯𝑯2 ≥ 2 ⋅ log 𝑝𝑝2 ≈ 4
3
⋅ log(𝑔𝑔𝑝𝑝).



A Generalization

How can this construction be generalized so as to prove logarithmic growth of the systoles 
of congruence covers of more general arithmetic locally symmetric manifolds?

The starting point lies with what we call standard special linear manifolds. These are 
manifolds of the form Γ\SL𝑛𝑛 𝑹𝑹 /𝑆𝑆𝑆𝑆(𝑛𝑛), where Γ ⊂ 𝑆𝑆𝐿𝐿𝑛𝑛 𝑹𝑹 is  a torsion-free lattice arising 
from the elements of norm one in a maximal order in a central simple algebra.

Proving logarithmic systole growth of the systoles of congruence covers of standard special 
linear manifolds is similar to Buser and Sarnak’s construction for surfaces.



A Generalization

Let 𝐴𝐴 be a central simple algebra over 𝑸𝑸 of dimension 𝑛𝑛2 and 𝑂𝑂 be a maximal order of 𝐴𝐴.

Given a natural number 𝑁𝑁, we have an ideal 𝑁𝑁𝑁𝑁 of 𝑂𝑂 whose quotient 𝑂𝑂/𝑁𝑁𝑁𝑁 is a finite ring.

We define the level 𝑁𝑁 principal congruence subgroup 𝑂𝑂1(𝑁𝑁) of 𝑂𝑂1 to be the kernel of the 

homomorphism 𝑂𝑂1 → 𝑂𝑂
𝑁𝑁𝑁𝑁

×
induced by the natural projection 𝑂𝑂 → 𝑂𝑂/𝑁𝑁𝑁𝑁.

Denote the images of 𝑂𝑂1 and 𝑂𝑂1(𝑁𝑁) in 𝑆𝑆𝐿𝐿𝑛𝑛(𝑹𝑹) by Γ and Γ(𝑁𝑁).



A Generalization

Theorem – Let 𝛤𝛤 be as above and 𝑝𝑝 be a prime which does not ramify in 𝐴𝐴 and satisfies   𝑝𝑝 >
2𝑛𝑛. For every 𝑚𝑚 ≥ 1 and semisimple element 𝑥𝑥 ∈ Γ 𝑝𝑝𝑚𝑚 , 𝑥𝑥 ≠ 1, there is an integer 𝑞𝑞 such 
that 𝑞𝑞 < 𝑛𝑛

2
and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑞𝑞 > 𝑝𝑝𝑚𝑚 − 𝑛𝑛.



A Generalization

Theorem – Let 𝛤𝛤 be as above and 𝑝𝑝 be a prime which does not ramify in 𝐴𝐴 and satisfies   𝑝𝑝 >
2𝑛𝑛. For every 𝑚𝑚 ≥ 1 and semisimple element 𝑥𝑥 ∈ Γ 𝑝𝑝𝑚𝑚 , 𝑥𝑥 ≠ 1, there is an integer 𝑞𝑞 such 
that 𝑞𝑞 < 𝑛𝑛

2
and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑞𝑞 > 𝑝𝑝𝑚𝑚 − 𝑛𝑛.

Proof:

Choose a basis of A ⊗𝐐𝐐 𝐐𝐐p so that A ⊗𝐐𝐐 𝐐𝐐p ≅ 𝑀𝑀𝑛𝑛(𝑸𝑸𝑝𝑝) and O ⊗𝐙𝐙 𝐙𝐙𝑝𝑝 ≅ 𝑀𝑀𝑛𝑛(𝐙𝐙p). 

Let 𝜑𝜑𝑝𝑝denote the natural projection from 𝑀𝑀𝑛𝑛(𝐙𝐙p) onto 𝑀𝑀𝑛𝑛(𝐙𝐙/𝑝𝑝𝑚𝑚𝐙𝐙).

Then 𝜑𝜑𝑝𝑝 𝑥𝑥 = 𝐼𝐼𝑑𝑑𝑛𝑛, which has trace 𝑛𝑛, hence 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 ≡ 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑚𝑚 .

This shows that if 𝑥𝑥 ∈ Γ 𝑝𝑝𝑚𝑚 , then 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥 = 𝑝𝑝𝑚𝑚𝑘𝑘 + 𝑛𝑛 for some integer 𝑘𝑘.



A Generalization

Theorem – Let 𝛤𝛤 be as above and 𝑝𝑝 be a prime which does not ramify in 𝐴𝐴 and satisfies   𝑝𝑝 >
2𝑛𝑛. For every 𝑚𝑚 ≥ 1 and semisimple element 𝑥𝑥 ∈ Γ 𝑝𝑝𝑚𝑚 , 𝑥𝑥 ≠ 1, there is an integer 𝑞𝑞 such 
that 𝑞𝑞 < 𝑛𝑛

2
and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑞𝑞 > 𝑝𝑝𝑚𝑚 − 𝑛𝑛.

Proof:

If 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑞𝑞 = 𝑛𝑛 for all integers 𝑞𝑞 with 𝑞𝑞 < 𝑛𝑛
2

, then one can use Newton’s Identities to 
show that the characteristic polynomial of 𝑥𝑥 is 𝑝𝑝𝑥𝑥 𝑋𝑋 = 𝑋𝑋 − 1 𝑛𝑛 and that 𝑥𝑥 = 1.

This is a contradiction and proves the theorem.



A Generalization

Theorem (Trace-Length Bounds) – For  a semisimple element 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿𝑛𝑛 𝑹𝑹 , the translation 
length ℓ𝑥𝑥 of 𝑥𝑥 satisfies

ℓ𝑥𝑥 ≥ 2 arccosh
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥

𝑛𝑛 .



A Generalization

Theorem (Trace-Length Bounds) – For  a semisimple element 𝑥𝑥 ∈ 𝑆𝑆𝐿𝐿𝑛𝑛 𝑹𝑹 , the translation 
length ℓ𝑥𝑥 of 𝑥𝑥 satisfies

ℓ𝑥𝑥 ≥ 2 arccosh
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥

𝑛𝑛 .

Combining the last two results allows us to deduce that 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Γ(𝑝𝑝𝑚𝑚)\SL𝑛𝑛 𝑹𝑹 /𝑆𝑆𝑆𝑆(𝑛𝑛)) ≥ 2 2
𝑛𝑛

arccosh 𝑝𝑝𝑚𝑚−𝑛𝑛
𝑛𝑛

.



A Generalization

Employing a little algebra and a bound for the index of Γ 𝑝𝑝𝑚𝑚 in Γ yields the following 
systole bound for 𝑀𝑀𝑝𝑝𝑚𝑚 = Γ(𝑝𝑝𝑚𝑚)\SL𝑛𝑛 𝑹𝑹 /𝑆𝑆𝑆𝑆(𝑛𝑛):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑀𝑀𝑝𝑝𝑚𝑚 ≥ 2 2
𝑛𝑛 𝑛𝑛2−1

⋅ log 𝑣𝑣𝑣𝑣𝑣𝑣 𝑀𝑀𝑝𝑝𝑚𝑚 − 𝑐𝑐.



A Generalization

In this manner we can prove logarithmic growth for the systoles along congruence covers 
of standard special linear manifolds.

What about the systoles of more general locally symmetric spaces?

In this case we can make use of the fact that every arithmetic simple locally symmetric 
manifold is commensurable to an immersed totally geodesic submanifold of a standard 
special linear manifold of explicitly bounded degree.



Optimal Multiplicative Constants

We have shown that for a broad class of arithmetic locally symmetric spaces 𝑁𝑁, the congruence 
covers 𝑁𝑁𝑝𝑝𝑚𝑚 (for all but finitely many primes 𝑝𝑝) satisfy

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁𝑝𝑝𝑚𝑚 ≥ 𝑐𝑐1log(𝑣𝑣𝑣𝑣𝑣𝑣 𝑁𝑁𝑝𝑝𝑚𝑚 − 𝑐𝑐2

for constants 𝑐𝑐1, 𝑐𝑐2 depending only on 𝑁𝑁.

We give explicit values for the constants 𝑐𝑐1, 𝑐𝑐2, and are even able to show the general 
dependence of 𝑐𝑐1 on the volume of 𝑁𝑁.

For certain important special cases, we prove logarithmic systole inequalities for which the 
multiplicative constant 𝑐𝑐1 depends only on the dimension. This is the case, for instance, for real, 
complex, and quaternionic hyperbolic orbifolds.



Optimal Multiplicative Constants

We did not, however, make any attempt to determine the value of the optimal 
multiplicative constants. 

Shortly after our paper appeared on the arXiv, Inkang Kim determined the optimal 
multiplicative constant for several important classes of arithmetic lattices and gave much 
improved multiplicative constants in other cases.



Optimal Multiplicative Constants

Theorem (Kim, 2020) – The multiplicative systole 
constant may be taken to be as follows:

• for lattices in 𝑆𝑆𝑆𝑆(1,𝑛𝑛), 𝑐𝑐1 = 4
𝑛𝑛 𝑛𝑛+1

,

• for lattices in SU(n,1) of the first type, 𝑐𝑐1 =
4

𝑛𝑛 𝑛𝑛+2
, and for the other type, 𝑐𝑐1 = 2

𝑛𝑛 𝑛𝑛+2
, and

• for lattices in 𝑆𝑆𝑆𝑆(𝑛𝑛 + 1,𝑹𝑹), 𝑐𝑐1 = 2
𝑛𝑛 𝑛𝑛+2

.



Optimal Multiplicative Constants

Theorem (Emery-Kim-Murillo, 2022) – The optimal multiplicative systole constant for 
compact quaternionic manifolds of dimension 4𝑛𝑛 is  4

𝑛𝑛+1 2𝑛𝑛+3
.



Optimal Multiplicative Constants

Theorem (Emery-Kim-Murillo, 2022) – The optimal multiplicative systole constant for 
compact quaternionic manifolds of dimension 4𝑛𝑛 is  4

𝑛𝑛+1 2𝑛𝑛+3
.

Correctness Check: Murillo showed that for arithmetic hyperbolic 𝑛𝑛-manifolds, the 
optimal constant is 8

𝑛𝑛 𝑛𝑛+1
. Since Hℍ

1 is isometric to four-dimensional real hyperbolic 

space, we need 4
1+1 2+3

= 8
4 4+1

.



Further Reading

Our paper, Systole inequalities for arithmetic locally symmetric spaces, is to 
appear in Communications in Analysis and Geometry and is also on the arXiv.

The best place to learn about the field of systolic geometry more generally is 
undoubtedly Misha Katz’s book Systolic Geometry and Topology.

Thank You!
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