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Part 1: the elliptic Grothendieck-Teichmiiller Lie algebra

Recall that the Grothendieck-Teichmiiller Lie algebra grt is a

derivation algebra of the 4-strand braid Lie algebra Lie|z, y| acting
by
Dg(z) =0, Dy(y) =y, f]

for f € get C Lie[z,y], and that the pentagon equation
f(z12, x23)+ f (T34, xa5)+ f (51, x12)+ f (223, 234)+ f(245,251) =0

with z;; € Lie P5 ensures that grt < Der Lie P5, and that by the
two-level principle (proven here by IThara), this then ensures that
gtt — Der Lie P,, for all n > 5.



The elliptic Grothendieck-Teichmiiller Lie algebra is defined
on the same idea except that the 4-strand and 5-strand genus zero
braid Lie algebras are replaced by the genus 1 braid Lie algebra
t1 2 on two strands and the genus 1 braid Lie algebra t; 3 on three
strands.

The Lie algebra t; , is generated by elements a:zi for 1 =
1,...,n and relations

(S zE =0
< [:v,i,x;-t]:O for i # j
+ =1 — [t S
[xiaxj]_[xj7xi] for i # j
| [z, [:vj,xj_]] =0  for 4, j, k distinct.

Thus t; 2 is generated by :zzli,:c2i with :L'it + xét = 0, so it is in
fact generated by a := 7 and b := z] and it is just the free Lie
algebra Lie|a, b]. We set

tz'j = [517:_,.’13]_] € t1n.



The elliptic Grothendieck-Teichmiiller Lie algebra grt,;; is de-
fined to be the space of triples (¢, a,,a_) such that ¥ € grt, the
triple induces a derivation on t; o = Lie[z], 2] by

xitl—)ai

such that [z, z]] is mapped to 0 and such that taking the fol-
lowing extension to t; 3 by

mi — ap(z7,27) + [T, ¥(t12, tas)]

Ty — ay(zs,z5) + [5, Y (t12, t13)]

73— o (a3, 73)

induces a derivation of t; 3.
This condition imposes strong relations on the elements a4, a_.



Explicitly, we have

grtey, {(¢,a+, ) € get X (t1,2)°
ax(@f,27) + ax (23, 27) + ax(z], z3) + [27,9(t12, ta3)] + [25, P(t12, t13)] =0,
(27, (2, 23)] + lax (e, 27), 23] — [27, [25, P(ti2, tas)]] = 0,

(27, o (x5, 25)] — [25, oy (a7, 27)] = [z3, [z, P(ti2, ta3)]] — [27, [ﬂiz_a%b(tlz,tl?))]]}-



Lemma 1. Given an element (¢, oy, a_) in grt,,;, the term a
uniquely determines o_.

Proof. This is always the case for derivations of a free algebra
Lie[a, b] such that the bracket [a, b] is mapped to zero. Indeed this
condition means that

[Ol_|_,b] + [aaa—] =0
and a_ can be recovered from a, by writing

ot = (a4)ea + (a4 )vb

and setting



Lemma 2. Elements (0,a4,a_) exist in gtt,;, forming a Lie
subalgebra t;.

Proof. We prove this by displaying some elements of t.;;, namely
the derivations known as €5, defined by

o (a) = ad(a)?*(b), eax(la,b]) = 0.

By direct computation, the triple (O, eax(a), €2k (b)) lies in t.;; for
all k > 0. It is conjectured but not known that they generate t;;.



Lemma 3. If (¢Y,a4,a_) € gtt,;; then ay determines v uniquely.

Proof. Suppose (¢1,alphas,a_) and (¢2,alphay,a_) both lie
in grt,;;. Then there is an element (¢,0,0) € grt,;. From the
defining relations of grt,;; we must then have

(21, [23, 9 (t12, t23)]] = 0. (*)

Consider the morphism p; mapping i — 0. Ker(p;) is a free
Lie algebra generated by a:li,tlz, t13. Since p1(t12) = 0, we have
p1(¥(t12,t23)) = 0 because the kernel is a normal subalgebra, and

we also have p1([zd,4(t12,t23)]) = 0. This shows that

T := [x;,tb(tlz, t23)] & ker(pl) = Lie[xI—L, t12,t13].

Thus [z], [zF,¥(t12,t23)]] = [z],T] = 0 inside the free Lie al-
gebra ker(p1), so T = [z4,%(t12,t23)] = 0. But by the same
argument, since ¥(t12,t13) € ker(ps) and T = 0, we must have
Y (t12,t13) = 0, which proves that ¢ = 0.



Lemma 4. The map gtt,; — ¢ given by a4 — 1 s surjective,
and there is a section map

grt — grt, ;.

Proof. The first assertion will follow from the section map, which
we describe explicitly.

Let
B

Bera(y) = (y) = ) —rad(z)""'(y)

n>1

be the Bernoulli function. Let a:=z{, b:= 7, and let
to1 = Bery(—a), to2 = Ber_p(a), ti2 = [a,b].

These elements lie in the completed free Lie algebra on two gen-
erators Lie[a,b] and satisfy

to1 +toz +t12=0.



Let
Lie[z,y] — Liela, b]

be the injective Lie algebra morphism given by
T tiz, Y+ tor,

and let T' = Lie[t12, to1] denote the image.

Proposition. Let f € gtt, and let d¢(z) = 0, df(y) = [y, f]
denote the Ihara derivation of Lie[x,y| associated to f. Let

Dy :t12— 0, to1 = [to1, f(t12,%01)]

be the transport of this derivation to Lielt12,t01]. Then there ex-
ists a unique extension of Dy to a derivation o of all of Lie[a, b].
Setting

ay = ala) = a(z]), a- =a)=a(z])

gives the element (VY,ay,a_) € grt,;.
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The elliptic associator

Enriquez defined an automorphism g, of Q({a, b)), which is a
function of the elliptic parameter 7, running through the funda-
mental domain of the action of SL2(Z) on the upper half-plane.
It is a solution of the differential equation

211 OT = (2k — 2)!
Bay,
sz(T) = —E + Za2k—1(n)q

is the Hecke-normalized Eisenstein series, with ¢ = e“™*7. En-
riquez singles out the solution g, by specifying its asymptotic
behavior as 7 — 700.
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Let ek, k > 0, be the weight 2k + 1 derivations of Lie[a, b]
defined by
ear(a) = ad(a)?*(b), ea([a,b]) =0

(where weight 2k +1 means that es;(a) and ey (b) are Lie elements
of homogeneous degree 2k + 1). This definition completely fixes
the value of e on b.

We can write

gr =1d + Z Oxex

k=(2k1,...,2k,)

where
€k =— €2, O - O €gk,.

and Gy is the iterated integral of the Eisenstein series Gog,,, - . . , Gok,.-

™
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Definition of the elliptic associator

Instead of considering the generators a and b of the completed
Lie algebra Lie[a,b], Enriquez consider the pair of generators t¢;,
b for this Lie algebra.

The elliptic associator defined by Enriquez is a pair (A,, B;)
of group-like power series in the free non-commutative variables
a,b with coefficients that are functions of 7, so lie in O(H), and
such that

etor 3 A_
{ e’ — B,

induces an automorphism of the group of group-like power series
in Q({a, b)) ®qg O(H) such that el*?l is fixed.

The condition that the automorphism fixes el®? implies that in
fact knowing A,, we can reconstruct B,. Therefore we will gen-
erally refer to A, as “the elliptic associator”.
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The power series A, can be defined as followed in two steps.
First we define a power series A € Q((a,b)) ®q Z, where Z is the
Q-algebra of multizeta values:

A= gz (tor,ti2) teX ™01k £ (to1,t12).

Then we set
A :=g-(A).

The power series g,(a), A; and B, are all group-like.

In what way does this deserve to be called “the elliptic associator’?
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e As the Drinfel’d associator arises from the usual KZB equation, the pair
(A, B;) arise from an elliptic KZB equation based on the function F;

o As @k is the iterated integral of the KZB differential form £ + - dv,
A is the iterated integral of the differential form F (u,v) dv;

e As the Drinfeld associator yields an isomorphism between

g (Pl _ £0,1,00}) ~ (X, €Y, eZ|eXeYe? = 1)
and the graded version

exp(Lie[z, y, 2|z +y + 2z = 0]) =~ (e”,e¥, e*|e" TV = 1),
so (A,, B;) gives an isomorphism between
TR (T ) ~ (4, B eC(e?, eP)eC = 1)

and the graded version

exp(Lie[a, b, c|[a,b] + ¢ = 0]) = (e?, €, e°|elvblFe = 1),

where T} is the once-punctured torus. The isomorphism is given by e?
A, e — B,.



e Viewing (eX,e¥) as the pro-unipotent 7; of the thrice-punctured sphere
identifies it Wlth the pure sphere 4-strand braid group. The graded formality
isomorphism on (e, e¥) induced by ® 7 extends to one of the pure sphere
5-strand braid group [Kohno-Drinfeld]. Similarly, viewing (e?,e?) as the
pro-unipotent 7 of T3 identifies it with the 1-strand torus brald group, and
the graded formality isomorphism given by (A, B;) extends to one one the

the 2-strand torus braid group.

e The extension to the 5-strand braid group is ensured by the associator
relations satisfied by ® g 7. Similarly, (A, B,) satisfy elliptic associator re-
lations arising from the fact that it induces a graded formality isomorphism
of the 2-strand torus braid group.
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The ring of elliptic multizeta values

The ring of elliptic multiple zeta values £Z is generated by
the coefficients of the power series A, and B, (for reasons of con-
venience, we add the function 27iT to £2). We consider the ring
£Z modulo the ideal generated by ¢(2).

Theorem 1. (i) Let U denote the ring generated over Q by the
coefficients of g-(a), which are all linear combinations of the iter-
ated integrals Gx. Then U is the dual of the universal enveloping

algebra of the Lie algebra of derivations generated by the deriva-
tions €op..

(ii) The ring EZ generated by the elliptic multiple zeta values is
a Q-algebra under the shuffle multiplication.

(iii) The Q-algebra EZ decomposes into a tensor product
EZ~URQZ

where Z denotes the Q-algebra of real multizeta values.
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The elliptic generating series

For this part, we will work modulo ((2). Let ® k7 denote the
Drinfeld associator with coefficients reduced mod ((2), and set

A= ®gz(tor,t12) e @z (to1, tio)

and

Z7' = gr (Z)
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Let Z = Z/(((2)) and let
Prz € grtRq Z
denote the Lie Drinfeld associator, which satisfies

erpget(Prz) = Pk 7,

where ®x, is the Drinfeld associator with coefficients reduced
mod ((2) and expg.¢ denotes the exponential with respect to the
Poincaré-Birkhoff-Witt multiplication law * in Ugtt:

1 — — _
ewpgtt(¢KZ) =1+ Z Eqb;(@z =@k, € ngtt 029%0) Z.
n>1
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To the Lie series ¢z we associate the Thara derivation dy, , of
Lie[z, y] ®g Z (the completed Lie algebra).
Transporting this over to a derivation Dy, , of

T = Lie[tlz, t01] C Lie[a, b] XQ Z

the above Proposition shows that it has a unique extension to
a derivation Dy, , of Lie[a,b] ®g Z. The exponential Ay, , :=

exp(Dy,. ,) is then an automorphism of

Q({a, b)) ®q 2.

We set 3 B
e=Dy,,(a) and E = Ay, ,(e).
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Theorem. The automorphism Ay, , of Q((a,b)) ®qg Z mapping
e® — E fizes el which determines it completely. It satisfies

Ay, () = @z (to1,t12) €' Dz (to1,t12).

Let E, := g,(E). The automorphism g,0Ay, , of Q{{(a,b))®qEZ
maps B

e* — F.

etor 5 A_

e’ — B..

In this way the (reduced) elliptic associator (A,, B;) can be con-
structed directly from ¢z and g,.

The power series
ET = gT(E) = Jgr (AchZ(ea))

is called the elliptic generating series. Its coeflicients generate the
same ring £Z as those of A, and B..
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Elliptic double shuffle relations

The elliptic associator should satisfy double-shuffle type rela-
tions, both by analogy with the genus zero case and because it is
constructed from the Drinfeld associator. In fact, they do satisfy
a family of elliptic double shuffle relations.

To simplify, we will restrict our attention to the elliptic generating
series

ET = 9gr©° A¢Kz (ea).

In fact we will consider the Lie elliptic double shuffle relations on
the generating series given by

er :=log(gr 0 Ag,,)(a).

The difficulty is that the elliptic double shuffle relations can’t be

expressed in terms of power series. Let us give an approximative
version.
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Let D be the operator which acts on polynomials f(z,y) € Lie[z, y]
by
D(f) = [=, f (=, [z, y])]-

The key point is that it is possible to give a meaning to the inverse
operator D!, but D~1(f) will not generally be a polynomial (we
need to move into a world with denominators...). Accepting this,
the elliptic double shuffie relations satisfied by the Lie elliptic gen-
erating series e, are the depth-linearizations of the usual double
shuffle relations, namely the relations that hold not in 9s but in
gr0s, the associated graded for the depth filtration: instead of
D~'(e,) being Lie-like for the coproduct A and D~!(e,),) for
the coproduct A,, they are both Lie-like for the coproduct A:

A(D7'(e,;)) =D '(e;)®1+1Q D '(e,)

and
A(D7(e,)s) =D (&)« ®1+1® D' ().

One can give explicit meanings to D~!(e,) even though D~1(e,)
is not a power series by using Ecalle’s mould theory.

Other relations (such as the Fay relations) satisfied by the elliptic
associator have been studied, but like the elliptic double shuffle,
they can be explained as transformations via the construction of
relations already satisfied by the Drinfeld associator.
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