
Microlocal analysis and application to control of waves

Belhassen DEHMAN1

Recent advances on control theory of PDE systems

Bangalore

February 2024

1Faculty of Sciences of Tunis, Tunisia & Enit-Lamsin
1 / 89



Outline

Motivation : Observability estimates

Pseudo-differential operators and wave front set

Propagation of singularities

Microlocal defect measures

Applications to observation of waves

2 / 89



Setting

(W )


∂2
t u −∆xu = 0 in ]0,+∞[×M

(u(0), ∂tu(0)) = (u0, u1) ∈ H1 × L2

M Riemannian manifold, connected, compact, without boundary, with
dimension n.

M = Ω open subset of Rn, connected, bounded, with smooth
boundary ( homogeneous Dirichlet condition ).

H = C0([0,+∞[,H1) ∩ C1([0,+∞[, L2)

Eu(t) = ||∇xu(t, .)||2L2(Ω) + ||∂tu(t, .)||2L2(Ω) = Eu(0)
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ω ⊂ Ω, Γ ⊂ ∂Ω, and T > 0 ( suitable )
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The Goal : Observability estimate

Provide an observability estimate for the wave equation (W)

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt (IO)

Eu(0) ≤ c

∫ T

0

∫
Γ
|∂nu|∂Ω(t, x)|2dσdt (BO)

Or at least

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + c ||(u0, u1)||2L2×H−1 (R − IO)

Eu(0) ≤ c

∫ T

0

∫
ω
|∂nu|∂Ω(t, x)|2dσdt + c||(u0, u1)||2L2×H−1 (R − BO)
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Applications

→ Exact controllability (HUM)
Given (u0, u1), find a control vector f s.t the solution of{

∂2
t u −∆xu = χωf

(u(0), ∂tu(0)) = (u0, u1)

satisfies u(T ) = ∂tu(T ) = 0.

→ Stabilization
Eu(t) ≤ C exp−γtEu(0)

for solutions of the damped equation

∂2
t u −∆xu + a(x)∂tu = 0

→ Inverse problems

Stability,....
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State of the art

80’ : Observability estimates under the Γ-condition of J.L. Lions.
→ Metric of class C 1, multiplier techniques.

90’: Microlocal conditions and microlocal tools : Rauch -Taylor 74’,
Bardos, Lebeau and Rauch 92’, Burq and Gérard 97’.
The geometric control condition (G.C.C) : a microlocal condition,
stated in the (compressed) cotangent bundle ( Melrose-Sjöstrand 78’).
→ Microlocal and pseudo-differential techniques : propagation of
wave front sets and supports of microlocal defect measures.
→ This condition is optimal but....... a priori needs smooth metric
and smooth boundary.

97’ N. Burq : Boundary observability: C 2-metric and C 3-boundary.

Fanelli-Zuazua 15’ and D-Ervedoza 17’.

22’ Burq-D-Le Rousseau : Observability: C 1-metric and C 2-boundary.
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Back to internal observability

||(u0, u1)||2H1×L2 ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + c ||(u0, u1)||2L2×H−1

→ Implies observability for high frequency data.
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(u0, u1) ∈ L2 × H−1 and u ∈ H1((0,T )× ω)

⇓

(u0, u1) ∈ H1 × L2

In other words

u ∈ L2((0,T )× Ω) and u ∈ H1((0,T )× ω) ⇒ u ∈ H1((0,T )× Ω)

→ Propagation of the H1- regularity

Remarks
a) This condition is necessary !
b) With ωT = (0,T )× ω,

u ∈ H1
loc(ωT )⇐⇒ ∂tu ∈ L2

loc(ωT )⇐⇒ ∇xu ∈ L2
loc(ωT )

since u is a wave.
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Denote
E = H1

0 × L2, E−1 = L2 × H−1,

and consider the following assumptions :

For every (u0, u1) ∈ E−1 = L2 × H−1,

A 1. ∂tu ∈ L2((0,T )×ω) =⇒ (u0, u1) ∈ E : propagation of the regularity
.

A 2. ∂tu = 0 in (0,T )× ω =⇒ (u0, u1) = 0 : unique continuation .

Theorem
a) A 1 =⇒ Relaxed observability

b) A 1 + A 2 =⇒ Observability
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Proof 1 : Bardos-Lebeau-Rauch (1992 )- Propagation of the WF set.

F =
{

(u0, u1) ∈ E−1, ∂tu ∈ L2((0,T )× ω)
}

‖(u0, u1)‖2
F =

∫ T

0

∫
ω
|∂tu|2+‖u‖2

L2((0,T )×Ω), ‖(u0, u1)‖2
G = ‖u0‖2

H1
0
+‖u1‖2

L2

→ F = E + both are Banach spaces + Banach isomorphisms theorem
→ Conclude by contradiction.

Proof 2 : Burq-Lebeau- ( ≥ 1995 ) - Microlocal defect measures.

→ Contradiction argument and propagation of mdm’s.
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To summarize:

We need a ”tool” to propagate

a) The H1 regularity from (0,T )× ω to (0,T )× Ω ...........WF 1- set.

b) The H1-compactness from (0,T )× ω to (0,T )× Ω ......microlocal
defect measures.

Geometric Control Condition
(Rauch-Taylor 74’ , Bardos-Lebeau-Rauch 92’)

GCC at time T : The couple (ω,T ) satisfies GCC if every geodesic issued
from M at {t = 0} and travelling with speed 1, enters in ω before the
time T .
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The key problem

How do the regularity/singularity of solutions of a wave equation
travel ?

How can we track singularities ? what is their path ?

Same questions for compactness/lack of compactness.
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1-The wave front set

1. Singular support of a distribution.

Let Ω be an open subset of Rn, x0 some point in Ω and u ∈ D ′(Ω). The
following statements are equivalent and define the singular support of the
distribution u.

x0 /∈ singsuppu.

u is C∞ in a neighborhood of x0.

There exists a neighborhood Vx0 of x0 such that ϕu ∈ C∞0 (Vx0), for
every ϕ ∈ C∞0 (Vx0).

There exists ϕ ∈ C∞0 (Ω), ϕ ≡ 1 near x0 such that ϕu ∈ C∞0 (Ω).
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Remarks

1. Actually, x0 /∈ singsuppu iff
there exists Vx0 : ∀ϕ ∈ C∞0 (Vx0), ϕ̂u is rapidly decaying

∀k ∈ N,∃Ck > 0, |ϕ̂u(ξ)| ≤ Ck(1 + |ξ|)−k , ∀ξ ∈ Rn (1.1)

or equivalently
there exists ϕ ∈ C∞0 (Ω), ϕ ≡ 1 near x0 such that que ϕ̂u is rapidly
decaying.

2. Consider u ∈ D ′(R2), u(x1, x2) = 0 if x1 < 0 and 1 otherwise.

singsupp(u) = ∆ = {(0, x2), x2 ∈ R}

The singular support mixes the good and bad spectral directions.

15 / 89



Examples.

1. In D ′(R), singsupp H = singsupp δ0 = {0}.
2. In D ′(R),singsupp u′ = singsupp u.
3. For u ∈ D ′(Rn) and P =

∑
|α|≤m aα(x)Dα

x , aα ∈ C∞(Rn), we have

singsupp(Pu) ⊂ singsupp(u)

4. For every elliptic differential operator P, with constant coefficients in
Rn, and every distribution u in Rn, we have the equality

singsupp(Pu) = singsupp(u)

We say that P is hypoelliptic.
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2. The wave front set

Definition: Conical set
A subset Γ of Ω×Rn\{0} is conical if (x , ξ) ∈ Γ and λ > 0⇒ (x , λξ) ∈ Γ.

Definition: The C∞ wave front
Let Ω be an open subset of Rn and u ∈ D ′(Ω). We say that a point
ω0 = (x0, ξ0) of Ω×Rn\{0} = T ∗Ω\{0} is not in the wave front of u and
we write ω0 /∈ WF (u) iff there exists a neighborhood V of x0, contained in
Ω, a conical neighborhood W of ξ0 in Rn\{0}, s.t. for every ϕ ∈ C∞0 (V ),
one has

∀k ∈ N,∃Ck > 0, |ϕ̂u(ξ)| ≤ Ck(1 + |ξ|)−k , ∀ξ ∈W (2.1)
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Remarks

1 For u ∈ D ′(Ω), WF (u) is a closed conical subset of Ω× Rn\{0}.

2 A point ω0 = (x0, ξ0) of Ω× Rn\{0} is not in WF (u) if locally near
x0, the distribution u has the behavior of a ”C∞ function” near the
spectral direction ξ0.

3 To analyze WF (u), we first localise the distribution u near x0, then
we study the behavior of ϕ̂u in a conical neighborhood of the spectral
direction ξ0 : it is a microlocal analysis.
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Examples.

1.In R, we have WF (δ0) = WF (H) = {0} × R∗.

2.We come back to the distribution u on R2 given by the characteristic
function of the half-plan {(x1, x2), x1 ≥ 0}.

WF (u) = {(x1, x2; ξ1, ξ2), x1 = 0, ξ2 = 0}.

3.

u(x) =

∫ +∞

0

exp(ixt)

(1 + t2)2
dt, x ∈ R

u ∈ C∞(R \ 0) since xku ∈ C k+2(R), by integration by parts.

singsupp(u) = {0} and WFu = {(0, ξ), ξ > 0}

.
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4. Fix α ∈]0, 1[ and ξ0 ∈ Sn−1, and set

u(x) =
∑
k≥1

k−2ψ(kαx)exp(ikx .ξ0)

with ψ ∈ C∞0 (Rn) such that
∫
ψ(x)dx = 1, and ψ̂ ≥ 0.

singsuppu = {0} and WF (u) = {(0, λξ0), λ > 0}.
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3. Properties of the C∞ wave front
In this section, we describe the action of differential operators on the wave
front and we give the relation between the wave front and the singular
support of a distribution.

Proposition 3.1

1 If x0 /∈ singsuppu, then for every ξ ∈ Rn\{0}, (x0, ξ) /∈WF (u).

2 WF (u + v) ⊂WF (u) ∪WF (v).

3 If ϕ ∈ C∞, then WF (ϕu) ⊂WF (u).

4 WF (∂u/∂xj) ⊂WF (u).
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Theorem 3.2
For every u ∈ D ′(Ω) and every differential operator P with C∞

coefficients in Ω, we have the inclusion

WF (Pu) ⊂WF (u) (3.1)

We say that differential operators satisfy the pseudolocal property.

Theorem 3.3: Denote by π the canonical projection{
π : T ∗(Ω) = Ω× Rn\{0} → Ω

(x , ξ)→ x

Then the following identity holds true

π(WF (u)) = singsuppu (3.2)

22 / 89



4.Wave front Hs

Let s ∈ R, Ω open set in Rn, u ∈ D ′(Ω) and ω0 = (x0, ξ0) a point of
Ω× Rn\{0}.

Definition: We say that ω0 = (x0, ξ0) is not in the wave front Hs of u
and we write ω0 /∈ WF s(u) iff there exists a neighborhood Vx0 of x0,
contained in Ω, a conical neighborhood W of ξ0 in Rn\{0}, such that for
every function ϕ ∈ C∞0 (Vx0), we have

(1 + |ξ|2)s/2ϕ̂u(ξ) ∈ L2(W ) (4.1)

Remark
If ω /∈WF (u) then ω /∈WF s(u), for every s ∈ R.
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2-Pseudo-Differential Operators

The goal is to study the behavior of the wave front set of a
distribution u solution of a PDE P(x ,D)u = f ∈ C∞.

For this purpose, we define an algebra of operators containing the
differential operators ( smooth coefficients ) and the ”inverses” ( in
some sense to be precised ), of the elliptic operators.
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Let P =
∑
|α|≤m aα(x)Dα

x a differential operator of order m, with
coefficients in C∞(Rn). For every u ∈ S(Rn)

Pu(x) =
∑
|α|≤m aα(x)Dα

x u(x)

=
∑
|α|≤m aα(x)(2π)−n

∫
e ixξξαû(ξ)dξ

= (2π)−n
∫
e ixξp(x , ξ)û(ξ)dξ

where
p(x , ξ) =

∑
|α|≤m

aα(x)ξα

This representation suggests that p(x , ξ) can be replaced by a more
general function living in a suitable class of symbols.
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1. Symbols
Definition: For m ∈ R, we denote Sm = Sm(Rn × Rn) the set of
functions a ∈ C∞(Rn × Rn) such that for all multi-idexes α and β ∈ Nn,
there exists a constant Cαβ > 0 s.t.∣∣∣∂αξ ∂βx a(x , ξ)

∣∣∣ ≤ Cαβ(1 + |ξ|)m−|α|, (x , ξ) ∈ R2n (1.1)

A function of Sm is called a symbol of order m.

We denote S−∞ = ∩Sm and S+∞ = ∪Sm.
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Examples.

1 If a(x , ξ) =
∑
|α|≤m aα(x)ξα, with aα ∈ C∞(Rn), bounded as well as

all its derivatives, then a(x , ξ) ∈ Sm. We say that a is a differential
symbol of order m.

2 If a(ξ) ∈ S(Rn), then a ∈ S−∞

3 a(ξ) = (1 + |ξ|2)m/2 ∈ Sm.

4 If a(x , ξ) ∈ Sm then ∂βx ∂αξ a(x , ξ) ∈ Sm−|α|.

5 If a ∈ Sm and b ∈ Sm′then ab ∈ Sm+m′ .

6 If a(x , ξ) ∈ Sm satisfies |a(x , ξ)| ≥ C (1 + |ξ|)m ( we say that a(x , ξ)
is elliptic ), then 1/a ∈ S−m.

7 Attention: a(x , ξ) = e ixξ is not a symbol !

8 Denote ξ = (ξ′, ξ′′) and let a(x , ξ) ∈ Sm independent of ξ′′, then
a(x , ξ) is a polynomial symbol ( of order m) in ξ′.
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Proposition 1.1: Asymptotic expansion
Let (mj) be a decreasing sequence of real numbers, mj → −∞, and
aj(x , ξ) ∈ Smj .Then there exists a symbol a ∈ Sm0 , unique modulo S−∞,
s.t. suppa ⊂ ∪suppaj and

a−
k−1∑
j=0

aj ∈ Smk , k ∈ N∗ (1.2)

a is called the asymptotic sum of the symbols aj and we denote a ∼
∑

aj .
In particular, a symbol a of order m is a classical symbol if a ∼

∑
aj ,

where the functions aj are homogeneous of order m − j .

Example : mj = −j , j ∈ N ( classic symbol ).
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2. Pseudo-differential Operators
For a ∈ Sm, we try to define an operator by the formula

a(x ,D)u(x) = (2π)−n
∫

e ixξa(x , ξ)û(ξ)dξ (2.1)

Theorem 2.1: For a ∈ Sm, the formula above defines a function of S(Rn)
and the map {

S(Rn)→ S(Rn)
u → a(x ,D)u

is continuous.

29 / 89



Definition: The operator defined by the previous theorem is called
pseudo-differential operator of symbol a. It’s denoted by op(a), a(x ,D) or
A.

Remark: If u ∈ C∞0 (Rn), then a(x ,D)u ∈ S(Rn); it’s not anymore
compactly supported since the formula uses the Fourier transform û.
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3. Symbolic calculus .

Theorem 3.1 ( adjoint )
If a(x ,D) ∈ op(Sm), then its adjoint a∗(x ,D) ∈ op(Sm) and one has

a∗(x , ξ) ∼
∑
α∈Nn

i−|α|

α!
∂αξ ∂

α
x a(x , ξ) (3.1)

Consequently, a(x ,D) is bounded from S ′ to S ′.

Attention: Here the duality is defined by : (Au, v) = (u,A∗v) where
u ∈ S ′, v ∈ S and (u, v) = 〈u, v〉S′,S

Theorem 3.2 ( composition )
If a1 ∈ Sm1 and a2 ∈ Sm2 , then there exists b ∈ Sm1+m2 such that
b(x ,D) = a1(x ,D)a2(x ,D). Moreover we get the asymptotic expansion

b(x , ξ) ∼
∑
α

i−|α|

α!
∂αξ a1(x , ξ)∂αx a2(x , ξ) (3.2)
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Remarks
1. The symbol b of formula (3.2) is denoted b = a1#a2.
2. If a1 and a2 are two differential symbols ( polynomials ), the asymptotic
formulae are exact.
3.In practice, one rarely needs the whole asymptotic expansion; the most
usefull terms are the first ones. This is summarized in the following corollary.

Corollary 3.3
If a1 ∈ Sm1 and a2 ∈ Sm2 , then
1. a1(x ,D)a2(x ,D) = (a1a2)(x ,D) + R(x ,D) where R(x , ξ) ∈ Sm1+m2−1.
2. [a1(x ,D), a2(x ,D)] = C (x ,D) + R(x ,D) where

C (x , ξ) =
1

i
{a1(x , ξ), a2(x , ξ)} and R(x , ξ) ∈ Sm1+m2−2

Here {a1, a2} =
∑

j(∂a1/∂ξj∂a2/∂xj − ∂a1/∂xj∂a2/∂ξj) is the Poisson
bracket of a1 and a2.

31 / 89



4. Action of Pdo’s on Sobolev spaces

Theorem 4.1: If a ∈ S0, then a(x ,D) is bounded on L2(Rn).

Hint : Consider the kernel + Symbolic calculus + Schur Lemma

Corollary 4.2: If a ∈ Sm, then a(x ,D) is bounded from Hs(Rn) to
Hs−m(Rn).

Conisder the pseudo-differential operator Λr = op((1 + |ξ|2)r/2)
→ Isomorphism between H r and L2.

a(x ,D) = Λm−s(Λs−ma(x ,D)Λ−s)Λs

Remark: In this way, it’s easy to see that a pseudo-differential operator A
in the class op(S−∞) is bounded from Hs to Ht for all s and t.
We say that A is infinitely smoothing.
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Theorem 4.2 : Gärding inequality ( weak form )
Consider a symbol a(x , ξ) ∈ S2m, and assume there exists c > 0 such that

Re a(x , ξ) ≥ c(1 + |ξ|2)m for |ξ| ≥ R.

Then for every N ≥ 0, there exists CN > 0 such that

Re
(
a(x ,Dx)u, u

)
L2
≥ c

2
‖u‖2

Hm − cN‖u‖2
H−N .

Proof : Notice that

Re
(
a(x ,Dx)u, u

)
L2

=
(

(a(x ,Dx) + a∗(x ,Dx))u, u
)
L2

=
(
Op(Re a(x , ξ))u, u

)
L2

+
(
C2m−1(x ,Dx)u, u

)
L2

where C2m−1(x , ξ) ∈ S2m−1.
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5. Inversion of PDO

Theorem 5.1: Let a ∈ Sm, satisfying |a(x , ξ)| ≥ C (1 + |ξ|)m ( we say
that a is elliptic ). Then there exists b1 and b2 ∈ S−m such that{

b1(x ,D)a(x ,D) = Id + R(x ,D)
a(x ,D)b2(x ,D) = Id + R ′(x ,D)

(5.1)

where R,R ′ ∈ op(S−∞).
b1(x ,D) ( resp. b2(x ,D)) is a left ( resp. right) parametrix of a(x ,D).

Proof: c1(x , ξ) = (a(x , ξ))−1 satisfies c1(x ,D)a(x ,D) = Id − r(x ,D) with
r(x , ξ) ∈ S−1. And one easily checks that the symbol q v

∑
k≥0 r

k is an
inverse modulo S−∞ of 1− r . Thus b1(x ,D) = q(x ,D) ◦ c1(x ,D) provides
a left parametrix of a(x ,D).
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Remarks.
1.We have the same result under the relaxed condition |a(x , ξ)| ≥ C |ξ|m
for |ξ| ≥ R.
2.Consider the case of elliptic differential operators.

Theorem 5.2: Let (x0, ξ0) ∈ Rn × Rn\0 and Vx0 × Γξ0
a conical

neighborhood of (x0, ξ0), and consider a ∈ Sm, satisfying
|a(x , ξ)| ≥ C (1 + |ξ|)m for (x , ξ) ∈ Vx0 × Γξ0

, |ξ| ≥ R ( a(x , ξ) is
microlocally elliptic at (x0, ξ0)). Then for all ψ(x) ∈ C∞0 (Vx0), ψ = 1 near
x0, χ(ξ) ∈ S0, supp(χ)⊂ Γξ0

, χ = 1 in a conical neighborhood of
ξ0 ∩ (|ξ| ≥ R), there exists b1, b2 ∈ S−m such that{

b1(x ,D)a(x ,D) = χ(D)ψ(x) + R(x ,D)
a(x ,D)b2(x ,D) = χ(D)ψ(x) + R ′(x ,D)

(5.2)

with R,R ′ ∈ S−∞.
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6. Wave front set and pseudo-differential operators

Proposition 6.1
If a(x , ξ) ∈ S−∞, then the pdo a(x ,D) continuously maps

S ′(Rn)→ C∞(∩S ′)

and
E ′(Rn)→ S(Rn)

We say that a(x ,D) is infinitely smoothing.
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Theorem 6.2: If a(x , ξ) ∈ Sm, then for all u ∈ S ′(Rn)
singsupp(a(x ,D)u) ⊂ singsuppu

WF (a(x ,D)u) ⊂WFu
WFs−m(a(x ,D)u) ⊂WFsu

(6.1)

We say that the pdo a(x ,D) is pseudo-local.
Finally, we give the elliptic microlocal regularity theorem.

Theorem 6.3: Microlocal elliptic regularity
Let u ∈ S ′(Rn), (x0, ξ0) ∈ Rn × Rn\0 and a ∈ Sm elliptic at (x0, ξ0), i.e.
verifying |a(x , ξ)| ≥ C (1 + |ξ|)m for x close to x0 , and ξ in a conical
neighborhood of ξ0, |ξ| ≥ R.

If (x0 , ξ0) /∈WF (a(x ,D)u) then (x0 , ξ0) /∈WFu.

If (x0 , ξ0) /∈WFs(a(x ,D)u)⇒ (x0 , ξ0) /∈WFs+mu.
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Corollary 6.4: Consider a differential operator P =
∑
|α|≤m aα(x)Dα with

coefficients in C∞(Rn), and u ∈ S ′(Rn).
Denote

CharP = {(x , ξ) ∈ Rn × Rn\0, pm(x , ξ) =
∑
|α|=m

aα(x)ξα = 0}

the characteristic set of P.
We get the inclusions

WF (Pu) ⊂WFu ⊂ CharP ∪WF (Pu)

WFs−m(Pu) ⊂WFsu ⊂ CharP ∪WFs−m(Pu)
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Example

Consider u ∈ L2((0,T )× Ω), ω ⊂ Ω and
�u = ∂2

t u −∆xu = 0 (0,T )× Ω

∂tu ∈ L2((0,T )× ω)

Then u ∈ H1
loc((0,T )× ω).

Indeed, Char(∂2
t −∆x) ∩ Char(∂t) = {0}.

τ2 − |ξ|2 = 0 and τ = 0 =⇒ τ = ξ = 0.

39 / 89



3- Propagation of singularities

The action of a pseudo-differential operator

does not ”increase” the wave front set
satisfies the microlocal elliptic regularity property

WF (Pu) ⊂WFu ⊂ CharP ∪WF (Pu)

with
CharP = {(x , ξ) ∈ Ω× Rn\0, p(x , ξ) = 0}

Here p is the principal symbol of P ( characteristic manifold of P ).

Goal: Localize more precisely the singularities of solutions of a
pseudo-differential equation of type Pu = f .

→These singularities live in Char(P) and are essentially carried by the
integral curves of the hamiltonian field Hp of p.
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1. Geometric Preliminaries

Consider p a real valued C∞ function on Rn × Rn.

Definition: The hamiltonian field or bicharacteristic field Hp of p, is the
vector field on Rn × Rn given by

Hp(x , ξ) =
n∑

j=1

(
∂p

∂ξj
(x , ξ)

∂

∂xj
− ∂p

∂xj
(x , ξ)

∂

∂ξj
) (1.1)

A hamiltonian curve or bicharacteristic curve of p is an integral curve of
Hp, i.e a maximal solution R ⊃ I 3 s → (x(s), ξ(s)) of the differential
system

·
xj =

∂p

∂ξj
(x , ξ),

·
ξj = − ∂p

∂xj
, x(0) = x0, ξ(0) = ξ0 (1.2)
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Remarks
1. The hamiltonian field Hp has an intrinsic definition.It is the only field in
R2n that satisfies

σ(V ,Hp(x , ξ)) = dp(x , ξ)V

for every V ∈ R2n, dp beeing the differential of p and σ the symplectic
form on T ∗Rn ' Rn ×Rn, i.e the exterior differential of the Liouville form.

2. Since Hpp = 0, p is constant along its bicharacteristic curve. In
particular, p = 0 on each curve issued from a point (x0, ξ0) s.t
p(x0, ξ0) = 0.
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Examples
1.Consider p(t, x ; τ , ξ) = τ2 − ξ2.

.
t = 2τ ,

.
x = −2ξ,

.
τ =

.
ξ = 0

The null bicharacteristic issued from (0,0;1,1) is given by
γ(s) = (2s,−2s; 1, 1).

2.For p(t, x ; τ , ξ) = τ4 − ξ4, we get γ(s) = (4s,−4s; 1, 1).

3. If p and q are two hamiltonians on Rn × Rn, with q elliptic, then the
null bicharacteristic curves of p and (pq) issued from the same point are
identical.
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2. Hörmander propagation theorem

Theorem 2.1 ( Hörmander ’71)
Let P be a pseudo-differential operator of order m in Rn; assume that P is
classic and with real principal symbol. Consider u ∈ D ′(Rn) s.t
Pu ∈ C∞(Rn) and Γ a bicharacteristic curve of P. Then we have

Γ ⊂WFu or Γ ∩WFu = ∅

In other words, WFu is invariant under the hamiltonian flow of P.

Corollary 2.2: Under assumptions of Theorem 2.1 , WFu is a union of
null bicharacteristics of P.

Valid on a domain Ω far from the boundary !
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Remark: The conclusion of Theorem 2.1 can be stated as follows: let Γ
be a bicharacteristic of P and ω a point of Γ. Then one has:
-If ω /∈WFu then Γ ∩WFu = ∅: propagation of the regularity.
-If ω ∈WFu then Γ ⊂WFu: propagation of the singularity.

Theorem 2.3: Sobolev wave front
Under assumptions of Theorem 2.1, for s ∈ R, we have

Γ ⊂WF su or Γ ∩WF su = ∅
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Proof of the theorem: a microlocal ODE

Assume P of order 1 and consider ω0, ω1 two points of the bicharacteristic
curve Γ, sufficiently close.
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Lemma 2.4
Take a0(x , ξ) ∈ S0(R2n). Then there exist a neighborhood W0 of ω0 , and
W1 of ω1 such that for every symbol cs(x , ξ) ∈ S s(R2n),
supp cs(x , ξ) ⊂W1, there exists a symbol q2s ∈ S2s(R2n), supported near
Γ, and r2s(x , ξ) ∈ S2s(R2n) supported in W0, such that:

Hp1q2s + a0q2s = |cs(x , ξ)|2 + r2s(x , ξ)
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Choose W1 sufficiently small and cs(x , ξ) elliptic at ω1. By assumption,
the quantity

I = ((P∗Q2s − Q2sP)u, u)L2 = (Q2su,Pu)L2 − (Pu,Q∗2su)L2

is bounded.

I = ((PQ2s − Q2sP)u + (P∗ − P)Q2su, u)L2

P∗ − P = a0(x ,D) + a−1(x ,D), a−j ∈ S−j

Therefore

I = ((PQ2s − Q2sP)u + a0(x ,D)Q2su, u)L2 + (a−1(x ,D)Q2su, u)L2

= ‖cs(x ,D)u‖2
L2 + (r2s(x ,D)u, u)L2 + (a−1(x ,D)Q2su, u)L2

is bounded if we assume u is Hs−1/2 microlocally near Γ..

→ Iterate the process.
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Application 1: Relaxed internal observation

�u = 0 , u|∂Ω = 0, u ∈ L2(]0,T [×Ω) and ∂tu ∈ L2(]0,T [×ω)

→ Prove global regularity u ∈ H1(]0,T [×Ω) under G.C.C.
→ Use Hörmander’s theorem (propagation up to the boundary).

WF 1u ⊂ {(t, x ; τ , ξ) ∈ T ∗(]0,T [×Ω)\0, τ2 = |ξ|2}.

WF 1u ∩ T ∗((0,T )× ω) ⊂ {(t, x ; τ , ξ), τ = 0}.

This yields WF 1u ∩ T ∗((0,T )× ω) = ∅, i.e u ∈ H1
loc(]0,T [×ω). Now,

take ρ0 = (t0, x0; τ0, ξ0) ∈]0, ε[×Ω× R1+n\0; the bicharacteristic Γ0

issued from this point necessarely enters in the region ]0,T [×ω, i.e in the
region where u is H1. Therefore, by propagation, we obtain that
ρ0 /∈WF 1u and u ∈ H1(]0,T [×Ω).
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Application 2 : GCC is a necessary for observability

We consider the Klein-Gordon equation

(K − G )


∂2
t u −∆xu + u = 0 in ]0,+∞[×M

(u(0), ∂tu(0)) = (u0, u1) ∈ H1 × L2

M Riemannian manifold, compact, connected, without boundary.
(Torus, sphere ...)

ω open subset of M

Assume (ω,T ) doesn’t satisfy GCC.
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There exists m0 = (x0, v0) ∈ TM such the geodesic γm0
satisfies{

γm0
(s), s ∈ [0,T ]

}
∩ ω = ∅.

Thus, there exists ξ0 ∈ T ∗x0
M such that

ρ̃0 = (0, x0, τ0 = |ξ0|x0 , ξ0) ∈ T ∗(R×M) satisfies{
Γρ̃0

(s), s ∈ [0,T ]
}
∩ T ∗(R× ω) = ∅.
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Consider the family of functions (in local coordinates ) :

v0ε(x) = ε1−n/4exp
( i
ε

(x .ξ0)
)
exp
(
− |x − x0|2

ε

)
, ε > 0

The sequence (v0ε)ε weakly converges to 0 in H1(Rn) and satisfies

‖v0ε‖H1 ∼ 1, for ε→ 0+.

For b = b(x ; ξ) ∈ S0(T ∗M) pseudo-differential symbol of order 0
such that (x0, ξ0) /∈ supp(b), we have for every s ≥ 1,

‖b(x ;Dx)v0ε‖Hs = o(1) for ε→ 0+.

Theorem : The point ρ = (0, x ; τ = |ξ|x , ξ) ∈ T ∗(R×M) \ 0 satisfies
ρ 6= ρ̃0 = (0, x0; τ0 = |ξ0|x , ξ0), we have for any s > 1, and we have

WF suε ∩ Γρ = ∅.
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PAuε = ∂2

t uε −∆Auε + uε = 0

uε(0, .) = v0ε, ∂tuε(0, .) = iλ(D)v0ε

where

λ(D) =
√
−∆A + 1

is a pseudo-differential operator classic, of order 1 , on M with principal
symbol σ1(λ)(x , ξ) = |ξ|x .

‖u0ε(0)‖2
H1 + ‖∂tu0ε(0)‖2

L2 ≈ 1 and lim
ε→0
‖∂tuε‖L2(0,T )×ω) = 0

∂tuε − iλ(D)uε = 0 uε(0, .) = v0ε

→ Follow backward any bicharacteristic curve issued from (0,T )× ω.
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Geometry at the boundary and generalized bicharacteristics

Hyperbolic

Glancing Diffractive
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Non diffractive

Gliding ray
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Geodesic coordinates
Ω a bounded domain of Rn with smooth boundary, m0 ∈ ∂Ω.

� = −∂2
t +

∑
1≤i ,j≤n

∂xjbij(x)∂xi

Near m0 one can find a system of geodesic local coordinates

x = (x1, x2, ...., xn) −→ y = (y1, y2, ...., yn)

such that

Ω = {(y1, y2, ...., yn), yn > 0}, ∂Ω = {(y1, y2, ...., yn−1, 0)} = {(y ′, 0)}

P = � = −∂2
t +

(
∂2
yn +

∑
1≤i ,j≤n−1

∂yjbij(y)∂yi

)
+ M0(y)∂yn + M1(y , ∂y ′)
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Come back to initial notation : (t, x) coordinates.

p = σ(�) = −ξ2
n +

(
τ2 −

∑
1≤i ,j≤n−1

aij(x)ξiξj

)
= −ξ2

n + r(x , τ , ξ′)

∑
1≤i ,j≤n−1

aij(x)ξiξj ≥ c0|ξ|2

We shall write

r0(x ′, τ , ξ′) = r(x , τ , ξ′)|xn=0 = r(x ′, 0, τ , ξ′)

p|xn=0 = σ(�)|xn=0 = −ξ2
n + r0(x ′, τ , ξ′)
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L = R× Ω, ∂L = R× ∂Ω

The compressed cotangent bundle of Melrose-Sjöstrand is given by

T ∗bL = T ∗L ∪ T ∗∂L

We recall the natural projection

π : T ∗Rn+1 |Ω→ T ∗bL (1)

and we equip T ∗bL with the induced topology.
We have a partition of T ∗(∂L) into elliptic, hyperbolic and glancing sets:

#
{
π−1(ρ) ∩ Char(P)

}
=


0 if ρ ∈ E
1 if ρ ∈ G
2 if ρ ∈ H

(2)
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In geodesic coordinates we have locally

L = {(t, x) ∈ Rn+1, xn > 0} and ∂L = {(t, x) ∈ Rn+1, xn = 0}.

−→ p|xn=0 = −ξ2
n + r0(x ′, τ , ξ′)

Take ρ = (t, x ′, ξ′) ∈ T ∗(∂L)

Thus one defines the elliptic, hyperbolic and glancing sets

E = {r0 < 0}, H = {r0 > 0}, G = {r0 = 0}.
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Definition

1 A point ρ ∈ T ∗∂L\0 is nondiffractive if ρ ∈ H or if ρ ∈ G and the
free bicharacteristic (exp sHp)ρ̃ passes over the complement of L for
arbitrarily small values of s, where ρ̃ is the unique point in
π−1(ρ) ∩ Char(P). (Gnd).

2 ρ ∈ T ∗∂L\0 is strictly gliding if ρ ∈ H or if ρ ∈ G and
H2
p(xn)(ρ) < 0.(Gsg ).

In this case, the projection on the (t, x)−space of the free
bicharacteristic ray γ issued from ρ leaves the boundary ∂L and
enters in T ∗(Rn+1 \ L) at ρ̃ = π−1(ρ).

3 ρ ∈ T ∗∂L\0 is strictly diffractive if ρ ∈ G and H2
p(xn)(ρ) > 0. (Gd).

This means that there exists ε > 0 such that (exp sHp)ρ̃ ∈ T ∗L for
0 < |s| < ε.
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Generalized bicharacteristics
A generalized bicharacteristic ray is a continuous map

R ⊃ I \ B 3 s 7→ γ(s) ∈ T ∗L ∪ G ⊂ T ∗Rn+1

where I is an interval of R, B is a set of isolated points.
For every s ∈ I \ B, γ(s) ∈ π(Char(P)) and γ is differentiable as a map
with values in T ∗Rn+1, and

1 If γ(s0) ∈ T ∗L ∪ Gd then γ̇(s0) = Hp(γ)(s0).

2 If γ(s0) ∈ G \ Gd then γ̇(s0) = HG
p (γ(s0)), where

HG
p = Hp + (H2

pxn/H
2
xnp)Hxn

3 For every s0 ∈ B, the two limits γ(s0 ± 0) exist and are the two
different points of the same hyperbolic fiber of the projection π.

Remark : If Hp has only finite order contact with ∂T ∗L, through every
ρ ∈ T ∗bL passes a unique maximal generalized bicharacteristic γ.
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Wave front up to the boundary

We work in geodesic coordinates.

L = {(t, x ′, xn), xn > 0} and ∂L = {(t, x ′, 0)}.

Take ρ = (t, x ′, τ , ξ′) ∈ T ∗(∂L) and assume that Pu = 0 in L.

We say that ρ /∈W s
b (u) iff for some ε > 0 small, there exists a tangential

pseudo-differential operator A = A(t, x ,Dt ,Dx ′) , of order 0, elliptic at ρ,
such that

Au ∈ Hs
(
Bε(π(ρ)) ∩ {xn > 0}

)
.

Remark : For ρ = (t, x , τ , ξ) ∈ T ∗L ( ie x ∈ Ω ), use the classical
definition of the wave front.
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Theorem ( Melrose -Sjöstrand ’78)
Consider u ∈ D′(R× Ω) solution to

�u = 0, in R× Ω, u|∂Ω = 0

Then Wb(u) is invariant under the hamiltonian flow of the wave operator .

If Γ is a generalized bicharacteristic curve of P, we have

Γ ⊂WFb(u) or Γ ∩WFb(u) = ∅

Remark
→ Other boundary conditions.
→ Similar result for WF s

b (u).
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Geometric Control Condition ( Boundary control )
Consider Γ ⊂ ∂Ω and T > 0.
The couple (Γ,T ) satisfies the geometric control condition (G.C.C), if
every generalized bicharacteristic of the wave symbol, issued at t = 0,
intersects the boundary subset Γ at a nondiffractive point, before the time
T .
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The Lifting Lemma of Bardos-Lebeau-Rauch

Consider a nondiffractive point ρ ∈ T ∗(∂L) and u ∈ D′(R×Ω) solution to

�u = 0, in R× Ω

Assume that

ρ /∈WF s(u|∂Ω) and ρ /∈WF s−1(∂nu|∂Ω)

Then ρ /∈WF s
bu.

→ Key point in B-L-R paper.
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4-Microlocal Defect Measures

A tool to analyze the lack of compactness of sequences weakly
converging to 0 in L2(Rn).

The first one is the old notion of ”defect measure”

The second was introduced independently by L.Tartar and P. Gérard
and called ” microlocal defect measure” ( mdm’s).

After, we give some examples that illustrate the precision of the des
m.d.m’s with respect to defect measures. And finally, for bounded
sequences ( in H1 or L2...) of solutions of partial differential equations, we
present two theorems.

Localization of the support of the measure

Propagation ...along the bicharacteristic flow.
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Let (uk) be a bounded sequence of L2(Rn) weakly converging to 0.

Definition: The defect measure of (uk) is the limit, in the sense of the
measures, of the sequence αk = |uk (x)|2 dx , where dx is the Lebesgue
measure on Rn.
This measure α is given by

〈α,ϕ〉 = lim
k→+∞

(ϕuk , uk) , ϕ ∈ C∞0 (Rn)

The microlocal defect measures generalize the notion of defect measures in
the sense that the test functions used in the limit above are not any more
functions of C∞0 (Rn) but 0-order pseudodifferential symbols
(essentially in the class S0(Rn × Rn)).
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Denote by Am the set of all classical pseudodifferential operators, of
order m and compact support in Rn.

If A ∈ Am, its symbol σ(A) can be taken in the form: σ(A) = ϕaψ ∈,
where a ∈ Sm(Rn × Rn) and ϕ,ψ ∈ C∞0 (Rn).

For a given A ∈ A0 and (uk) weakly converging to 0 in L2(Rn), the
sequence (Auk , uk) is bounded and thus admits a converging
subsequence: lim

kn
(Aukn , ukn) exists in C.

Moreover, writing A = A0 + A−1, where A−1 ∈ A−1 and σ(A0) is
homogeneous of order 0, we see that

lim
kn

((A0 + A−1)ukn , ukn) = lim
kn

(A0ukn , ukn)

This limit only depends on σ(A0) = σ0(A), since lim
k
‖A−1uk‖L2 = 0,

thanks to Riellich Lemma.
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By a diagonal extraction process, one can prove the existence of a
subsequence (ukn) such that (Aukn , ukn) converges for every A ∈ A0.

And consequently, the map

L : C∞0 (Rn × Sn−1) −→ C
σ0(A) 7−→ lim

kn
(Aukn , ukn)

is well defined.

The following proposition shows that L is positive and continuous for the
uniform topology.
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Lemma : Gärding inequality

Take A ∈ A0 and assume that its principal symbol is real and satisfies
σ0(A) ≥ 0. Then there exists C > 0 and for evrey δ > 0, there exists
Cδ > 0, such that, for every v ∈ L2

com(Rn),


Re (Av , v)L2 ≥ −δ ‖v‖2

L2 − Cδ ‖v‖2
H−1/2

|Im (Av , v)L2 | ≤ C ‖v‖2
H−1/2
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Proposition: For every A ∈ A0, we have :

1-
lim

k→+∞
|(Auk , uk)| ≤ lim

k→+∞
‖uk‖2

L2 sup
Rn×Sn−1

|σ0 (A)|

2- If moreover σ (A) ≥ 0, we obtain

lim
k→+∞

Im (Auk , uk) = 0 and lim
k→+∞

Re (Auk , uk) ≥ 0.
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Consequence: There exists a positive Radon measure µ on
S∗Rn = Rn × Sn−1 satisfying :

lim
kn→+∞

(Aukn , ukn) =

∫
Rn×Sn−1

σ0(A)(x , ξ)dµ, A ∈ A0

Definition: The measure µ is called the microlocal defect measure
attached to the sequence (ukn) .
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Examples

1. Sequences with concentration effect.
Let uk(x) = kβψ (kx) with ψ ∈ C∞0 (Rn) and β ∈ R. We have

‖uk‖2
L2 = k2β−n ‖ψ‖2

L2 , hence

* If β < n/2, uk −→ 0 in L2(Rn).
* If β > n/2, ‖uk‖L2 −→ +∞.
* If β = n/2, the sequence (uk) is bounded in L2.
In this case, we can prove that for A ∈ A0

(Auk , uk) −→ (2π)−n
∫
Rn

∣∣∣ψ̂ (ξ)
∣∣∣2 a (0, ξ) dξ , a = σ0 (A)

Therefore, the defect measure α of (uk) is given by

α = ‖ψ‖2
L2 δx=0
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Moreover, the set M(uk) of all microlocal defect measures associated to
this sequence is reduced to one single measure: (uk) is pure.

µ = δx=0 ⊗ h(ξ)dσ(ξ)

h(ξ) = (2π)−n
∫ +∞

0

∣∣∣ψ̂ (rξ)
∣∣∣2 rn−1dr
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2. Sequences with oscillation effect

a) uk(x) = ψ (x) e ikxξ0 where ψ ∈ C∞0 (Rn) and ξ0 6= 0.

For A ∈ A0,

(Auk , uk) −→
∫
Rn

a(x ,
ξ0

|ξ0|
) |ψ (x)|2 dx

α (u) = |ψ (x)|2 dx and µ = |ψ (x)|2 dx ⊗ δ ξ0
|ξ0|

Remark: In this example, the oscillation of (uk) leaded to the term
δξ0/|ξ0| in the expression of the mdm µ, while this term is completely
hidden in the defect measure α(u).
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Other question
Assume uk ⇀ 0 in L2(Rn) and supp(uk) ⊂ B(0,R).
Then for all fixed M > 0,∫

|ξ|≤M
|ûk(ξ)|2dξ = 0 for k →∞

This says that the lack of compactness occurs in high frequencies.

Question : At which scale ???

→ Semiclassical measures
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Properties of the mdm’s

P is a differential operator of order m, with principal symbol pm.

(uk) a bounded sequence in L2 (Rn), weakly converging to 0, pure.

µ is the mdm attached to (uk) .

Proposition 1: The following conditions are equivalent:
a) Puk → 0 in H−m (Rn) ( strong convergence),
b) Supp(µ) ⊂ Char (P) = p−1

m (0).

Consequence: If ω0 ∈ S∗(Rn × Rn) is such that pm(ω0) 6= 0, then
uk → 0 in L2 microlocally near ω0 ( strong convergence).
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Proof: Condition a) leads to∥∥∥Qm/2
Puk

∥∥∥
L2

= (QmPuk ,Puk)L2 → 0

where Qm is a pseudodifferential operator in the class A−2m, with
principal symbol

σ−2m(Qm) = |ξ|−2m for |ξ| ≥ 1.

But, by definition of the measure µ, this limit also satisfies

lim(QmPuk ,Puk) = lim(P∗QmPuk , uk)

=
∫
Rn×Sn−1 σ−2m(Qm) |pm(x , ξ)|2 dµ =

∫
Rn×Sn−1 |pm(x , ξ)|2 dµ

and this gives the desired result, i.e

supp(µ) ⊂ {(x , ξ), pm(x , ξ) = 0}.
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Proposition 2

Assume that

P is self adjoint, i.e P = P∗.
Puk → 0 in H1−m (Rn) ,

then one obtains Hpmµ = 0.

Proof: For evry Q ∈ A1−m with principal symbol σ(Q) = q. We have

lim ((QP − PQ)uk , uk)L2 = lim (Puk ,Q
∗uk)L2 − lim(Quk ,Puk)L2 = 0

And this gives ∫
Rn×Sn−1

{q, pm}(x , ξ)dµ = 0

which can be written in the form

〈µ,Hpmq〉 = 0

i.e
Hpmµ = 0
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Consequence

Denote by φs(x , ξ) =
(
x(s), ξ(s)

)
the flow of Hp, and set

φ̃s(x , ξ) =
(
x(s), ξ(s)/|ξ(s)|

)
For a symbol a(x , ξ) ∈ S0 homogeneous, we have

a ◦ φ̃s(x , ξ) = a ◦ φs(x , ξ)

d

ds
〈µ, a ◦ φ̃s〉 =

d

ds
〈µ, a ◦ φs〉 = 〈µ, d

ds
(a ◦ φs)〉 = 〈µ,Hpa〉 = 0

Thus 〈µ, a ◦ φ̃s〉 = cte, and for ω ∈ CharP ∩ S∗(R2n),

ω /∈ supp(µ)⇔ φ̃s(ω) /∈ supp(µ), ∀s

µ(φ̃s(B)) = µ(B), ∀B borelian set.
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Application 3 : Observability ( 2nd proof )

Here we use the mdm’s properties to establish the following observability
estimate, under GCC :

There exists a constant C > 0, such that inequality

‖u0‖2
H1

0
+ ‖u1‖2

L2 ≤ C

∫ T

0

∫
ω
|∂tu(t, x)|2 dxdt

holds for every (u0, u1) ∈ E = H1
0 (Ω)× L2(Ω) and u solution of system{

�Au = ∂2
t u −∆Au = 0 in R× Ω

u(0) = u0, ∂tu(0) = u1 in Ω

Here we can take A = (gij) of class C2.
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The proof relies on a contradiction argument. Assuming that the estimate
is false, one can find a sequence of data (uk0 , u

k
1 ) in H1

0 (Ω)× L2(Ω) such
that∥∥∥uk0∥∥∥2

H1
0

+
∥∥∥uk1∥∥∥ and

∫ T

0

∫
ω

∣∣∣∂tuk(t, x)
∣∣∣2 dxdt → 0 as k →∞

The sequence of solutions (uk) is then bounded in H1(]0,T [×Ω) and we
may assume that it is weakly convergent to 0 ( unique continuation ).
Therefore, if µ is a microlocal defect measure attached to (uk), we have
µ = 0 over (0,T )× ω, and by GCC and propagation for measures, µ = 0
everywhere. And this contradicts our condition on the initial data.
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Application 4 : Behavior of the HUM control operator

(W )


∂2
t u −∆Au = χ2

ω(x)f in ]0,T [×Ω
u = 0 on ]0,T [×∂Ω
(u(0), ∂tu(0)) = (u0, u1) ∈ H1

0 × L2

We look for f ∈ L2(]0,T [×Ω), s.t

(u(T ), ∂tu(T )) = (0, 0)

By HUM and under (G.C.C), we can take f solution of

(W ′)


∂2
t f −∆Af = 0 in ]0,T [×Ω

f = 0 on ]0,T [×∂Ω
(f (0), ∂t f (0)) = (f0, f1) ∈ L2 × H−1
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The map 
Λ : H1

0 × L2 → L2 × H−1

(u0, u1)→ (f0, f1)

is an isomorphism.

This is HUM optimal control operator.

85 / 89



Two problems

a) Control of smooth data

U0 = (u0, u1) ∈ Ek = Hk+1 × Hk , k ≥ 0

→ Does the control ΛU0 identify the data regularity ?

Remark: Bardos-Lebeau-Rauch : Observation estimates in each Hs(M).

b) Treatment of the frequencies
→ Does the control ΛU0 load the frequencies carrying the data ?
→ If U0 has only low frequencies, how are the high frequencies of ΛU0 ?
→ Does it handle individually the frequencies of the data U0 ?
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Theorem (D-Lebeau, 2009)

For A = (gij) of class C∞ and under (G.C.C),
a) For all s ≥ 0,

Λ : Hs+1 × Hs → Hs × Hs−1

is an isomorphism.

b) ∥∥∥Λψ(2−kD)− ψ(2−kD)Λ
∥∥∥ ≤ C2−k/2

c) If M is a Riemannian manifold without boundary, Λ is a pseudo
differential operator.

Here ∑
k≥0

ψ(2−kD) = Id

is the Littlewood-Paley decomposition.
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Behavior of the HUM control process

Take A = (gij) in C∞ , such that (ω,T ) satisfies (GCC).

Theorem

For any C∞- neighborhood U of A, there exist A′ ∈ U and an initial data
(u0, u1) , ||(u0, u1)||H1×L2 = 1, s.t the respective solutions u and v of

∂2
t u −∆Au = χ2

ω(x)fA

∂2
t v −∆A′v = χ2

ω(x)fA

(u(0), ∂tu(0)) = (v(0), ∂tv(0)) = (u0, u1) ∈ H1
0 × L2

satisfy
EA(u − v)(T ) = EA(v)(T ) ≥ 1/2

Moreover, for some CT > 0,

||fA − fA′ ||L2((0,T )×ω) ≥ CT
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Proof
→ Choose A′ = (1 + ε)A, ε 6= 0, small .

→ (GCC) also satisfied by (ω,T ) for the metric A′.

→ Take a sequence (uk0 , u
k
1 ) such that ||(∇Auk0 , uk1 )||L2×L2 = 1 and

uk0 , u
k
1 ) ⇀ (0, 0) in H1

0 × L2

→ f kA ⇀ 0 in L2((0,T )× Ω). Hence f kA → 0 in H−1((0,T )× Ω)
and

∂2
t f

k
A −∆Af

k
A = 0

EA′(v
k)(T )− EA′(v

k)(0) = 2

∫ T

0

∫
Ω
χ2
ω(x)f kg ∂tv

k dxdt −→ 0.

→ Tool : Localize the support of microlocal defect measures.

Remark : High frequency phenomena.
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