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Motivation : Observability estimates

o Pseudo-differential operators and wave front set

Propagation of singularities

@ Microlocal defect measures

Applications to observation of waves
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0?u— Ayu=0 in 0, 4+o00[xM
(W)
(u(0), 0:u(0)) = (up, u1) € H x L2

@ M Riemannian manifold, connected, compact, without boundary, with
dimension n.

o M = Q open subset of R”, connected, bounded, with smooth
boundary ( homogeneous Dirichlet condition ).

H = CO([Ov +OO[7 Hl) ﬁCl([ov +OO[7 L2)

Eu(t) = |[Vxu(t, )72y + 10cu(t, )lIf2iq) = Eu(0)
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wCQ, TcoQ, and T >0 (suitable)




The Goal : Observability estimate

Provide an observability estimate for the wave equation (W)
T
Eu(0) < c/ / |0u(t, x)|? dxdt (10)
0 w

.
Eu(0) < c /O /r Ontionlt, x)Pdodt (BO)
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The Goal : Observability estimate

Provide an observability estimate for the wave equation (W)

T
Eu(0) < c/ / |0u(t, x)|? dxdt (10)
0 w
-
Eu(0) < c / / Ontionlt, x)Pdodt (BO)
o Jr
Or at least

-
Eu(0) < c/ / |0eu(t, x) [ dxdt + c||(uo, u1)||72y g1 (R—10)
0 w

-
Eu(0) < C/ / |8nu‘3g(t,x)|2dadt+ c||(uo, u1)|[22, g1 (R— BO)
0 w
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Applications

— Exact controllability (HUM)
Given (up, u1), find a control vector f s.t the solution of

{ 0?u — Ayu = x,f
(u(0), 0:u(0)) = (uo, tn)

satisfies u(T) = 0:u(T) = 0.

— Stabilization
Eu(t) < Cexp " Eu(0)

for solutions of the damped equation
0%u — Aju+ a(x)0ru =0
— Inverse problems

Stability,....
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State of the art

@ 80" : Observability estimates under the -condition of J.L. Lions.
— Metric of class C!, multiplier techniques.

@ 90": Microlocal conditions and microlocal tools : Rauch -Taylor 74,
Bardos, Lebeau and Rauch 92', Burq and Gérard 97'.
The geometric control condition (G.C.C) : a microlocal condition,
stated in the (compressed) cotangent bundle ( Melrose-Sjostrand 78").
— Microlocal and pseudo-differential techniques : propagation of
wave front sets and supports of microlocal defect measures.
— This condition is optimal but....... a priori needs smooth metric
and smooth boundary.

@ 97" N. Burq : Boundary observability: C2-metric and C3-boundary.
o Fanelli-Zuazua 15" and D-Ervedoza 17'.
@ 22' Burg-D-Le Rousseau : Observability: C-metric and C?-boundary.
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Back to internal observability

)
(o, )] o < / / 1B u(t, x) Pt + cl| (o, )22,y
0 w

— Implies observability for high frequency data.
o = = = = 9acn



(ug,u1) € L2>x H™1 and we HY((0,T) x w)
\
(Uo, U1) € H! x 12
In other words

ue 2((0, T) x Q) and u e HY((0, T) x w) = u e HY((0,T) x Q)

—  Propagation of the H!- regularity

Remarks
a) This condition is necessary !
b) With wr = (0, T) x w,

ue Hi (wr) <= 0w € 2 (wT) <= Vyue 2 _(wT)

since u is a wave.
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Denote
E=H}x 12 E1=1>xHT,

and consider the following assumptions :

For every (ug,u1) € E_1 = L% x H71,

A1 0ue L?((0, T) x w) = (ug,u1) € E : propagation of the regularity
A2 0u=0in(0,T)xw=(up,u1) =0 : unique continuation .
Theorem

a) A 1 —> Relaxed observability

b) A1 + A 2 —> Observability
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Proof 1 : Bardos-Lebeau-Rauch (1992 )- Propagation of the WF set.

F= {(UO, u) € E_q, deu e L2((0,T) x w)}

.
(o, )} = /O / Oeul*+ullZ2(0,ryx)s [1(uo: un)lle = lluoly +llun 72
w

— F = E + both are Banach spaces + Banach isomorphisms theorem
— Conclude by contradiction.

Proof 2 : Burg-Lebeau- ( > 1995 ) - Microlocal defect measures.

— Contradiction argument and propagation of mdm's.
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To summarize:
We need a "tool” to propagate
a) The H! regularity from (0, T) x w to (0, T) X Q ........... WF- set.

b) The H-compactness from (0, T) x w to (0, T) x Q ...... microlocal
defect measures.

Geometric Control Condition
(Rauch-Taylor 74" , Bardos-Lebeau-Rauch 92")

GCC at time T : The couple (w, T) satisfies GCC if every geodesic issued
from M at {t = 0} and travelling with speed 1, enters in w before the
time T.
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The key problem

@ How do the regularity/singularity of solutions of a wave equation

travel 7
@ How can we track singularities 7 what is their path ?

@ Same questions for compactness/lack of compactness.
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1-The wave front set

1. Singular support of a distribution.

Let Q be an open subset of R", xo some point in Q and u € D'(Q2). The
following statements are equivalent and define the singular support of the
distribution u.

® xp ¢ singsuppu.
@ uis C* in a neighborhood of xp.

@ There exists a neighborhood V; of xp such that pu € C§°(V,,), for
every p € C§°(Vy)-

@ There exists ¢ € C5°(Q2), ¢ = 1 near xg such that pu € C5°(Q).
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Remarks

1. Actually, xo ¢ singsuppu iff
there exists V, : Vo € C§°(Vy,), @u is rapidly decaying

Vk € N,3C, > 0,(pu(é)] < G(1+ €))7, VEER” (1.1)
or equivalently
there exists ¢ € C§°(R2), ¢ = 1 near xg such that que @u is rapidly
decaying.

2. Consider u € D'(R?), u(x1,x2) = 0 if x; < 0 and 1 otherwise.

singsupp(u) = A = {(0,x2), x2 € R}

The singular support mixes the good and bad spectral directions.
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Examples.

1. In D'(R), singsupp H = singsupp dp = {0}.

2. In D'(R),singsupp u’ = singsupp u.

3. Forue D'(R") and P =3, < 3a(X)Dg, aa € C*°(R"), we have
singsupp(Pu) C singsupp(u)

4. For every elliptic differential operator P, with constant coefficients in

R", and every distribution v in R"”, we have the equality
singsupp(Pu) = singsupp(u)

We say that P is hypoelliptic.
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2. The wave front set

Definition: Conical set
A subset I' of Q x R"\{0} is conical if (x,§) € M'and A > 0= (x,\¢) € T.

Definition: The C° wave front

Let Q be an open subset of R” and u € D'(Q2). We say that a point

wo = (x0,&g) of 2 x R"\{0} = T*Q\{0} is not in the wave front of u and
we write wg ¢ WF(u) iff there exists a neighborhood V of xy, contained in
Q, a conical neighborhood W of &, in R"\{0}, s.t. for every p € C5°(V),

one has

VkeN,3C >0, |pu(¢)| < G(1+ ¢,  Veew (2.1)
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Remarks
@ For u e D'(Q2), WF(u) is a closed conical subset of Q x R"\{0}.

@ A point wo = (x0,&g) of 2 x R"\{0} is not in WF(u) if locally near
Xp, the distribution u has the behavior of a " C° function” near the
spectral direction &g.

© To analyze WF(u), we first localise the distribution u near xp, then
we study the behavior of @u in a conical neighborhood of the spectral
direction & : it is a microlocal analysis.
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Examples.

1.In R, we have WF(69) = WF(H) = {0} x R*.

2.We come back to the distribution u on R? given by the characteristic
function of the half-plan {(x1, x2), x1 > 0}.

WF(U) = {(X17X2;§17£2)7X1 = 0752 = 0}

o0 exp(ixt)
= ———dt R
u(x) /0 1+ e x €

u€ C®(R\ 0) since x“u € Ck+2(R), by integration by parts.

singsupp(u) = {0} and WFu = {(0,¢&), ¢ > 0}
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4. Fix a €]0,1[ and &y € S"71, and set

u(x) = Z k=24hp(k%x)exp(ikx.&g)

k>1

with ¢ € C§°(R") such that [ (x)dx =1, and ¢ > 0.

singsuppu = {0} and WF(u) = {(0, &), A > 0}.
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3. Properties of the C* wave front

In this section, we describe the action of differential operators on the wave
front and we give the relation between the wave front and the singular
support of a distribution.

Proposition 3.1
O If xp ¢ singsuppu, then for every £ € R™\ {0}, (x0,&) ¢ WF(u).
@ WF(u+ v)C WF(u)U WF(v).
Q If p € €, then WF(pu) C WF(u).
Q WF(0u/0x;) C WF(u).
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Theorem 3.2
For every u € D'(Q2) and every differential operator P with C*
coefficients in €2, we have the inclusion

WF (Pu) C WF(u) (3.1)

We say that differential operators satisfy the pseudolocal property.

Theorem 3.3: Denote by 7 the canonical projection

{ 71 THQ) = Q x RN {0} = Q
(x, &) = x

Then the following identity holds true
m(WF(u)) = singsuppu (3.2)
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4.Wave front H*®
Let s € R, Q open set in R", u € D'(Q) and wo = (x0,&) a point of
Q x RM\{0}.

Definition: We say that wo = (xo, &) is not in the wave front H® of u
and we write wg ¢ WF*(u) iff there exists a neighborhood V,, of xg,
contained in €2, a conical neighborhood W of &, in R"\{0}, such that for
every function ¢ € C§°(Vy,), we have

(1+[€P)*/%7u(€) € LX(W) (4.1)

Remark
If w ¢ WF(u) then w ¢ WF*(u), for every s € R.
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2-Pseudo-Differential Operators

@ The goal is to study the behavior of the wave front set of a
distribution u solution of a PDE  P(x,D)u=f € C.

@ For this purpose, we define an algebra of operators containing the
differential operators ( smooth coefficients ) and the "inverses” ( in
some sense to be precised ), of the elliptic operators.
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Let P =34 j<m 2 (x) Dy a differential operator of order m, with
coefficients in C*°(IR"). For every u € S(R")

PU(X) = Z|o¢|§m aa(x)Dfu(x)
= D jaj<m 3a(x)(27) 7" [ e tevu(€)de
= (2m)™" [ ™ p(x, )a(€)dE

where

px, &) = Y aa(x)E"

laf<m

This representation suggests that p(x, &) can be replaced by a more
general function living in a suitable class of symbols.
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1. Symbols

Definition: For m € R, we denote S™ = S™(R" x R") the set of
functions a € C*°(R"” x R") such that for all multi-idexes « and § € N
there exists a constant C,3 > 0 s.t.

Og0fa(x,€)| < Cap(L+ €)™, () R (1)

A function of §™ is called a symbol of order m.

We denote S~ =NS™ and ST = US™.
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Examples.

O If a(x, &) = 32| j<m 3a(X)§%, with aq € C(R"), bounded as well as
all its derivatives, then a(x, &) € S™. We say that a is a differential
symbol of order m.

If a(¢) € S(R"), then a € S—°

a(€) = (1 +[¢[*)m/> € ™.

If a(x,&) € S™ then 858?a(x,§) e §m-lal,

If a€ S™and b e S™then ab e S™.

If a(x, &) € S™ satisfies |a(x, )| > C(1+ [£])™ ( we say that a(x, &)
is elliptic ), then 1/a € S—™.

Attention: a(x, &) = e*¢ is not a symbol !

Denote £ = (¢/,£") and let a(x, &) € S™ independent of ¢”, then
a(x, &) is a polynomial symbol ( of order m) in &

©0 60600

© 0o

27/89



Proposition 1.1: Asymptotic expansion

Let (mj) be a decreasing sequence of real numbers, m; — —oo, and
aj(x,&) € S™.Then there exists a symbol a € $™, unique modulo S,
s.t. suppa C Usuppa; and

k—1
a—>» a€S™, keN (1.2)
j=0

a is called the asymptotic sum of the symbols a; and we denote a ~ )" a; .
In particular, a symbol a of order m is a classical symbol if a~ " a; ,
where the functions a; are homogeneous of order m — j.

Example : m;j = —j, j € N ( classic symbol ).
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2. Pseudo-differential Operators
For a € S™ we try to define an operator by the formula

a(x, D)u(x) = (27) " / e a(x, £)T(¢)de (2.1)

Theorem 2.1: For a € S™, the formula above defines a function of S(R")

and the map
S(R™") — S(R")
u— a(x,D)u

is continuous.
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Definition: The operator defined by the previous theorem is called
pseudo-differential operator of symbol a. It's denoted by op(a), a(x, D) or
A.

Remark: If u € Cg°(R"), then a(x, D)u € S(R"); it's not anymore
compactly supported since the formula uses the Fourier transform .
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3. Symbolic calculus .

Theorem 3.1 ( adjoint )
If a(x, D) € op(S™), then its adjoint a*(x, D) € op(S™) and one has

j—lal

a*(x, )~ > — 08 0a(x,€) (3.1)

aeN?

Consequently, a(x, D) is bounded from S’ to S'.

Attention: Here the duality is defined by : (Au,v) = (u, A*v) where
veS,veSand (uv)=(u,V)gs

Theorem 3.2 ( composition )
If a3 € S™ and a» € $™, then there exists b € S™ ™™ sych that
b(x, D) = ai1(x, D)ax(x, D). Moreover we get the asymptotic expansion

j—lal
b(x, &) ~ > —0F a1(x, )07 (%, €) (3.2)

«
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Remarks

1. The symbol b of formula (3.2) is denoted b = a;#ay.

2. If a; and a, are two differential symbols ( polynomials ), the asymptotic
formulae are exact.

3.In practice, one rarely needs the whole asymptotic expansion; the most
usefull terms are the first ones. This is summarized in the following corollary.

Corollary 3.3

If a1 € S™ and ap € §™, then

1. ai(x, D)ax(x, D) = (a1a2)(x, D) + R(x, D) where R(x,¢) € Sm+m—1,
2. [a1(x, D), az(x, D)] = C(x, D) + R(x, D) where

C(X,f) = %{al(x7§),32(X,f)} and R(X,f) c Smitm2—2

Here {a1, 2} = };(0a1/0¢;0a2/0x; — Oa1/0x;0a2/DE;) is the Poisson
bracket of a; and a».
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4. Action of Pdo’s on Sobolev spaces
Theorem 4.1: If a € SO, then a(x, D) is bounded on L2(R").

Hint : Consider the kernel + Symbolic calculus + Schur Lemma

Corollary 4.2: If 2 € S, then a(x, D) is bounded from H*(R") to
HS—m(Rn).

Conisder the pseudo-differential operator A” = op((1 + |€]?)"/?)
— Isomorphism between H" and L2.

a(x, D) = AN""(N°Ma(x, D)N°)N®
Remark: In this way, it's easy to see that a pseudo-differential operator A

in the class op(S~°°) is bounded from H* to H* for all s and t.
We say that A is infinitely smoothing.
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Theorem 4.2 : Garding inequality ( weak form )
Consider a symbol a(x,£) € $2™ and assume there exists ¢ > 0 such that

Rea(x,£) > c(1+[¢[*)™  for [¢|>R.

Then for every N > 0, there exists Cyy > 0 such that

Cc
lullfm — enllulF-w-

Re (a(x, Dy)u, u> p > 5

Proof : Notice that

Re (s(x. D) , = (a0 D) +5°(. Do w),

= (Op(Re a(x, &))u, u) g + <C2m—1(xv Dy)u, ”)

where Cop_1(x, &) € S2m~ 1

12
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5. Inversion of PDO

Theorem 5.1: Let a € S, satisfying |a(x,&)| > C(1+ [£])™ ( we say
that a is elliptic ). Then there exists by and by € S~ such that

{ bi(x,D)a(x, D) = Id + R(x, D) (5.1)
a(x, D)by(x, D) = Id + R'(x, D) '

where R, R’ € op(5~°).
bi(x, D) ( resp. ba(x, D)) is a left ( resp. right) parametrix of a(x, D).
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5. Inversion of PDO

Theorem 5.1: Let a € S, satisfying |a(x,&)| > C(1+ [£])™ ( we say
that a is elliptic ). Then there exists by and by € S~ such that

{ bi(x,D)a(x, D) = Id + R(x, D) (5.1)
a(x, D)by(x, D) = Id + R'(x, D) '

where R, R’ € op(5~°).
bi(x, D) ( resp. ba(x, D)) is a left ( resp. right) parametrix of a(x, D).

Proof: c1(x,&) = (a(x,€))! satisfies c1(x, D)a(x, D) = Id — r(x, D) with
r(x,€) € S1. And one easily checks that the symbol g «~ >, <, r¥ is an
inverse modulo S~ of 1 — r. Thus bi(x, D) = q(x, D) o c1(x, D) provides
a left parametrix of a(x, D).
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Remarks.

1.We have the same result under the relaxed condition |a(x,&)| > C |£|™
for [£] > R.

2.Consider the case of elliptic differential operators.

Theorem 5.2: Let (xo,&p) € R” x R™\0 and V,, x ¢, a conical
neighborhood of (xp, &), and consider a € S, satisfying

306, ) = C(1+ €)™ for (x,€) € Vig X Tey, [€] = R ((a(x,6) is
microlocally elliptic at (xo,&p)). Then for all ¢)(x) € C5°(Vy,), ¥ =1 near
xo, x(&) € S°, supp(x)C ¢,» X =1 in a conical neighborhood of

o N (€] > R), there exists by, by € S™™ such that

{ bi(x, D)a(x, D) = x(D)i(x) + R(x, D) (5.2)
a(x, D)by(x, D) = x(D)¥(x) + R'(x, D) '

with R, R’ € §—°°,
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6. Wave front set and pseudo-differential operators

Proposition 6.1
If a(x,&) € S~°°, then the pdo a(x, D) continuously maps

S'(R") = C=(NS)

and
E'(R") — S(R")

We say that a(x, D) is infinitely smoothing.
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Theorem 6.2: If a(x,&) € S™, then for all v € S'(R")

singsupp(a(x, D)u) C singsuppu
WF (a(x, D)u) C WFu (6.1)
WFs_m(a(x, D)u) C WFsu

We say that the pdo a(x, D) is pseudo-local.
Finally, we give the elliptic microlocal regularity theorem.

Theorem 6.3: Microlocal elliptic regularity

Let u € S'(R"), (x0,&p) € R” x R™\0 and a € S™ elliptic at (xo,&g), i.e.
verifying |a(x, &)| > C(1 + |£])™ for x close to xp , and £ in a conical
neighborhood of &y, [¢| > R.

o If (x0,&y) ¢ WF(a(x,D)u) then (xo ,&p) ¢ WFu.
o If (x0,&g) ¢ WFs(a(x,D)u) = (x0 ,&) & WFsimu.
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Corollary 6.4: Consider a differential operator P =}, , aa(x)D* with
coefficients in C>°(R"), and u € S'(R").
Denote

CharP = {(x,€) € R" x R™N0, pm(x,&) = Y aa(x)€" =0}

|a|l=m

the characteristic set of P.
We get the inclusions

WF(Pu) C WFu C CharP U WF(Pu)

WFs_m(Pu) C WFsu C CharP U WFs_p,(Pu)
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Example
Consider u € L?((0, T) xQ), w C Q and
{ Ou=8u—DAu=0 (0,T)xQ

Beu € L2((0, T) x w)

Then u € HE ((0, T) x w).
Indeed, Char(9? — A,) N Char(d;) = {0}.

=0 and 7=0 = T=¢(=0.
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3- Propagation of singularities

The action of a pseudo-differential operator
@ does not "increase” the wave front set
@ satisfies the microlocal elliptic regularity property

WF(Pu) C WFu C CharP U WF(Pu)

with
CharP = {(x, &) € Q x R™\0, p(x,&) = 0}

Here p is the principal symbol of P ( characteristic manifold of P ).

Goal: Localize more precisely the singularities of solutions of a
pseudo-differential equation of type Pu = f.

—These singularities live in Char(P) and are essentially carried by the
integral curves of the hamiltonian field H, of p.
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1. Geometric Preliminaries

Consider p a real valued C* function on R" x R".

Definition: The hamiltonian field or bicharacteristic field H, of p, is the
vector field on R" x R” given by

Z(% B 90) (D

J

A hamiltonian curve or bicharacteristic curve of p is an integral curve of
Hp, i.e a maximal solution R D /> s — (x(s),£(s)) of the differential

system
o
¢

(8 G=-g0 XO=XE0=€ (2

X; =
J .
Xj
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Remarks
1. The hamiltonian field H, has an intrinsic definition.lt is the only field in
R2" that satisfies

o(V, HP(Xa §)) = dp(x,§)V

for every V € R?", dp beeing the differential of p and o the symplectic
form on T*R™ ~ R™ x R", i.e the exterior differential of the Liouville form.

2. Since H,p =0, p is constant along its bicharacteristic curve. In
particular, p = 0 on each curve issued from a point (xp,&p) s.t

p(x0,&o) = 0.
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Examples
1.Consider p(t,x;7,£) = 72 — €2,

t=2r, x=-2¢, 7=£(=0

The null bicharacteristic issued from (0,0;1,1) is given by
~v(s) = (2s,—2s;1,1).

2.For p(t,x;7,&) = 7% — €%, we get v(s) = (4s, —4s;1,1).

3. If p and g are two hamiltonians on R" x R”, with g elliptic, then the
null bicharacteristic curves of p and (pgq) issued from the same point are
identical.
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2. Hormander propagation theorem

Theorem 2.1 ( Hormander '71)

Let P be a pseudo-differential operator of order m in R"; assume that P is
classic and with real principal symbol. Consider u € D'(R") s.t

Pu € C*>*(R") and I a bicharacteristic curve of P. Then we have

FrcWFu or TNWFu=9

In other words, WFu is invariant under the hamiltonian flow of P.

Corollary 2.2: Under assumptions of Theorem 2.1 , WFu is a union of
null bicharacteristics of P.

Valid on a domain Q far from the boundary !
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Remark: The conclusion of Theorem 2.1 can be stated as follows: let I
be a bicharacteristic of P and w a point of I'. Then one has:

-If w ¢ WFu then ' N WFu = @ propagation of the regularity.

-If w € WFu then ' C WFu: propagation of the singularity.

Theorem 2.3: Sobolev wave front
Under assumptions of Theorem 2.1, for s € R, we have

FrcWFu or TNnWFu=9
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Proof of the theorem: a microlocal ODE

Assume P of order 1 and consider wg,w; two points of the bicharacteristic
curve I, sufficiently close.
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Lemma 2.4

Take ag(x, &) € S°(R2"). Then there exist a neighborhood Wy of wp , and
Wi of wy such that for every symbol cs(x, &) € SS(R?"),

supp ¢s(x,&) C Wi, there exists a symbol gas € S?5(R2"), supported near
[, and rs(x, &) € S2(R?") supported in W, such that:

Hp, Gos + aoqos = ‘Cs(Xa§)|2 + ras(x; §)

\/\,1
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Choose W sufficiently small and cs(x, &) elliptic at w;. By assumption,
the quantity

I'=((P"Q2s — QasP)u, u) 2 = (Qasu, Pu) 2 — (Pu, Qou) 2
is bounded.
I = ((PQas — QasP)u+ (P* — P)Qasu, u) >
P* — P = ag(x, D) + a_1(x, D), a;cS
Therefore

I = ((PQ2S - Q25P)u + aO(Xa D)Q2su7 U)L2 + (afl(X7 D)Q25U7 U)L2
= ||CS(X7 D)u”%2 + (I’25(X, D)uv U)L2 =+ (afl(Xv D)Q2Su7 U)L2

is bounded if we assume u is HS~1/2 microlocally near T..

— lterate the process.
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Application 1: Relaxed internal observation

Ou=0 , wog=0, wuel?]0,T[xQ) and &ue [*(]0, T[xw)

— Prove global regularity u € H*(]0, T[x£) under G.C.C.
— Use Hormander's theorem (propagation up to the boundary).

WFu c {(t,x;7,€) € T*(]0, T[xQ)\0, 7% = |¢]}).

WFun T*((0, T) x w) C {(t,x;7,&), T =0}
This yields WFlun T*((0, T) x w) =0, i.e u € Hi_(]0, T[xw). Now,

loc
take po = (to, x0; 7o, &g) €]0,[xQ x R\ 0; the bicharacteristic g
issued from this point necessarely enters in the region |0, T[xw, i.e in the
region where u is H'. Therefore, by propagation, we obtain that

po & WFlu and u € HY(]O, T[xQ).
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Application 2 : GCC is a necessary for observability

We consider the Klein-Gordon equation

O?u—NAyu+u=0 in ]0, +o0[x M
(K—-G)
(u(0), 9:u(0)) = (uo, u1) € HY x L2

@ M Riemannian manifold, compact, connected, without boundary.
(Torus, sphere ...)

@ w open subset of M
@ Assume (w, T) doesn't satisfy GCC.
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There exists mo = (x0, o) € TM such the geodesic v, satisfies

{'ymo(s), se o, T]} Nw=0.
Thus, there exists §; € Ty M such that

Do = (0, X0, 70 = [£0]x0-&0) € T*(R x M) satisfies

{rpo(s), selo, T]} N TR x w) = 0.
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Consider the family of functions (in local coordinates ) :

voe(x) = 51*”/4exp(é(x.£0)> exp( - |X_€X0|2), e>0

o The sequence (v ). weakly converges to 0 in H'(IR") and satisfies
Vo || gr ~ 1, for e—07.

e For b = b(x; &) € S°(T*M) pseudo-differential symbol of order 0
such that (xo,&g) ¢ supp(b), we have for every s > 1,

||b(x; Dx)voe||s = o(1) for &—0F.

Theorem : The point p = (0,x; 7 = |{|x,&) € T*(R x M)\ 0 satisfies
p # po = (0,%0; 70 = |€0lx, o), we have for any s > 1, and we have

WFu.NT, = 0.
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PAUE :8$U5—AAU5+U5 :0

u:(0,.) = woe, 0ru:(0,.) = iN(D)wvoe

where

)\(D) =/ —AA +1
is a pseudo-differential operator classic, of order 1 , on M with principal
symbol a1(A)(x, &) = [£]x-

o (O)IIfn + [1Oetio= ()| ~ 1 and  lim [|0etcl 2(0,7)xw) = O

Oruz — iN(D)u: =0 u:(0,.) = voe

— Follow backward any bicharacteristic curve issued from (0, T) x w.
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Geometry at the boundary and generalized bicharacteristics

Hyperbolic

Glancing Diffractive

m]
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Non diffractive




Geodesic coordinates
Q a bounded domain of R” with smooth boundary, mgy € 99.

O=-07+ > 0Ogby(x)0

1<ij<n
Near mg one can find a system of geodesic local coordinates
x = (x1,X2, o0y Xn) —> ¥ = (V1, Y2, ooy ¥n)

such that

Q= {(y17y27 -~~7yn)7 Yn > 0}7 o1 = {(_)/17)/27 --.-7}/n—170)} = {(y/70)}

P=0= _8? + (8;%,, + Z 8}/jbij(}’)ayi) + Mo(y)9y, + Mi(y, 0y)
1<ij<n—1
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Come back to initial notation : (t, x) coordinates.

p=o(0)=—6+ (7—2 B Z aU(X)fffj) =& +r(x,7,¢)

1<ij<n—1
ST a(x)EE > wolél?
1<i,j<n—1

We shall write

rO(leTaé-/) = r(X)T7£/)|Xn:0 = r(XlaoaTaél)

p|Xn=0 = O—(D)‘ano = _5%7 + rO(Xlu T, 5,)
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L=RxQ, 9L=RxQ

The compressed cotangent bundle of Melrose-Sjostrand is given by
T;L=T"LUT*OL
We recall the natural projection
™ T'R™ |5 TiL (1)

and we equip T, L with the induced topology.
We have a partition of T*(9L) into elliptic, hyperbolic and glancing sets:

0 if peé&
#{fl(p) N Char(P)} ={ 1 if peg (2)
2 if peH
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In geodesic coordinates we have locally
L£={(t,x) eR™ x, >0} and 9L ={(t,x) e R™ x,=0}.

— Plxno = —$a+ (X, 7, &)

Take p = (t,x',¢') € T*(OL)

Thus one defines the elliptic, hyperbolic and glancing sets

& ={rn <0}, H = {r > 0}, G = {rn =0}.
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Definition
@ A point p € T*0L\0 is nondiffractive if p € H or if p € G and the
free bicharacteristic (exp sH,)p passes over the complement of £ for
arbitrarily small values of s, where p is the unique point in

77 1(p) N Char(P). (Gpna).

@ p e T*OL\O is strictly gliding if p € H or if p € G and
H3(xa)(p) < 0.(sg).
In this case, the projection on the (t, x)—space of the free
bicharacteristic ray ~y issued from p leaves the boundary 0L and
enters in T*(R™1\ £) at p = 77 1(p).

@ p e T*OL\O is strictly diffractive if p € G and H3(xa)(p) > 0. (Ga).

This means that there exists ¢ > 0 such that (expsH,)p € T*L for
0<s| <e.
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Generalized bicharacteristics
A generalized bicharacteristic ray is a continuous map

RDOI\B>srq(s)e T"LUG C TR™

where [ is an interval of R, B is a set of isolated points.
For every s € I\ B, y(s) € m(Char(P)) and v is differentiable as a map
with values in T*R"*1, and

Q If y(so) € T*L UGy then (s0) = Hp(7)(s0)-
@ If y(s0) € G\ Gqg then §(s) = H/f('y(so)), where
HS = Hy + (H2xn/ H2,p) H,

@ For every sp € B, the two limits y(sp £ 0) exist and are the two
different points of the same hyperbolic fiber of the projection .

Remark : If H, has only finite order contact with 0 T*L, through every
p € T;L passes a unique maximal generalized bicharacteristic .
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Wave front up to the boundary

We work in geodesic coordinates.

L={(t,x,xn), xn >0} and 9L ={(t,x',0)}.
Take p = (t,x',7,¢&') € T*(OL) and assume that Pu=0in L.
We say that p ¢ W (u) iff for some € > 0 small, there exists a tangential

pseudo-differential operator A = A(t, x, Dy, Dy/) , of order 0, elliptic at p,
such that

Au € HS(Bg(ﬂ(p)) N {x, > o}).

Remark : For p = (t,x,7,§) € T*L (ie x € Q ), use the classical
definition of the wave front.
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Theorem ( Melrose -Sjostrand '78)
Consider u € D'(R x Q) solution to

DUIO, in RXQ, U|aQIO

Then Wy(u) is invariant under the hamiltonian flow of the wave operator .

If " is a generalized bicharacteristic curve of P, we have

[ C WFy(u) or TN WFy(u)=2

Remark
—  Other boundary conditions.
—  Similar result for WF;(u).
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Geometric Control Condition ( Boundary control )

Consider ' C 92 and T > 0.
The couple (I, T) satisfies the geometric control condition (G.C.C), if
every generalized bicharacteristic of the wave symbol, issued at t =0,

intersects the boundary subset I at a nondiffractive point, before the time
T.




The Lifting Lemma of Bardos-Lebeau-Rauch

Consider a nondiffractive point p € T*(9L) and u € D'(R x Q) solution to
Ou=0, in RxQ

Assume that

p & WF*(upq) and p¢ WF(Opus0)
Then p ¢ WF}u.

—  Key point in B-L-R paper.
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4-Microlocal Defect Measures

@ A tool to analyze the lack of compactness of sequences weakly
converging to 0 in L2(R").
@ The first one is the old notion of "defect measure”

@ The second was introduced independently by L.Tartar and P. Gérard
and called " microlocal defect measure” ( mdm’s).

After, we give some examples that illustrate the precision of the des
m.d.m'’s with respect to defect measures. And finally, for bounded
sequences (in H* or L2...) of solutions of partial differential equations, we
present two theorems.

@ Localization of the support of the measure

@ Propagation ...along the bicharacteristic flow.
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Let (uk) be a bounded sequence of L2(R") weakly converging to 0.

Definition: The defect measure of (uy) is the limit, in the sense of the
measures, of the sequence o, = |uy (x)|? dx , where dx is the Lebesgue
measure on R".

This measure « is given by

<05790> = lim ((Puk7 uk)7 p e C(?O(Rn)

k—+o00

The microlocal defect measures generalize the notion of defect measures in
the sense that the test functions used in the limit above are not any more
functions of C3°(R") but 0-order pseudodifferential symbols
(essentially in the class SO(R” x R")).
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@ Denote by A™ the set of all classical pseudodifferential operators, of
order m and compact support in R".

o If Ae A™ its symbol o(A) can be taken in the form: o(A) = pay €,
where a € S™(R" x R") and ¢, ¢ € C3°(R").

e For a given A € A° and (uy) weakly converging to 0 in L?(R"), the
sequence (Aug, uk) is bounded and thus admits a converging
subsequence: Iikm(Aukn, uy,) exists in C.

e Moreover, writing A= Ay + A_1, where A_; € A~! and o(Ag) is
homogeneous of order 0, we see that

lim((Ao + A_1)uk,, uk,) = Iikm(Aouk,17 ug,)

n

This limit only depends on o(Ag) = 0o(A), since Iilzn |A—1ukl| 2 =0,

thanks to Riellich Lemma.
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By a diagonal extraction process, one can prove the existence of a
subsequence (uy,) such that (Auy,, uy,) converges for every A € A°.

And consequently, the map

L:CPR"x S™ 1) — C
Uo(A) — Iikm(Aukn, ukn)

is well defined.

The following proposition shows that L is positive and continuous for the
uniform topology.
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Lemma : Garding inequality

Take A € A° and assume that its principal symbol is real and satisfies
00(A) > 0. Then there exists C > 0 and for evrey § > 0, there exists
Cs > 0, such that, for every v € L2, (R"),

com

Re(Av,v)2 = ~8 ||| — Gy [vIEse

[Im (Av, v) 2| < C HVHiHﬂ

GYED



Proposition: For every A € A% we have :

1-

7im (Aue.u)l < Tim llucll?  su A
Jim [(Au u)| < lim | k||L2RnXSF;71\UO( )

2- If moreover o (A) > 0, we obtain

lim Im (Aug,ux) =0 and lim Re (Auk, ux) > 0.

k=00 k—+o00
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Consequence: There exists a positive Radon measure p on
S*R" = R" x S"! satisfying :

lim (Aukn,ukn)_/ oo(A)(x,8&)dp, Ac A°
Rrx Sn—1

kn——+00

Definition: The measure p is called the microlocal defect measure
attached to the sequence (uy,).
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1. Sequences with concentration effect.
Let uk(x) = kP (kx) with ¢ € C§°(R") and 3 € R. We have

||Uk||iz = k28-n ||1,ZJH%2 hence

*If B < n/2, uy — 0in L2(R").

*1F 3> n/2, [|ukll,2 — +oc.

* If 3= n/2, the sequence (uy) is bounded in L2.
In this case, we can prove that for A € A°

(Aug, ) —> (27r)"/

b 2000, a=00(A)

Therefore, the defect measure « of (u) is given by

2
a = [Pz 9x=o0
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Moreover, the set M(uy) of all microlocal defect measures associated to
this sequence is reduced to one single measure: (uk) is pure.

p = Ox=0® h(§)do(§)

W = o [ el
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2. Sequences with oscillation effect

a) uk(x) = ¥ (x) e™*% where ¢ € C§°(R") and &, # 0.

For A e A°,
=0 [ (%) dx

(Auk, Uk) — a(

Iéol

a(u)=[¢(x)Pdx and p=[y(x)? dX®5|4;o|
o

Remark: In this example, the oscillation of (uy) leaded to the term
550/|§0| in the expression of the mdm g, while this term is completely
hidden in the defect measure a(u).
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Other question
Assume ux — 0 in L2(R") and supp(ux) C B(0, R).
Then for all fixed M > 0,

/| |G (€)2dé =0 for k — 00
g<m

This says that the lack of compactness occurs in high frequencies.

Question : At which scale 777

— Semiclassical measures
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Properties of the mdm’s

@ P is a differential operator of order m, with principal symbol pp,.

o (uy) a bounded sequence in L% (R"), weakly converging to 0, pure.
@ 4 is the mdm attached to (ug).

Proposition 1: The following conditions are equivalent:
a) Puy — 0in H=™(R") ( strong convergence),
b) Supp(11) C Char (P) = p,*(0).

Consequence: If wg € S*(R"” x R") is such that p,(wg) # 0, then
ux — 0 in L2 microlocally near wq ( strong convergence).
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Proof: Condition a) leads to
HQm/2PUkHL2 = (QmPuk, Puk)/_z —0

where Q. is a pseudodifferential operator in the class A~2™, with
principal symbol

o _om(Qm) = €] 72™  for || > 1.

But, by definition of the measure p, this limit also satisfies
lim( QmPuk, Puyx) = lim(P*QmPu, uy)

= fanrsn1 T—2m(Qm) [Pm(x, E) dpt = [gn on1 |Pm(x. E) du

and this gives the desired result, i.e

supp() C {(x,€), pm(x,§) = 0}.
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Proposition 2

Assume that
@ P is self adjoint, i.e P = P*.
e Puy — 0in H=™(R"),
then one obtains H,, 1 = 0.

Proof: For evry @ € A~ with principal symbol o(Q) = g. We have
lim ((QP — PQ)uy, uk) 2 = lim (Puy, Q" uk);2 — lim(Quy, Pug);2 =0
And this gives
/Rnxsn_l{q,pm}(x,é)du =0

which can be written in the form

</”L’ Hpmq> = 0

Hp, ;o =0
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Consequence

Denote by ¢¢(x,&) = (x(s),f(s)) the flow of H,, and set

Bs(x,€) = (x(5),£(5)/I€(5)])
For a symbol a(x, ¢) € S° homogeneous, we have
ao ('Z)s(xvg) =ao ¢5(X7§)
d ~ d d
£<,uv ao ¢s> = £<M7 ao d)s> = <:u7 E(a 0 (Z)s)) = <,u7 Hpa> =0
Thus (i, a0 ¢,) = cte, and for w € CharP N S*(R?"),

w ¢ supp(p) < G5(w) ¢ supp(p), Vs

w(os(B)) = u(B), VB borelian set.



Application 3 : Observability ( 2" proof )

Here we use the mdm’s properties to establish the following observability
estimate, under GCC :

There exists a constant C > 0, such that inequality

)
ool + sl < € [ [ 10eue 0P
0 w

holds for every (up, 1) € E = H(Q) x L2(Q) and u solution of system

Oau=0?u—A u=0 inRxQ
u(0) = up, 0:u(0) = uy in Q

Here we can take A = (gj;) of class C2.
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The proof relies on a contradiction argument. Assuming that the estimate
is false, one can find a sequence of data (uf, uf) in H}(Q) x L?(Q) such
that

ol et] o0 [

The sequence of solutions (u¥) is then bounded in H(]0, T[xQ) and we
may assume that it is weakly convergent to 0 ( unique continuation ).
Therefore, if 41 is a microlocal defect measure attached to (u*), we have
=0 over (0, T) x w, and by GCC and propagation for measures, 11 = 0
everywhere. And this contradicts our condition on the initial data.

2
8tu tx)‘ dxdt — 0 as k — oo
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Application 4 : Behavior of the HUM control operator

u=0 on 0, T[x00

02u — A qu = X2 (x)f in 10, T[xQ
(W) {
(u(0), 0:u(0)) = (uo, u1) € HE x L2

We look for f € L2(]0, T[xQ), s.t

(u(T),0:u(T)) = (0,0)

By HUM and under (G.C.C), we can take f solution of
02f —Aaf =0 in ]0, T[xQ
(W)

f=0 on 10, T[x9Q
(£(0),0:(0)) = (fo, i) € L2 x H™*
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The map
AN:H x[2—[2xH!

(uo, u1) — (fo, f1)

is an isomorphism.

This is HUM optimal control operator.
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Two problems

a) Control of smooth data
Up = (up,u1) € Ex = H*1 x HX, k>0
— Does the control AUy identify the data regularity ?

Remark: Bardos-Lebeau-Rauch : Observation estimates in each H*(M).

b) Treatment of the frequencies

— Does the control AUy load the frequencies carrying the data 7

— If Ug has only low frequencies, how are the high frequencies of AUy ?
— Does it handle individually the frequencies of the data Up 7
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Theorem (D-Lebeau, 2009)

For A = (gjj) of class C*° and under (G.C.C),
a) For all s > 0,

A HSTE  HS — H® x H!
is an isomorphism.

b)
HM’(TkD) - ¢(2’kD)/\H < C27K/2

c) If M is a Riemannian manifold without boundary, N\ is a pseudo
differential operator.

Here

> (27*D) = Id

k>0

is the Littlewood-Paley decomposition.
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Behavior of the HUM control process

Take A = (gjj) in C* , such that (w, T) satisfies (GCC).

For any C*°- neighborhood U of A, there exist A’ € U and an initial data

(uo, 1) , |[(uo, u1)||ix2 = 1, s.t the respective solutions u and v of
OFu — A= x5 (x)fa
OFv — DA wv = x5 (x)fa
(u(0), 9:u(0)) = (v(0), d:v(0)) = (uo, u1) € Hg x L2
satisfy

Ea(u—v)(T) = Ea(v)(T) 2 1/2

Moreover, for some C+ > 0,

[fa — farlli2(0,7)xw) = CT

88 /89



Proof
— Choose A' = (1+¢)A, e#0, small.

— (GCCQ) also satisfied by (w, T) for the metric A’.

— Take a sequence (uf, ur) such that |[(V au§, uf)||2x2 = 1 and

uk uk) = (0,00  in HEx L2
—  fk—=0 in L2((0,T)x Q). Hence f§ =0 in H7((0,T) x Q)

and
DK — Aufk =0

-
Ex(V)(T) — Eg(vF)(0) =2 / / Xo(x) 0V  dxdt — 0.
JO Q
— Tool : Localize the support of microlocal defect measures.

Remark : High frequency phenomena.
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