Microlocal analysis and application to control of waves

Belhassen DEHMAN ${ }^{1}$

Recent advances on control theory of PDE systems

Bangalore

February 2024
${ }^{1}$ Faculty of Sciences of Tunis, Tunisia \& Enit-Lamsin

Outline

- Motivation: Observability estimates
- Pseudo-differential operators and wave front set
- Propagation of singularities
- Microlocal defect measures
- Applications to observation of waves

Setting

(W) $\left\{\begin{array}{l}\left.\partial_{t}^{2} u-\Delta_{x} u=0 \quad \text { in } \quad\right] 0,+\infty[\times M \\ \left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}\end{array}\right.$

- M Riemannian manifold, connected, compact, without boundary, with dimension n .
- $M=\Omega$ open subset of \mathbb{R}^{n}, connected, bounded, with smooth boundary (homogeneous Dirichlet condition).

$$
\begin{gathered}
H=\mathcal{C}^{0}\left(\left[0,+\infty\left[, H^{1}\right) \cap \mathcal{C}^{1}\left(\left[0,+\infty\left[, L^{2}\right)\right.\right.\right.\right. \\
E u(t)=\left\|\nabla_{x} u(t, .)\right\|_{L^{2}(\Omega)}^{2}+\left\|\partial_{t} u(t, .)\right\|_{L^{2}(\Omega)}^{2}=E u(0)
\end{gathered}
$$

$$
\omega \subset \Omega, \quad \Gamma \subset \partial \Omega, \quad \text { and } T>0(\text { suitable })
$$

The Goal : Observability estimate

Provide an observability estimate for the wave equation (W)

$$
\begin{gather*}
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t \tag{IO}\\
E u(0) \leq c \int_{0}^{T} \int_{\Gamma}\left|\partial_{n} u_{\mid \partial \Omega}(t, x)\right|^{2} d \sigma d t \tag{BO}
\end{gather*}
$$

The Goal : Observability estimate

Provide an observability estimate for the wave equation (W)

$$
\begin{gather*}
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t \tag{IO}\\
E u(0) \leq c \int_{0}^{T} \int_{\Gamma}\left|\partial_{n} u_{\mid \partial \Omega}(t, x)\right|^{2} d \sigma d t \tag{BO}
\end{gather*}
$$

Or at least

$$
\begin{gather*}
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t+c\left\|\left(u_{0}, u_{1}\right)\right\|_{L^{2} \times H^{-1}}^{2} \tag{R-IO}\\
E u(0) \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{n} u_{\mid \partial \Omega}(t, x)\right|^{2} d \sigma d t+c\left\|\left(u_{0}, u_{1}\right)\right\|_{L^{2} \times H^{-1}}^{2} \tag{R-BO}
\end{gather*}
$$

Applications

\rightarrow Exact controllability (HUM)
Given $\left(u_{0}, u_{1}\right)$, find a control vector f s.t the solution of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{x} u=\chi_{\omega} f \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right)
\end{array}\right.
$$

satisfies $u(T)=\partial_{t} u(T)=0$.
\rightarrow Stabilization

$$
E u(t) \leq C \exp ^{-\gamma t} E u(0)
$$

for solutions of the damped equation

$$
\partial_{t}^{2} u-\Delta_{x} u+a(x) \partial_{t} u=0
$$

\rightarrow Inverse problems
Stability,....

State of the art

- 80' : Observability estimates under the 「-condition of J.L. Lions. \rightarrow Metric of class C^{1}, multiplier techniques.
- 90': Microlocal conditions and microlocal tools: Rauch -Taylor 74', Bardos, Lebeau and Rauch 92', Burq and Gérard 97'. The geometric control condition (G.C.C) : a microlocal condition, stated in the (compressed) cotangent bundle (Melrose-Sjöstrand 78').
\rightarrow Microlocal and pseudo-differential techniques : propagation of wave front sets and supports of microlocal defect measures.
\rightarrow This condition is optimal but....... a priori needs smooth metric and smooth boundary.
- 97' N. Burq : Boundary observability: C^{2}-metric and C^{3}-boundary.
- Fanelli-Zuazua 15' and D-Ervedoza 17'.
- 22' Burq-D-Le Rousseau : Observability: C^{1}-metric and C^{2}-boundary.

Back to internal observability

$$
\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{1} \times L^{2}}^{2} \leq c \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t+c\left\|\left(u_{0}, u_{1}\right)\right\|_{L^{2} \times H^{-1}}^{2}
$$

\rightarrow Implies observability for high frequency data.

$$
\begin{gathered}
\left(u_{0}, u_{1}\right) \in L^{2} \times H^{-1} \quad \text { and } \quad u \in H^{1}((0, T) \times \omega) \\
\Downarrow \\
\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}
\end{gathered}
$$

In other words

$$
u \in L^{2}((0, T) \times \Omega) \text { and } u \in H^{1}((0, T) \times \omega) \Rightarrow u \in H^{1}((0, T) \times \Omega)
$$

$\rightarrow \quad$ Propagation of the H^{1} - regularity

Remarks
a) This condition is necessary !
b) With $\omega_{T}=(0, T) \times \omega$,

$$
u \in H_{l o c}^{1}\left(\omega_{T}\right) \Longleftrightarrow \partial_{t} u \in L_{l o c}^{2}\left(\omega_{T}\right) \Longleftrightarrow \nabla_{x} u \in L_{l o c}^{2}\left(\omega_{T}\right)
$$

since u is a wave.

Denote

$$
E=H_{0}^{1} \times L^{2}, \quad E_{-1}=L^{2} \times H^{-1}
$$

and consider the following assumptions :
For every $\left(u_{0}, u_{1}\right) \in E_{-1}=L^{2} \times H^{-1}$,

A 1. $\partial_{t} u \in L^{2}((0, T) \times \omega) \Longrightarrow\left(u_{0}, u_{1}\right) \in E$: propagation of the regularity

A 2. $\partial_{t} u=0$ in $(0, T) \times \omega \Longrightarrow\left(u_{0}, u_{1}\right)=0$: unique continuation.

Theorem

a) A $\mathbf{1} \Longrightarrow$ Relaxed observability
b) A $\mathbf{1}+\mathbf{A} \mathbf{2} \Longrightarrow$ Observability

Proof 1: Bardos-Lebeau-Rauch (1992)- Propagation of the WF set.

$$
\begin{gathered}
F=\left\{\left(u_{0}, u_{1}\right) \in E_{-1}, \partial_{t} u \in L^{2}((0, T) \times \omega)\right\} \\
\left\|\left(u_{0}, u_{1}\right)\right\|_{F}^{2}=\int_{0}^{T} \int_{\omega}\left|\partial_{t} u\right|^{2}+\|u\|_{L^{2}((0, T) \times \Omega)}^{2},\left\|\left(u_{0}, u_{1}\right)\right\|_{G}^{2}=\left\|u_{0}\right\|_{H_{0}^{1}}^{2}+\left\|u_{1}\right\|_{L^{2}}^{2}
\end{gathered}
$$

$\rightarrow F=E+$ both are Banach spaces + Banach isomorphisms theorem
\rightarrow Conclude by contradiction.

Proof 2 : Burq-Lebeau- (≥ 1995) - Microlocal defect measures.
\rightarrow Contradiction argument and propagation of mdm's.

To summarize:

We need a "tool" to propagate
a) The H^{1} regularity from $(0, T) \times \omega$ to $(0, T) \times \Omega \ldots \ldots \ldots . . W F^{1}$ - set.
b) The H^{1}-compactness from $(0, T) \times \omega$ to $(0, T) \times \Omega \ldots \ldots$ microlocal defect measures.

Geometric Control Condition

(Rauch-Taylor 74', Bardos-Lebeau-Rauch 92')
GCC at time T : The couple (ω, T) satisfies GCC if every geodesic issued from M at $\{t=0\}$ and travelling with speed 1 , enters in ω before the time T.

The key problem

- How do the regularity/singularity of solutions of a wave equation travel ?
- How can we track singularities ? what is their path ?
- Same questions for compactness/lack of compactness.

1-The wave front set

1. Singular support of a distribution.

Let Ω be an open subset of \mathbb{R}^{n}, x_{0} some point in Ω and $u \in D^{\prime}(\Omega)$. The following statements are equivalent and define the singular support of the distribution u.

- $x_{0} \notin$ singsuppu.
- u is C^{∞} in a neighborhood of x_{0}.
- There exists a neighborhood $V_{x_{0}}$ of x_{0} such that $\varphi u \in C_{0}^{\infty}\left(V_{x_{0}}\right)$, for every $\varphi \in C_{0}^{\infty}\left(V_{x_{0}}\right)$.
- There exists $\varphi \in C_{0}^{\infty}(\Omega), \varphi \equiv 1$ near x_{0} such that $\varphi u \in C_{0}^{\infty}(\Omega)$.

Remarks

1. Actually, $x_{0} \notin$ singsuppu iff there exists $V_{x_{0}}: \forall \varphi \in C_{0}^{\infty}\left(V_{x_{0}}\right), \widehat{\varphi u}$ is rapidly decaying

$$
\begin{equation*}
\forall k \in \mathbb{N}, \exists C_{k}>0,|\widehat{\varphi u}(\xi)| \leq C_{k}(1+|\xi|)^{-k}, \quad \forall \xi \in \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

or equivalently there exists $\varphi \in C_{0}^{\infty}(\Omega), \varphi \equiv 1$ near x_{0} such that que $\widehat{\varphi u}$ is rapidly decaying.
2. Consider $u \in D^{\prime}\left(\mathbb{R}^{2}\right), u\left(x_{1}, x_{2}\right)=0$ if $x_{1}<0$ and 1 otherwise.

$$
\operatorname{singsupp}(u)=\Delta=\left\{\left(0, x_{2}\right), x_{2} \in \mathbb{R}\right\}
$$

The singular support mixes the good and bad spectral directions.

Examples.

1. In $D^{\prime}(\mathbb{R})$, singsupp $H=$ singsupp $\delta_{0}=\{0\}$.
2. In $D^{\prime}(\mathbb{R})$,singsupp $u^{\prime}=\operatorname{singsupp} u$.
3. For $u \in D^{\prime}\left(\mathbb{R}^{n}\right)$ and $P=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha}, a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\operatorname{singsupp}(P u) \subset \operatorname{singsupp}(u)
$$

4. For every elliptic differential operator P, with constant coefficients in \mathbb{R}^{n}, and every distribution u in \mathbb{R}^{n}, we have the equality

$$
\operatorname{singsupp}(P u)=\operatorname{singsupp}(u)
$$

We say that P is hypoelliptic.
2. The wave front set

Definition: Conical set
A subset Γ of $\Omega \times \mathbb{R}^{n} \backslash\{0\}$ is conical if $(x, \xi) \in \Gamma$ and $\lambda>0 \Rightarrow(x, \lambda \xi) \in \Gamma$.

Definition: The C^{∞} wave front

Let Ω be an open subset of \mathbb{R}^{n} and $u \in D^{\prime}(\Omega)$. We say that a point $\omega_{0}=\left(x_{0}, \xi_{0}\right)$ of $\Omega \times \mathbb{R}^{n} \backslash\{0\}=T^{*} \Omega \backslash\{0\}$ is not in the wave front of u and we write $\omega_{0} \notin W F(u)$ iff there exists a neighborhood V of x_{0}, contained in Ω, a conical neighborhood W of ξ_{0} in $\mathbb{R}^{n} \backslash\{0\}$, s.t. for every $\varphi \in C_{0}^{\infty}(V)$, one has

$$
\begin{equation*}
\forall k \in \mathbb{N}, \exists C_{k}>0,|\widehat{\varphi u}(\xi)| \leq C_{k}(1+|\xi|)^{-k}, \quad \forall \xi \in W \tag{2.1}
\end{equation*}
$$

Remarks

(1) For $u \in D^{\prime}(\Omega), W F(u)$ is a closed conical subset of $\Omega \times \mathbb{R}^{n} \backslash\{0\}$.
(2) A point $\omega_{0}=\left(x_{0}, \xi_{0}\right)$ of $\Omega \times \mathbb{R}^{n} \backslash\{0\}$ is not in $W F(u)$ if locally near x_{0}, the distribution u has the behavior of a " C^{∞} function" near the spectral direction ξ_{0}.
(3) To analyze $W F(u)$, we first localise the distribution u near x_{0}, then we study the behavior of $\widehat{\varphi u}$ in a conical neighborhood of the spectral direction ξ_{0} : it is a microlocal analysis.

Examples.

1.In \mathbb{R}, we have $W F\left(\delta_{0}\right)=W F(H)=\{0\} \times \mathbb{R}^{*}$.
2. We come back to the distribution u on \mathbb{R}^{2} given by the characteristic function of the half-plan $\left\{\left(x_{1}, x_{2}\right), x_{1} \geq 0\right\}$.

$$
W F(u)=\left\{\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right), x_{1}=0, \xi_{2}=0\right\} .
$$

3.

$$
u(x)=\int_{0}^{+\infty} \frac{\exp (i x t)}{\left(1+t^{2}\right)^{2}} d t, \quad x \in \mathbb{R}
$$

$u \in C^{\infty}(\mathbb{R} \backslash 0)$ since $x^{k} u \in C^{k+2}(\mathbb{R})$, by integration by parts.

$$
\operatorname{singsupp}(u)=\{0\} \text { and } W F u=\{(0, \xi), \xi>0\}
$$

4. Fix $\alpha \in] 0,1\left[\right.$ and $\xi_{0} \in S^{n-1}$, and set

$$
u(x)=\sum_{k \geq 1} k^{-2} \psi\left(k^{\alpha} x\right) \exp \left(i k x . \xi_{0}\right)
$$

with $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\int \psi(x) d x=1$, and $\widehat{\psi} \geq 0$.

$$
\text { singsuppu }=\{0\} \quad \text { and } \quad W F(u)=\left\{\left(0, \lambda \xi_{0}\right), \lambda>0\right\} .
$$

3. Properties of the C^{∞} wave front

In this section, we describe the action of differential operators on the wave front and we give the relation between the wave front and the singular support of a distribution.

Proposition 3.1

(1) If $x_{0} \notin$ singsuppu, then for every $\xi \in \mathbb{R}^{n} \backslash\{0\},\left(x_{0}, \xi\right) \notin W F(u)$.
(2) $W F(u+v) \subset W F(u) \cup W F(v)$.
(3) If $\varphi \in C^{\infty}$, then $W F(\varphi u) \subset W F(u)$.
(9) $W F\left(\partial u / \partial x_{j}\right) \subset W F(u)$.

Theorem 3.2

For every $u \in D^{\prime}(\Omega)$ and every differential operator P with C^{∞} coefficients in Ω, we have the inclusion

$$
\begin{equation*}
W F(P u) \subset W F(u) \tag{3.1}
\end{equation*}
$$

We say that differential operators satisfy the pseudolocal property.

Theorem 3.3: Denote by π the canonical projection

$$
\left\{\begin{array}{c}
\pi: T^{*}(\Omega)=\Omega \times \mathbb{R}^{n} \backslash\{0\} \rightarrow \Omega \\
(x, \xi) \rightarrow x
\end{array}\right.
$$

Then the following identity holds true

$$
\begin{equation*}
\pi(W F(u))=\text { singsupp } u \tag{3.2}
\end{equation*}
$$

4.Wave front H^{s}

Let $s \in \mathbb{R}, \Omega$ open set in $\mathbb{R}^{n}, \quad u \in D^{\prime}(\Omega)$ and $\omega_{0}=\left(x_{0}, \xi_{0}\right)$ a point of $\Omega \times \mathbb{R}^{n} \backslash\{0\}$.

Definition: We say that $\omega_{0}=\left(x_{0}, \xi_{0}\right)$ is not in the wave front H^{s} of u and we write $\omega_{0} \notin W F^{s}(u)$ iff there exists a neighborhood $V_{x_{0}}$ of x_{0}, contained in Ω, a conical neighborhood W of ξ_{0} in $\mathbb{R}^{n} \backslash\{0\}$, such that for every function $\varphi \in C_{0}^{\infty}\left(V_{x_{0}}\right)$, we have

$$
\begin{equation*}
\left(1+|\xi|^{2}\right)^{s / 2} \widehat{\varphi u}(\xi) \in L^{2}(W) \tag{4.1}
\end{equation*}
$$

Remark

If $\omega \notin W F(u)$ then $\omega \notin W F^{s}(u)$, for every $s \in \mathbb{R}$.

2-Pseudo-Differential Operators

- The goal is to study the behavior of the wave front set of a distribution u solution of a PDE $\quad P(x, D) u=f \in C^{\infty}$.
- For this purpose, we define an algebra of operators containing the differential operators (smooth coefficients) and the "inverses" (in some sense to be precised), of the elliptic operators.

Let $P=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha}$ a differential operator of order m, with coefficients in $C^{\infty}\left(\mathbb{R}^{n}\right)$. For every $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{c}
P u(x)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha} u(x) \\
=\sum_{|\alpha| \leq m} a_{\alpha}(x)(2 \pi)^{-n} \int e^{i x \xi} \xi^{\alpha} \widehat{u}(\xi) d \xi \\
=(2 \pi)^{-n} \int e^{i x \xi} p(x, \xi) \widehat{u}(\xi) d \xi
\end{array}\right.
$$

where

$$
p(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}
$$

This representation suggests that $p(x, \xi)$ can be replaced by a more general function living in a suitable class of symbols.

1. Symbols

Definition: For $m \in \mathbb{R}$, we denote $S^{m}=S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ the set of functions $a \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that for all multi-idexes α and $\beta \in \mathbb{N}^{n}$, there exists a constant $C_{\alpha \beta}>0$ s.t.

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\alpha|}, \quad(x, \xi) \in \mathbb{R}^{2 n} \tag{1.1}
\end{equation*}
$$

A function of S^{m} is called a symbol of order m.

We denote $S^{-\infty}=\cap S^{m}$ and $S^{+\infty}=\cup S^{m}$.

Examples.

(1) If $a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}$, with $a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, bounded as well as all its derivatives, then $a(x, \xi) \in S^{m}$. We say that a is a differential symbol of order m.
(2) If $a(\xi) \in S\left(\mathbb{R}^{n}\right)$, then $a \in S^{-\infty}$
(3) $a(\xi)=\left(1+|\xi|^{2}\right)^{m / 2} \in S^{m}$.
(9) If $a(x, \xi) \in S^{m}$ then $\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi) \in S^{m-|\alpha|}$.
(5) If $a \in S^{m}$ and $b \in S^{m^{\prime}}$ then $a b \in S^{m+m^{\prime}}$.
(0) If $a(x, \xi) \in S^{m}$ satisfies $|a(x, \xi)| \geq C(1+|\xi|)^{m}$ (we say that $a(x, \xi)$ is elliptic), then $1 / a \in S^{-m}$.
(0) Attention: $a(x, \xi)=e^{i x \xi}$ is not a symbol!
(8) Denote $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ and let $a(x, \xi) \in S^{m}$ independent of $\xi^{\prime \prime}$, then $a(x, \xi)$ is a polynomial symbol (of order m) in ξ^{\prime}.

Proposition 1.1: Asymptotic expansion

Let $\left(m_{j}\right)$ be a decreasing sequence of real numbers, $m_{j} \rightarrow-\infty$, and $a_{j}(x, \xi) \in S^{m_{j}}$. Then there exists a symbol $a \in S^{m_{0}}$, unique modulo $S^{-\infty}$, s.t. suppa $\subset \cup^{\text {supp }}{ }^{2}$ and

$$
\begin{equation*}
a-\sum_{j=0}^{k-1} a_{j} \in S^{m_{k}}, \quad k \in \mathbb{N}^{*} \tag{1.2}
\end{equation*}
$$

a is called the asymptotic sum of the symbols a_{j} and we denote $a \sim \sum a_{j}$. In particular, a symbol a of order m is a classical symbol if $a \sim \sum a_{j}$, where the functions a_{j} are homogeneous of order $m-j$.

Example : $m_{j}=-j, \quad j \in \mathbb{N}$ (classic symbol $)$.

2. Pseudo-differential Operators

For $a \in S^{m}$, we try to define an operator by the formula

$$
\begin{equation*}
a(x, D) u(x)=(2 \pi)^{-n} \int e^{i x \xi} a(x, \xi) \widehat{u}(\xi) d \xi \tag{2.1}
\end{equation*}
$$

Theorem 2.1: For $a \in S^{m}$, the formula above defines a function of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and the map

$$
\left\{\begin{array}{c}
\mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
u \rightarrow a(x, D) u
\end{array}\right.
$$

is continuous.

Definition: The operator defined by the previous theorem is called pseudo-differential operator of symbol a. It's denoted by $\operatorname{op}(a), a(x, D)$ or A.

Remark: If $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then $a(x, D) u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$; it's not anymore compactly supported since the formula uses the Fourier transform \widehat{u}.
3. Symbolic calculus .

Theorem 3.1 (adjoint)
If $a(x, D) \in o p\left(S^{m}\right)$, then its adjoint $a^{*}(x, D) \in o p\left(S^{m}\right)$ and one has

$$
\begin{equation*}
a^{*}(x, \xi) \sim \sum_{\alpha \in \mathbb{N}^{n}} \frac{i^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} \partial_{x}^{\alpha} \bar{a}(x, \xi) \tag{3.1}
\end{equation*}
$$

Consequently, $a(x, D)$ is bounded from S^{\prime} to S^{\prime}.
Attention: Here the duality is defined by: $(A u, v)=\left(u, A^{*} v\right)$ where $u \in \mathcal{S}^{\prime}, v \in \mathcal{S}$ and $(u, v)=\langle u, \bar{v}\rangle_{\mathcal{S}^{\prime}, S}$

Theorem 3.2 (composition)

If $a_{1} \in S^{m_{1}}$ and $a_{2} \in S^{m_{2}}$, then there exists $b \in S^{m_{1}+m_{2}}$ such that $b(x, D)=a_{1}(x, D) a_{2}(x, D)$. Moreover we get the asymptotic expansion

$$
\begin{equation*}
b(x, \xi) \sim \sum_{\alpha} \frac{i^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} a_{1}(x, \xi) \partial_{x}^{\alpha} a_{2}(x, \xi) \tag{3.2}
\end{equation*}
$$

Remarks

1. The symbol b of formula (3.2) is denoted $b=a_{1} \# a_{2}$.
2. If a_{1} and a_{2} are two differential symbols (polynomials), the asymptotic formulae are exact.
3. In practice, one rarely needs the whole asymptotic expansion; the most usefull terms are the first ones. This is summarized in the following corollary.

Corollary 3.3

If $a_{1} \in S^{m_{1}}$ and $a_{2} \in S^{m_{2}}$, then

1. $a_{1}(x, D) a_{2}(x, D)=\left(a_{1} a_{2}\right)(x, D)+R(x, D)$ where $R(x, \xi) \in S^{m_{1}+m_{2}-1}$.
2. $\left[a_{1}(x, D), a_{2}(x, D)\right]=C(x, D)+R(x, D)$ where

$$
C(x, \xi)=\frac{1}{i}\left\{a_{1}(x, \xi), a_{2}(x, \xi)\right\} \quad \text { and } \quad R(x, \xi) \in S^{m_{1}+m_{2}-2}
$$

Here $\left\{a_{1}, a_{2}\right\}=\sum_{j}\left(\partial a_{1} / \partial \xi_{j} \partial a_{2} / \partial x_{j}-\partial a_{1} / \partial x_{j} \partial a_{2} / \partial \xi_{j}\right)$ is the Poisson bracket of a_{1} and a_{2}.

4. Action of Pdo's on Sobolev spaces

Theorem 4.1: If $a \in S^{0}$, then $a(x, D)$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$.
Hint : Consider the kernel + Symbolic calculus + Schur Lemma
Corollary 4.2: If $a \in S^{m}$, then $a(x, D)$ is bounded from $H^{s}\left(\mathbb{R}^{n}\right)$ to $H^{s-m}\left(\mathbb{R}^{n}\right)$.

Conisder the pseudo-differential operator $\Lambda^{r}=o p\left(\left(1+|\xi|^{2}\right)^{r / 2}\right)$
\rightarrow Isomorphism between H^{r} and L^{2}.

$$
a(x, D)=\Lambda^{m-s}\left(\Lambda^{s-m} a(x, D) \Lambda^{-s}\right) \Lambda^{s}
$$

Remark: In this way, it's easy to see that a pseudo-differential operator A in the class op $\left(S^{-\infty}\right)$ is bounded from H^{s} to H^{t} for all s and t. We say that A is infinitely smoothing.

Theorem 4.2: Gärding inequality (weak form)
Consider a symbol $a(x, \xi) \in S^{2 m}$, and assume there exists $c>0$ such that

$$
\operatorname{Re} a(x, \xi) \geq c\left(1+|\xi|^{2}\right)^{m} \quad \text { for } \quad|\xi| \geq R
$$

Then for every $N \geq 0$, there exists $C_{N}>0$ such that

$$
\operatorname{Re}\left(a\left(x, D_{x}\right) u, u\right)_{L^{2}} \geq \frac{c}{2}\|u\|_{H^{m}}^{2}-c_{N}\|u\|_{H^{-N}}^{2}
$$

Proof : Notice that

$$
\begin{aligned}
& \operatorname{Re}\left(a\left(x, D_{x}\right) u, u\right)_{L^{2}}=\left(\left(a\left(x, D_{x}\right)+a^{*}\left(x, D_{x}\right)\right) u, u\right)_{L^{2}} \\
& \quad=(\operatorname{Op}(\operatorname{Re} a(x, \xi)) u, u)_{L^{2}}+\left(C_{2 m-1}\left(x, D_{x}\right) u, u\right)_{L^{2}}
\end{aligned}
$$

where $C_{2 m-1}(x, \xi) \in S^{2 m-1}$.

5. Inversion of PDO

Theorem 5.1: Let $a \in S^{m}$, satisfying $|a(x, \xi)| \geq C(1+|\xi|)^{m}$ (we say that a is elliptic). Then there exists b_{1} and $b_{2} \in S^{-m}$ such that

$$
\left\{\begin{array}{l}
b_{1}(x, D) a(x, D)=I d+R(x, D) \tag{5.1}\\
a(x, D) b_{2}(x, D)=I d+R^{\prime}(x, D)
\end{array}\right.
$$

where $R, R^{\prime} \in o p\left(S^{-\infty}\right)$.
$b_{1}(x, D)\left(\right.$ resp. $\left.b_{2}(x, D)\right)$ is a left (resp. right) parametrix of $a(x, D)$.

5. Inversion of PDO

Theorem 5.1: Let $a \in S^{m}$, satisfying $|a(x, \xi)| \geq C(1+|\xi|)^{m}$ (we say that a is elliptic). Then there exists b_{1} and $b_{2} \in S^{-m}$ such that

$$
\left\{\begin{array}{l}
b_{1}(x, D) a(x, D)=I d+R(x, D) \tag{5.1}\\
a(x, D) b_{2}(x, D)=I d+R^{\prime}(x, D)
\end{array}\right.
$$

where $R, R^{\prime} \in o p\left(S^{-\infty}\right)$.
$b_{1}(x, D)\left(\right.$ resp. $\left.b_{2}(x, D)\right)$ is a left (resp. right) parametrix of $a(x, D)$.
Proof: $c_{1}(x, \xi)=(a(x, \xi))^{-1}$ satisfies $c_{1}(x, D) a(x, D)=I d-r(x, D)$ with $r(x, \xi) \in S^{-1}$. And one easily checks that the symbol $q \backsim \sum_{k \geq 0} r^{k}$ is an inverse modulo $S^{-\infty}$ of $1-r$. Thus $b_{1}(x, D)=q(x, D) \circ c_{1}(x, D)$ provides a left parametrix of $a(x, D)$.

Remarks.

1. We have the same result under the relaxed condition $|a(x, \xi)| \geq C|\xi|^{m}$ for $|\xi| \geq R$.
2. Consider the case of elliptic differential operators.

Theorem 5.2: Let $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \backslash 0$ and $V_{x_{0}} \times \Gamma_{\xi_{0}}$ a conical neighborhood of $\left(x_{0}, \xi_{0}\right)$, and consider $a \in S^{m}$, satisfying $|a(x, \xi)| \geq C(1+|\xi|)^{m}$ for $(x, \xi) \in V_{x_{0}} \times \Gamma_{\xi_{0}},|\xi| \geq R(a(x, \xi)$ is microlocally elliptic at $\left.\left(x_{0}, \xi_{0}\right)\right)$. Then for all $\psi(x) \in C_{0}^{\infty}\left(V_{x_{0}}\right), \psi=1$ near $x_{0}, \chi(\xi) \in S^{0}, \operatorname{supp}(\chi) \subset \Gamma_{\xi_{0}}, \chi=1$ in a conical neighborhood of $\xi_{0} \cap(|\xi| \geq R)$, there exists $b_{1}, b_{2} \in S^{-m}$ such that

$$
\left\{\begin{array}{l}
b_{1}(x, D) a(x, D)=\chi(D) \psi(x)+R(x, D) \tag{5.2}\\
a(x, D) b_{2}(x, D)=\chi(D) \psi(x)+R^{\prime}(x, D)
\end{array}\right.
$$

with $R, R^{\prime} \in S^{-\infty}$.

6. Wave front set and pseudo-differential operators

Proposition 6.1

If $a(x, \xi) \in S^{-\infty}$, then the pdo $a(x, D)$ continuously maps

$$
\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\cap \mathcal{S}^{\prime}\right)
$$

and

$$
\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

We say that $a(x, D)$ is infinitely smoothing.

Theorem 6.2: If $a(x, \xi) \in S^{m}$, then for all $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$

$$
\left\{\begin{array}{c}
\text { singsupp }(a(x, D) u) \subset \text { singsupp } u \tag{6.1}\\
W F(a(x, D) u) \subset W F u \\
W F_{s-m}(a(x, D) u) \subset W F_{s} u
\end{array}\right.
$$

We say that the pdo $a(x, D)$ is pseudo-local.
Finally, we give the elliptic microlocal regularity theorem.
Theorem 6.3: Microlocal elliptic regularity
Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right),\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \backslash 0$ and $a \in S^{m}$ elliptic at $\left(x_{0}, \xi_{0}\right)$, i.e. verifying $|a(x, \xi)| \geq C(1+|\xi|)^{m}$ for x close to x_{0}, and ξ in a conical neighborhood of $\xi_{0},|\xi| \geq R$.

- If $\left(x_{0}, \xi_{0}\right) \notin W F(a(x, D) u)$ then $\left(x_{0}, \xi_{0}\right) \notin W F u$.
- If $\left(x_{0}, \xi_{0}\right) \notin W F_{s}(a(x, D) u) \Rightarrow\left(x_{0}, \xi_{0}\right) \notin W F_{s+m} u$.

Corollary 6.4: Consider a differential operator $P=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ with coefficients in $C^{\infty}\left(\mathbb{R}^{n}\right)$, and $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Denote

$$
\text { CharP }=\left\{(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \backslash 0, \quad p_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}=0\right\}
$$

the characteristic set of P.
We get the inclusions

$$
\begin{gathered}
W F(P u) \subset W F u \subset C h a r P \cup W F(P u) \\
W F_{s-m}(P u) \subset W F_{s} u \subset C h a r P \cup W F_{s-m}(P u)
\end{gathered}
$$

Example

Consider $u \in L^{2}((0, T) \times \Omega), \quad \omega \subset \Omega$ and

$$
\left\{\begin{array}{c}
\square u=\partial_{t}^{2} u-\Delta_{x} u=0 \quad(0, T) \times \Omega \\
\partial_{t} u \in L^{2}((0, T) \times \omega)
\end{array}\right.
$$

Then $u \in H_{\text {loc }}^{1}((0, T) \times \omega)$.
Indeed, $\operatorname{Char}\left(\partial_{t}^{2}-\Delta_{x}\right) \cap \operatorname{Char}\left(\partial_{t}\right)=\{0\}$.

$$
\tau^{2}-|\xi|^{2}=0 \quad \text { and } \quad \tau=0 \quad \Longrightarrow \quad \tau=\xi=0 .
$$

3- Propagation of singularities

The action of a pseudo-differential operator

- does not "increase" the wave front set
- satisfies the microlocal elliptic regularity property

$$
W F(P u) \subset W F u \subset C h a r P \cup W F(P u)
$$

with

$$
\text { Char } P=\left\{(x, \xi) \in \Omega \times \mathbb{R}^{n} \backslash 0, p(x, \xi)=0\right\}
$$

Here p is the principal symbol of P (characteristic manifold of $P)$.

Goal: Localize more precisely the singularities of solutions of a pseudo-differential equation of type $P u=f$.
\rightarrow These singularities live in $\operatorname{Char}(P)$ and are essentially carried by the integral curves of the hamiltonian field H_{p} of p.

1. Geometric Preliminaries

Consider p a real valued C^{∞} function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

Definition: The hamiltonian field or bicharacteristic field H_{p} of p, is the vector field on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ given by

$$
\begin{equation*}
H_{p}(x, \xi)=\sum_{j=1}^{n}\left(\frac{\partial p}{\partial \xi_{j}}(x, \xi) \frac{\partial}{\partial x_{j}}-\frac{\partial p}{\partial x_{j}}(x, \xi) \frac{\partial}{\partial \xi_{j}}\right) \tag{1.1}
\end{equation*}
$$

A hamiltonian curve or bicharacteristic curve of p is an integral curve of H_{p}, i.e a maximal solution $\mathbb{R} \supset I \ni s \rightarrow(x(s), \xi(s))$ of the differential system

$$
\begin{equation*}
\dot{x}_{j}=\frac{\partial p}{\partial \xi_{j}}(x, \xi), \quad \dot{\xi}_{j}=-\frac{\partial p}{\partial x_{j}}, \quad x(0)=x^{0}, \xi(0)=\xi^{0} \tag{1.2}
\end{equation*}
$$

Remarks

1. The hamiltonian field H_{p} has an intrinsic definition. It is the only field in $\mathbb{R}^{2 n}$ that satisfies

$$
\sigma\left(V, H_{p}(x, \xi)\right)=d p(x, \xi) V
$$

for every $V \in \mathbb{R}^{2 n}$, $d p$ beeing the differential of p and σ the symplectic form on $T^{*} \mathbb{R}^{n} \simeq \mathbb{R}^{n} \times \mathbb{R}^{n}$, i.e the exterior differential of the Liouville form.
2. Since $H_{p} p=0, p$ is constant along its bicharacteristic curve. In particular, $p=0$ on each curve issued from a point $\left(x_{0}, \xi_{0}\right)$ s.t $p\left(x_{0}, \xi_{0}\right)=0$.

Examples

1. Consider $p(t, x ; \tau, \xi)=\tau^{2}-\xi^{2}$.

$$
\dot{t}=2 \tau, \quad \dot{x}=-2 \xi, \quad \dot{\tau}=\dot{\xi}=0
$$

The null bicharacteristic issued from $(0,0 ; 1,1)$ is given by $\gamma(s)=(2 s,-2 s ; 1,1)$.
2.For $p(t, x ; \tau, \xi)=\tau^{4}-\xi^{4}$, we get $\gamma(s)=(4 s,-4 s ; 1,1)$.
3. If p and q are two hamiltonians on $\mathbb{R}^{n} \times \mathbb{R}^{n}$, with q elliptic, then the null bicharacteristic curves of p and $(p q)$ issued from the same point are identical.

2. Hörmander propagation theorem

Theorem 2.1 (Hörmander '71)

Let P be a pseudo-differential operator of order m in \mathbb{R}^{n}; assume that P is classic and with real principal symbol. Consider $u \in D^{\prime}\left(\mathbb{R}^{n}\right)$ s.t $P u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and Γ a bicharacteristic curve of P. Then we have

$$
\Gamma \subset W F u \quad \text { or } \quad \Gamma \cap W F u=\varnothing
$$

In other words, WFu is invariant under the hamiltonian flow of P.
Corollary 2.2: Under assumptions of Theorem 2.1, WFu is a union of null bicharacteristics of P.

Valid on a domain Ω far from the boundary!

Remark: The conclusion of Theorem 2.1 can be stated as follows: let Γ be a bicharacteristic of P and ω a point of Γ. Then one has:
-If $\omega \notin W F u$ then $\Gamma \cap W F u=\varnothing$: propagation of the regularity.
-If $\omega \in W F u$ then $\Gamma \subset W F u$: propagation of the singularity.

Theorem 2.3: Sobolev wave front
Under assumptions of Theorem 2.1, for $s \in \mathbb{R}$, we have

$$
\Gamma \subset W F^{s} u \text { or } \Gamma \cap W F^{s} u=\varnothing
$$

Proof of the theorem: a microlocal ODE

Assume P of order 1 and consider ω_{0}, ω_{1} two points of the bicharacteristic curve Γ, sufficiently close.

Lemma 2.4

Take $a_{0}(x, \xi) \in S^{0}\left(\mathbb{R}^{2 n}\right)$. Then there exist a neighborhood W_{0} of ω_{0}, and W_{1} of ω_{1} such that for every symbol $c_{s}(x, \xi) \in S^{s}\left(\mathbb{R}^{2 n}\right)$,
supp $c_{s}(x, \xi) \subset W_{1}$, there exists a symbol $q_{2 s} \in S^{2 s}\left(\mathbb{R}^{2 n}\right)$, supported near Γ, and $r_{2 s}(x, \xi) \in S^{2 s}\left(\mathbb{R}^{2 n}\right)$ supported in W_{0}, such that:

$$
H_{p_{1}} q_{2 s}+a_{0} q_{2 s}=\left|c_{s}(x, \xi)\right|^{2}+r_{2 s}(x, \xi)
$$

Choose W_{1} sufficiently small and $c_{s}(x, \xi)$ elliptic at ω_{1}. By assumption, the quantity

$$
I=\left(\left(P^{*} Q_{2 s}-Q_{2 s} P\right) u, u\right)_{L^{2}}=\left(Q_{2 s} u, P u\right)_{L^{2}}-\left(P u, Q_{2 s}^{*} u\right)_{L^{2}}
$$

is bounded.

$$
\begin{gathered}
I=\left(\left(P Q_{2 s}-Q_{2 s} P\right) u+\left(P^{*}-P\right) Q_{2 s} u, u\right)_{L^{2}} \\
P^{*}-P=a_{0}(x, D)+a_{-1}(x, D), \quad a_{-j} \in S^{-j}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
I & =\left(\left(P Q_{2 s}-Q_{2 s} P\right) u+a_{0}(x, D) Q_{2 s} u, u\right)_{L^{2}}+\left(a_{-1}(x, D) Q_{2 s} u, u\right)_{L^{2}} \\
& =\left\|c_{s}(x, D) u\right\|_{L^{2}}^{2}+\left(r_{2 s}(x, D) u, u\right)_{L^{2}}+\left(a_{-1}(x, D) Q_{2 s} u, u\right)_{L^{2}}
\end{aligned}
$$

is bounded if we assume u is $H^{s-1 / 2}$ microlocally near Γ..
\rightarrow Iterate the process.

Application 1: Relaxed internal observation

$$
\square u=0 \quad, \quad u_{\mid \partial \Omega}=0, \quad u \in L^{2}(] 0, T[\times \Omega) \quad \text { and } \quad \partial_{t} u \in L^{2}(] 0, T[\times \omega)
$$

\rightarrow Prove global regularity $u \in H^{1}(] 0, T[\times \Omega)$ under G.C.C.
\rightarrow Use Hörmander's theorem (propagation up to the boundary).

$$
\begin{gathered}
W F^{1} u \subset\left\{(t, x ; \tau, \xi) \in T^{*}(] 0, T[\times \Omega) \backslash 0, \tau^{2}=|\xi|^{2}\right\} \\
W F^{1} u \cap T^{*}((0, T) \times \omega) \subset\{(t, x ; \tau, \xi), \tau=0\}
\end{gathered}
$$

This yields $W F^{1} u \cap T^{*}((0, T) \times \omega)=\emptyset$, i.e $u \in H_{l o c}^{1}(] 0, T[\times \omega)$. Now, take $\left.\rho_{0}=\left(t_{0}, x_{0} ; \tau_{0}, \xi_{0}\right) \in\right] 0, \varepsilon\left[\times \Omega \times \mathbb{R}^{1+n} \backslash 0\right.$; the bicharacteristic Γ_{0} issued from this point necessarely enters in the region $] 0, T[\times \omega$, i.e in the region where u is H^{1}. Therefore, by propagation, we obtain that $\rho_{0} \notin W F^{1} u$ and $u \in H^{1}(] 0, T[\times \Omega)$.

Application 2 : GCC is a necessary for observability

We consider the Klein-Gordon equation

$$
(K-G)\left\{\begin{array}{l}
\left.\partial_{t}^{2} u-\Delta_{x} u+u=0 \quad \text { in }\right] 0,+\infty[\times M \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right) \in H^{1} \times L^{2}
\end{array}\right.
$$

- M Riemannian manifold, compact, connected, without boundary. (Torus, sphere ...)
- ω open subset of M
- Assume (ω, T) doesn't satisfy GCC.

There exists $m_{0}=\left(x_{0}, v_{0}\right) \in T M$ such the geodesic $\gamma_{m_{0}}$ satisfies

$$
\left\{\gamma_{m_{0}}(s), s \in[0, T]\right\} \cap \omega=\emptyset
$$

Thus, there exists $\xi_{0} \in T_{x_{0}}^{*} M$ such that
$\tilde{\rho}_{0}=\left(0, x_{0}, \tau_{0}=\left|\xi_{0}\right|_{x_{0}}, \xi_{0}\right) \in T^{*}(\mathbb{R} \times M)$ satisfies

$$
\left\{\Gamma_{\tilde{\rho}_{0}}(s), s \in[0, T]\right\} \cap T^{*}(\mathbb{R} \times \omega)=\emptyset .
$$

Consider the family of functions (in local coordinates) :

$$
v_{0 \varepsilon}(x)=\varepsilon^{1-n / 4} \exp \left(\frac{i}{\varepsilon}\left(x \cdot \xi_{0}\right)\right) \exp \left(-\frac{\left|x-x_{0}\right|^{2}}{\varepsilon}\right), \quad \varepsilon>0
$$

- The sequence $\left(v_{0 \varepsilon}\right)_{\varepsilon}$ weakly converges to 0 in $H^{1}\left(\mathbb{R}^{n}\right)$ and satisfies

$$
\left\|v_{0 \varepsilon}\right\|_{H^{1}} \sim 1, \quad \text { for } \quad \varepsilon \rightarrow 0^{+}
$$

- For $b=b(x ; \xi) \in S^{0}\left(T^{*} M\right)$ pseudo-differential symbol of order 0 such that $\left(x_{0}, \xi_{0}\right) \notin \operatorname{supp}(b)$, we have for every $s \geq 1$,

$$
\left\|b\left(x ; D_{x}\right) v_{0 \varepsilon}\right\|_{H^{s}}=o(1) \quad \text { for } \quad \varepsilon \rightarrow 0^{+}
$$

Theorem : The point $\rho=\left(0, x ; \tau=|\xi|_{x}, \xi\right) \in T^{*}(\mathbb{R} \times M) \backslash 0$ satisfies $\rho \neq \tilde{\rho}_{0}=\left(0, x_{0} ; \tau_{0}=\left|\xi_{0}\right|_{x}, \xi_{0}\right)$, we have for any $s>1$, and we have

$$
W F^{s} u_{\varepsilon} \cap \Gamma_{\rho}=\emptyset
$$

$$
\left\{\begin{array}{c}
P_{A} u_{\varepsilon}=\partial_{t}^{2} u_{\varepsilon}-\Delta_{A} u_{\varepsilon}+u_{\varepsilon}=0 \\
u_{\varepsilon}(0, .)=v_{0 \varepsilon}, \quad \partial_{t} u_{\varepsilon}(0, .)=i \lambda(D) v_{0 \varepsilon}
\end{array}\right.
$$

where

$$
\lambda(D)=\sqrt{-\Delta_{A}+1}
$$

is a pseudo-differential operator classic, of order 1 , on M with principal symbol $\sigma_{1}(\lambda)(x, \xi)=|\xi|_{x}$.

$$
\begin{gathered}
\left\|u_{0 \varepsilon}(0)\right\|_{H^{1}}^{2}+\left\|\partial_{t} u_{0 \varepsilon}(0)\right\|_{L^{2}}^{2} \approx 1 \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0}\left\|\partial_{t} u_{\varepsilon}\right\|_{\left.L^{2}(0, T) \times \omega\right)}=0 \\
\partial_{t} u_{\varepsilon}-i \lambda(D) u_{\varepsilon}=0 \quad u_{\varepsilon}(0, .)=v_{0 \varepsilon}
\end{gathered}
$$

\rightarrow Follow backward any bicharacteristic curve issued from $(0, T) \times \omega$.

Geometry at the boundary and generalized bicharacteristics

Hyperbolic

Glancing Diffractive

Non diffractive

Gliding ray

Geodesic coordinates

Ω a bounded domain of \mathbb{R}^{n} with smooth boundary, $\quad m_{0} \in \partial \Omega$.

$$
\square=-\partial_{t}^{2}+\sum_{1 \leq i, j \leq n} \partial_{x_{j}} b_{i j}(x) \partial_{x_{i}}
$$

Near m_{0} one can find a system of geodesic local coordinates

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longrightarrow y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

such that

$$
\begin{aligned}
& \Omega=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right), y_{n}>0\right\}, \quad \partial \Omega=\left\{\left(y_{1}, y_{2}, \ldots, y_{n-1}, 0\right)\right\}=\left\{\left(y^{\prime}, 0\right)\right\} \\
& P=\square=-\partial_{t}^{2}+\left(\partial_{y_{n}}^{2}+\sum_{1 \leq i, j \leq n-1} \partial_{y_{j}} b_{i j}(y) \partial_{y_{i}}\right)+M_{0}(y) \partial_{y_{n}}+M_{1}\left(y, \partial_{y^{\prime}}\right)
\end{aligned}
$$

Come back to initial notation : (t, x) coordinates.

$$
\begin{gathered}
p=\sigma(\square)=-\xi_{n}^{2}+\left(\tau^{2}-\sum_{1 \leq i, j \leq n-1} a_{i j}(x) \xi_{i} \xi_{j}\right)=-\xi_{n}^{2}+r\left(x, \tau, \xi^{\prime}\right) \\
\sum_{1 \leq i, j \leq n-1} a_{i j}(x) \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}
\end{gathered}
$$

We shall write

$$
\begin{gathered}
r_{0}\left(x^{\prime}, \tau, \xi^{\prime}\right)=r\left(x, \tau, \xi^{\prime}\right)_{\mid x_{n}=0}=r\left(x^{\prime}, 0, \tau, \xi^{\prime}\right) \\
p_{\mid x_{n}=0}=\sigma(\square)_{\mid x_{n}=0}=-\xi_{n}^{2}+r_{0}\left(x^{\prime}, \tau, \xi^{\prime}\right)
\end{gathered}
$$

$$
\mathcal{L}=\mathbb{R} \times \Omega, \quad \partial \mathcal{L}=\mathbb{R} \times \partial \Omega
$$

The compressed cotangent bundle of Melrose-Sjöstrand is given by

$$
T_{b}^{*} \mathcal{L}=T^{*} \mathcal{L} \cup T^{*} \partial \mathcal{L}
$$

We recall the natural projection

$$
\begin{equation*}
\pi:\left.T^{*} \mathbb{R}^{n+1}\right|_{\bar{\Omega}} \rightarrow T_{b}^{*} \mathcal{L} \tag{1}
\end{equation*}
$$

and we equip $T_{b}^{*} \mathcal{L}$ with the induced topology. We have a partition of $T^{*}(\partial \mathcal{L})$ into elliptic, hyperbolic and glancing sets:

$$
\#\left\{\pi^{-1}(\rho) \cap \operatorname{Char}(P)\right\}=\left\{\begin{array}{lll}
0 & \text { if } & \rho \in \mathcal{E} \tag{2}\\
1 & \text { if } & \rho \in \mathcal{G} \\
2 & \text { if } & \rho \in \mathcal{H}
\end{array}\right.
$$

In geodesic coordinates we have locally

$$
\begin{aligned}
& \mathcal{L}=\left\{(t, x) \in \mathbb{R}^{n+1}, x_{n}>0\right\} \text { and } \quad \partial \mathcal{L}=\left\{(t, x) \in \mathbb{R}^{n+1}, x_{n}=0\right\} . \\
& \rightarrow \quad p_{\mid x_{n}=0}=-\xi_{n}^{2}+r_{0}\left(x^{\prime}, \tau, \xi^{\prime}\right)
\end{aligned}
$$

Take $\rho=\left(t, x^{\prime}, \xi^{\prime}\right) \in T^{*}(\partial \mathcal{L})$

Thus one defines the elliptic, hyperbolic and glancing sets

$$
\mathcal{E}=\left\{r_{0}<0\right\}, \quad \mathcal{H}=\left\{r_{0}>0\right\}, \quad \mathcal{G}=\left\{r_{0}=0\right\}
$$

Definition

(1) A point $\rho \in T^{*} \partial \mathcal{L} \backslash 0$ is nondiffractive if $\rho \in \mathcal{H}$ or if $\rho \in \mathcal{G}$ and the free bicharacteristic $\left(\exp s H_{p}\right) \widetilde{\rho}$ passes over the complement of $\overline{\mathcal{L}}$ for arbitrarily small values of s, where $\widetilde{\rho}$ is the unique point in $\pi^{-1}(\rho) \cap \operatorname{Char}(P) .\left(\mathcal{G}_{n d}\right)$.
(2) $\rho \in T^{*} \partial \mathcal{L} \backslash 0$ is strictly gliding if $\rho \in \mathcal{H}$ or if $\rho \in \mathcal{G}$ and $H_{p}^{2}\left(x_{n}\right)(\rho)<0 .\left(\mathcal{G}_{s g}\right)$.
In this case, the projection on the (t, x)-space of the free bicharacteristic ray γ issued from ρ leaves the boundary $\partial \mathcal{L}$ and enters in $T^{*}\left(\mathbb{R}^{n+1} \backslash \overline{\mathcal{L}}\right)$ at $\widetilde{\rho}=\pi^{-1}(\rho)$.
(3) $\rho \in T^{*} \partial \mathcal{L} \backslash 0$ is strictly diffractive if $\rho \in \mathcal{G}$ and $H_{p}^{2}\left(x_{n}\right)(\rho)>0$. $\left(\mathcal{G}_{d}\right)$.

This means that there exists $\varepsilon>0$ such that $\left(\operatorname{exps} H_{p}\right) \widetilde{\rho} \in T^{*} \mathcal{L}$ for $0<|s|<\varepsilon$.

Generalized bicharacteristics
A generalized bicharacteristic ray is a continuous map

$$
\mathbb{R} \supset I \backslash B \ni s \mapsto \gamma(s) \in T^{*} \mathcal{L} \cup \mathcal{G} \subset T^{*} \mathbb{R}^{n+1}
$$

where I is an interval of \mathbb{R}, B is a set of isolated points.
For every $s \in I \backslash B, \gamma(s) \in \pi(\operatorname{Char}(P))$ and γ is differentiable as a map with values in $T^{*} \mathbb{R}^{n+1}$, and
(1) If $\gamma\left(s_{0}\right) \in T^{*} \mathcal{L} \cup \mathcal{G}_{d}$ then $\dot{\gamma}\left(s_{0}\right)=H_{p}(\gamma)\left(s_{0}\right)$.
(2) If $\gamma\left(s_{0}\right) \in \mathcal{G} \backslash \mathcal{G}_{d}$ then $\dot{\gamma}\left(s_{0}\right)=H_{p}^{G}\left(\gamma\left(s_{0}\right)\right)$, where

$$
H_{p}^{G}=H_{p}+\left(H_{p}^{2} x_{n} / H_{x_{n}}^{2} p\right) H_{x_{n}}
$$

(3) For every $s_{0} \in B$, the two limits $\gamma\left(s_{0} \pm 0\right)$ exist and are the two different points of the same hyperbolic fiber of the projection π.
Remark: If H_{p} has only finite order contact with $\partial T^{*} \mathcal{L}$, through every $\rho \in T_{b}^{*} \mathcal{L}$ passes a unique maximal generalized bicharacteristic γ.

Wave front up to the boundary
We work in geodesic coordinates.

$$
\mathcal{L}=\left\{\left(t, x^{\prime}, x_{n}\right), x_{n}>0\right\} \quad \text { and } \quad \partial \mathcal{L}=\left\{\left(t, x^{\prime}, 0\right)\right\} .
$$

Take $\rho=\left(t, x^{\prime}, \tau, \xi^{\prime}\right) \in T^{*}(\partial \mathcal{L})$ and assume that $P u=0$ in \mathcal{L}.
We say that $\rho \notin W_{b}^{s}(u)$ iff for some $\varepsilon>0$ small, there exists a tangential pseudo-differential operator $A=A\left(t, x, D_{t}, D_{x^{\prime}}\right)$, of order 0 , elliptic at ρ, such that

$$
A u \in H^{s}\left(B_{\varepsilon}(\pi(\rho)) \cap\left\{x_{n}>0\right\}\right)
$$

Remark: For $\rho=(t, x, \tau, \xi) \in T^{*} \mathcal{L}($ ie $x \in \Omega)$, use the classical definition of the wave front.

Theorem (Melrose -Sjöstrand '78)

Consider $u \in \mathcal{D}^{\prime}(\mathbb{R} \times \Omega)$ solution to

$$
\square u=0, \quad \text { in } \quad \mathbb{R} \times \Omega, \quad u_{\mid \partial \Omega}=0
$$

Then $W_{b}(u)$ is invariant under the hamiltonian flow of the wave operator .
If Γ is a generalized bicharacteristic curve of P, we have

$$
\Gamma \subset W F_{b}(u) \text { or } \quad \Gamma \cap W F_{b}(u)=\varnothing
$$

Remark
$\rightarrow \quad$ Other boundary conditions.
$\rightarrow \quad$ Similar result for $W F_{b}^{s}(u)$.

Geometric Control Condition (Boundary control)

Consider $\Gamma \subset \partial \Omega$ and $T>0$.
The couple (Γ, T) satisfies the geometric control condition (G.C.C), if every generalized bicharacteristic of the wave symbol, issued at $t=0$, intersects the boundary subset Γ at a nondiffractive point, before the time T.

The Lifting Lemma of Bardos-Lebeau-Rauch

Consider a nondiffractive point $\rho \in T^{*}(\partial \mathcal{L})$ and $u \in \mathcal{D}^{\prime}(\mathbb{R} \times \Omega)$ solution to

$$
\square u=0, \quad \text { in } \quad \mathbb{R} \times \Omega
$$

Assume that

$$
\rho \notin W F^{s}\left(u_{\mid \partial \Omega}\right) \quad \text { and } \quad \rho \notin W F^{s-1}\left(\partial_{n} u_{\mid \partial \Omega}\right)
$$

Then $\rho \notin W F_{b}^{s} u$.
$\rightarrow \quad$ Key point in B-L-R paper.

4-Microlocal Defect Measures

- A tool to analyze the lack of compactness of sequences weakly converging to 0 in $L^{2}\left(\mathbb{R}^{n}\right)$.
- The first one is the old notion of "defect measure"
- The second was introduced independently by L.Tartar and P. Gérard and called " microlocal defect measure" (mdm's).

After, we give some examples that illustrate the precision of the des m.d.m's with respect to defect measures. And finally, for bounded sequences (in H^{1} or $L^{2} \ldots$) of solutions of partial differential equations, we present two theorems.

- Localization of the support of the measure
- Propagation ...along the bicharacteristic flow.

Let $\left(u_{k}\right)$ be a bounded sequence of $L^{2}\left(\mathbb{R}^{n}\right)$ weakly converging to 0 .
Definition: The defect measure of $\left(u_{k}\right)$ is the limit, in the sense of the measures, of the sequence $\alpha_{k}=\left|u_{k}(x)\right|^{2} d x$, where $d x$ is the Lebesgue measure on \mathbb{R}^{n}.
This measure α is given by

$$
\langle\alpha, \varphi\rangle=\lim _{k \rightarrow+\infty}\left(\varphi u_{k}, u_{k}\right), \quad \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

The microlocal defect measures generalize the notion of defect measures in the sense that the test functions used in the limit above are not any more functions of $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ but 0 -order pseudodifferential symbols (essentially in the class $S^{0}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$).

- Denote by \mathcal{A}^{m} the set of all classical pseudodifferential operators, of order m and compact support in \mathbb{R}^{n}.
- If $A \in \mathcal{A}^{m}$, its symbol $\sigma(A)$ can be taken in the form: $\sigma(A)=\varphi a \psi \in$, where $a \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and $\varphi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
- For a given $A \in \mathcal{A}^{0}$ and $\left(u_{k}\right)$ weakly converging to 0 in $L^{2}\left(\mathbb{R}^{n}\right)$, the sequence $\left(A u_{k}, u_{k}\right)$ is bounded and thus admits a converging subsequence: $\lim _{k_{n}}\left(A u_{k_{n}}, u_{k_{n}}\right)$ exists in \mathbb{C}.
- Moreover, writing $A=A_{0}+A_{-1}$, where $A_{-1} \in \mathcal{A}^{-1}$ and $\sigma\left(A_{0}\right)$ is homogeneous of order 0 , we see that

$$
\lim _{k_{n}}\left(\left(A_{0}+A_{-1}\right) u_{k_{n}}, u_{k_{n}}\right)=\lim _{k_{n}}\left(A_{0} u_{k_{n}}, u_{k_{n}}\right)
$$

This limit only depends on $\sigma\left(A_{0}\right)=\sigma_{0}(A)$, since $\lim _{k}\left\|A_{-1} u_{k}\right\|_{L^{2}}=0$, thanks to Riellich Lemma.

By a diagonal extraction process, one can prove the existence of a subsequence $\left(u_{k_{n}}\right)$ such that $\left(A u_{k_{n}}, u_{k_{n}}\right)$ converges for every $A \in \mathcal{A}^{0}$.

And consequently, the map

$$
\begin{aligned}
L: C_{0}^{\infty}\left(\mathbb{R}^{n} \times S^{n-1}\right) & \longrightarrow \mathbb{C} \\
\sigma_{0}(A) & \longmapsto \lim _{k_{n}}\left(A u_{k_{n}}, u_{k_{n}}\right)
\end{aligned}
$$

is well defined.

The following proposition shows that L is positive and continuous for the uniform topology.

Lemma : Gärding inequality

Take $A \in \mathcal{A}^{0}$ and assume that its principal symbol is real and satisfies $\sigma_{0}(A) \geq 0$. Then there exists $C>0$ and for evrey $\delta>0$, there exists $C_{\delta}>0$, such that, for every $v \in L_{\text {com }}^{2}\left(\mathbb{R}^{n}\right)$,

$$
\left\{\begin{array}{c}
\operatorname{Re}(A v, v)_{L^{2}} \geq-\delta\|v\|_{L^{2}}^{2}-C_{\delta}\|v\|_{H^{-1 / 2}}^{2} \\
\left|\operatorname{Im}(A v, v)_{L^{2}}\right| \leq C\|v\|_{H^{-1 / 2}}^{2}
\end{array}\right.
$$

Proposition: For every $A \in \mathcal{A}^{0}$, we have :

1-

$$
\overline{\lim }_{k \rightarrow+\infty}\left|\left(A u_{k}, u_{k}\right)\right| \leq \overline{\lim }_{k \rightarrow+\infty}\left\|u_{k}\right\|_{L^{2}}^{2} \sup _{\mathbb{R}^{n} \times S^{n-1}}\left|\sigma_{0}(A)\right|
$$

2- If moreover $\sigma(A) \geq 0$, we obtain

$$
\lim _{k \rightarrow+\infty} \operatorname{Im}\left(A u_{k}, u_{k}\right)=0 \quad \text { and } \quad \underset{k \rightarrow+\infty}{\underline{\lim }} \operatorname{Re}\left(A u_{k}, u_{k}\right) \geq 0
$$

Consequence: There exists a positive Radon measure μ on $S^{*} \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ satisfying :

$$
\lim _{k_{n} \rightarrow+\infty}\left(A u_{k_{n}}, u_{k_{n}}\right)=\int_{\mathbb{R}^{n} \times S^{n-1}} \sigma_{0}(A)(x, \xi) d \mu, \quad A \in \mathcal{A}^{0}
$$

Definition: The measure μ is called the microlocal defect measure attached to the sequence $\left(u_{k_{n}}\right)$.

Examples

1. Sequences with concentration effect.

Let $u_{k}(x)=k^{\beta} \psi(k x)$ with $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\beta \in \mathbb{R}$. We have
$\left\|u_{k}\right\|_{L^{2}}^{2}=k^{2 \beta-n}\|\psi\|_{L^{2}}^{2}$, hence

* If $\beta<n / 2, u_{k} \longrightarrow 0$ in $L^{2}\left(\mathbb{R}^{n}\right)$.
* If $\beta>n / 2,\left\|u_{k}\right\|_{L^{2}} \longrightarrow+\infty$.
* If $\beta=n / 2$, the sequence $\left(u_{k}\right)$ is bounded in L^{2}.

In this case, we can prove that for $A \in \mathcal{A}^{0}$

$$
\left(A u_{k}, u_{k}\right) \longrightarrow(2 \pi)^{-n} \int_{\mathbb{R}^{n}}|\widehat{\psi}(\xi)|^{2} a(0, \xi) d \xi, \quad a=\sigma_{0}(A)
$$

Therefore, the defect measure α of $\left(u_{k}\right)$ is given by

$$
\alpha=\|\psi\|_{L^{2}}^{2} \delta_{x=0}
$$

Moreover, the set $M\left(u_{k}\right)$ of all microlocal defect measures associated to this sequence is reduced to one single measure: $\left(u_{k}\right)$ is pure.

$$
\begin{aligned}
\mu & =\delta_{x=0} \otimes h(\xi) d \sigma(\xi) \\
h(\xi) & =(2 \pi)^{-n} \int_{0}^{+\infty}|\widehat{\psi}(r \xi)|^{2} r^{n-1} d r
\end{aligned}
$$

2. Sequences with oscillation effect

a) $u_{k}(x)=\psi(x) e^{i k x \xi_{0}}$ where $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\xi_{0} \neq 0$.

For $A \in \mathcal{A}^{0}$,

$$
\begin{gathered}
\quad\left(A u_{k}, u_{k}\right) \longrightarrow \int_{\mathbb{R}^{n}} a\left(x, \frac{\xi_{0}}{\left|\xi_{0}\right|}\right)|\psi(x)|^{2} d x \\
\alpha(u)=|\psi(x)|^{2} d x \quad \text { and } \quad \mu=|\psi(x)|^{2} d x \otimes \delta \frac{\xi_{0}}{\left|\xi_{0}\right|}
\end{gathered}
$$

Remark: In this example, the oscillation of $\left(u_{k}\right)$ leaded to the term $\delta_{\xi_{0} /\left|\xi_{0}\right|}$ in the expression of the $\mathrm{mdm} \mu$, while this term is completely hidden in the defect measure $\alpha(u)$.

Other question
Assume $u_{k} \rightharpoonup 0$ in $L^{2}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp}\left(u_{k}\right) \subset B(0, R)$.
Then for all fixed $M>0$,

$$
\int_{|\xi| \leq M}\left|\hat{u}_{k}(\xi)\right|^{2} d \xi=0 \quad \text { for } \quad k \rightarrow \infty
$$

This says that the lack of compactness occurs in high frequencies.
Question: At which scale ???
\rightarrow Semiclassical measures

Properties of the mdm's

- P is a differential operator of order m, with principal symbol p_{m}.
- $\left(u_{k}\right)$ a bounded sequence in $L^{2}\left(\mathbb{R}^{n}\right)$, weakly converging to 0 , pure.
- μ is the mdm attached to $\left(u_{k}\right)$.

Proposition 1: The following conditions are equivalent:
a) $P u_{k} \rightarrow 0$ in $H^{-m}\left(\mathbb{R}^{n}\right)$ (strong convergence),
b) $\operatorname{Supp}(\mu) \subset \operatorname{Char}(P)=p_{m}^{-1}(0)$.

Consequence: If $\omega_{0} \in S^{*}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is such that $p_{m}\left(\omega_{0}\right) \neq 0$, then $u_{k} \rightarrow 0$ in L^{2} microlocally near ω_{0} (strong convergence).

Proof: Condition a) leads to

$$
\left\|Q_{m / 2} P u_{k}\right\|_{L^{2}}=\left(Q_{m} P u_{k}, P u_{k}\right)_{L^{2}} \rightarrow 0
$$

where Q_{m} is a pseudodifferential operator in the class $\mathcal{A}^{-2 m}$, with principal symbol

$$
\sigma_{-2 m}\left(Q_{m}\right)=|\xi|^{-2 m} \quad \text { for }|\xi| \geq 1
$$

But, by definition of the measure μ, this limit also satisfies

$$
\begin{gathered}
\lim \left(Q_{m} P u_{k}, P u_{k}\right)=\lim \left(P^{*} Q_{m} P u_{k}, u_{k}\right) \\
=\int_{\mathbb{R}^{n} \times S^{n-1}} \sigma_{-2 m}\left(Q_{m}\right)\left|p_{m}(x, \xi)\right|^{2} d \mu=\int_{\mathbb{R}^{n} \times S^{n-1}}\left|p_{m}(x, \xi)\right|^{2} d \mu
\end{gathered}
$$

and this gives the desired result, i.e

$$
\operatorname{supp}(\mu) \subset\left\{(x, \xi), p_{m}(x, \xi)=0\right\}
$$

Proposition 2

Assume that

- P is self adjoint, i.e $P=P^{*}$.
- $P u_{k} \rightarrow 0$ in $H^{1-m}\left(\mathbb{R}^{n}\right)$,
then one obtains $H_{p_{m}} \mu=0$.
Proof: For evry $Q \in \mathcal{A}^{1-m}$ with principal symbol $\sigma(Q)=q$. We have
$\lim \left((Q P-P Q) u_{k}, u_{k}\right)_{L^{2}}=\lim \left(P u_{k}, Q^{*} u_{k}\right)_{L^{2}}-\lim \left(Q u_{k}, P u_{k}\right)_{L^{2}}=0$
And this gives

$$
\int_{\mathbb{R}^{n} \times S^{n-1}}\left\{q, p_{m}\right\}(x, \xi) d \mu=0
$$

which can be written in the form

$$
\left\langle\mu, H_{p_{m}} q\right\rangle=0
$$

i.e

$$
H_{p_{m}} \mu=0
$$

Consequence

Denote by $\phi_{s}(x, \xi)=(x(s), \xi(s))$ the flow of H_{p}, and set

$$
\tilde{\phi}_{s}(x, \xi)=(x(s), \xi(s) /|\xi(s)|)
$$

For a symbol $a(x, \xi) \in S^{0}$ homogeneous, we have

$$
\begin{gathered}
a \circ \tilde{\phi}_{s}(x, \xi)=a \circ \phi_{s}(x, \xi) \\
\frac{d}{d s}\left\langle\mu, a \circ \tilde{\phi}_{s}\right\rangle=\frac{d}{d s}\left\langle\mu, a \circ \phi_{s}\right\rangle=\left\langle\mu, \frac{d}{d s}\left(a \circ \phi_{s}\right)\right\rangle=\left\langle\mu, H_{p} a\right\rangle=0
\end{gathered}
$$

Thus $\left\langle\mu, a \circ \tilde{\phi}_{s}\right\rangle=c t e$, and for $\omega \in \operatorname{Char} P \cap S^{*}\left(\mathbb{R}^{2 n}\right)$,

$$
\begin{aligned}
& \omega \notin \operatorname{supp}(\mu) \Leftrightarrow \tilde{\phi}_{s}(\omega) \notin \operatorname{supp}(\mu), \quad \forall s \\
& \mu\left(\tilde{\phi}_{s}(B)\right)=\mu(B), \quad \forall B \text { borelian set. }
\end{aligned}
$$

Application 3 : Observability ($2^{\text {nd }}$ proof)

Here we use the mdm's properties to establish the following observability estimate, under GCC :

There exists a constant $C>0$, such that inequality

$$
\left\|u_{0}\right\|_{H_{0}^{1}}^{2}+\left\|u_{1}\right\|_{L^{2}}^{2} \leq C \int_{0}^{T} \int_{\omega}\left|\partial_{t} u(t, x)\right|^{2} d x d t
$$

holds for every $\left(u_{0}, u_{1}\right) \in E=H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and u solution of system

$$
\left\{\begin{array}{cc}
\square_{\mathcal{A}} u=\partial_{t}^{2} u-\Delta_{\mathcal{A}} u=0 & \text { in } \mathbb{R} \times \Omega \\
u(0)=u_{0}, \quad \partial_{t} u(0)=u_{1} & \text { in } \Omega
\end{array}\right.
$$

Here we can take $\mathcal{A}=\left(g_{i j}\right)$ of class \mathcal{C}^{2}.

The proof relies on a contradiction argument. Assuming that the estimate is false, one can find a sequence of data $\left(u_{0}^{k}, u_{1}^{k}\right)$ in $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ such that

$$
\left\|u_{0}^{k}\right\|_{H_{0}^{1}}^{2}+\left\|u_{1}^{k}\right\| \quad \text { and } \quad \int_{0}^{T} \int_{\omega}\left|\partial_{t} u^{k}(t, x)\right|^{2} d x d t \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

The sequence of solutions $\left(u^{k}\right)$ is then bounded in $H^{1}(] 0, T[\times \Omega)$ and we may assume that it is weakly convergent to 0 (unique continuation). Therefore, if μ is a microlocal defect measure attached to (u^{k}), we have $\mu=0$ over $(0, T) \times \omega$, and by GCC and propagation for measures, $\mu=0$ everywhere. And this contradicts our condition on the initial data.

Application 4 : Behavior of the HUM control operator

$$
(W)\left\{\begin{array}{l}
\left.\partial_{t}^{2} u-\Delta_{\mathcal{A}} u=\chi_{\omega}^{2}(x) f \quad \text { in } \quad\right] 0, T[\times \Omega \\
u=0 \\
\left(u(0), \partial_{t} u(0)\right)=\left(u_{0}, u_{1}\right) \in H_{0}^{1} \times L^{2}
\end{array}\right.
$$

We look for $f \in L^{2}(] 0, T[\times \Omega)$, s.t

$$
\left(u(T), \partial_{t} u(T)\right)=(0,0)
$$

By HUM and under (G.C.C), we can take f solution of

$$
\left(W^{\prime}\right)\left\{\begin{array}{l}
\left.\partial_{t}^{2} f-\Delta_{\mathcal{A}} f=0 \quad \text { in } \quad\right] 0, T[\times \Omega \\
f=0 \quad \text { on }] 0, T[\times \partial \Omega \\
\left(f(0), \partial_{t} f(0)\right)=\left(f_{0}, f_{1}\right) \in L^{2} \times H^{-1}
\end{array}\right.
$$

The map

$$
\left\{\begin{array}{c}
\Lambda: H_{0}^{1} \times L^{2} \rightarrow L^{2} \times H^{-1} \\
\left(u_{0}, u_{1}\right) \rightarrow\left(f_{0}, f_{1}\right)
\end{array}\right.
$$

is an isomorphism.

This is HUM optimal control operator.

Two problems

a) Control of smooth data

$$
U_{0}=\left(u_{0}, u_{1}\right) \in E_{k}=H^{k+1} \times H^{k}, \quad k \geq 0
$$

\rightarrow Does the control ΛU_{0} identify the data regularity?
Remark: Bardos-Lebeau-Rauch: Observation estimates in each $H^{s}(M)$.
b) Treatment of the frequencies
\rightarrow Does the control $\wedge U_{0}$ load the frequencies carrying the data?
\rightarrow If U_{0} has only low frequencies, how are the high frequencies of ΛU_{0} ?
\rightarrow Does it handle individually the frequencies of the data U_{0} ?

Theorem (D-Lebeau, 2009)

For $\mathcal{A}=\left(g_{i j}\right)$ of class \mathcal{C}^{∞} and under (G.C.C),
a) For all $s \geq 0$,

$$
\Lambda: H^{s+1} \times H^{s} \rightarrow H^{s} \times H^{s-1}
$$

is an isomorphism.
b)

$$
\left\|\Lambda \psi\left(2^{-k} D\right)-\psi\left(2^{-k} D\right) \Lambda\right\| \leq C 2^{-k / 2}
$$

c) If M is a Riemannian manifold without boundary, Λ is a pseudo differential operator.

Here

$$
\sum_{k \geq 0} \psi\left(2^{-k} D\right)=I d
$$

is the Littlewood-Paley decomposition.

Behavior of the HUM control process

Take $\mathcal{A}=\left(g_{i j}\right)$ in \mathcal{C}^{∞}, such that (ω, T) satisfies (GCC).

Theorem

For any \mathcal{C}^{∞} - neighborhood \mathcal{U} of \mathcal{A}, there exist $\mathcal{A}^{\prime} \in \mathcal{U}$ and an initial data $\left(u_{0}, u_{1}\right),\left\|\left(u_{0}, u_{1}\right)\right\|_{H^{1} \times L^{2}}=1$, s.t the respective solutions u and v of

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\Delta_{\mathcal{A}} u=\chi_{\omega}^{2}(x) f_{\mathcal{A}} \\
\partial_{t}^{2} v-\Delta_{\mathcal{A}^{\prime}} v=\chi_{\omega}^{2}(x) f_{\mathcal{A}} \\
\left(u(0), \partial_{t} u(0)\right)=\left(v(0), \partial_{t} v(0)\right)=\left(u_{0}, u_{1}\right) \in H_{0}^{1} \times L^{2}
\end{array}\right.
$$

satisfy

$$
E_{A}(u-v)(T)=E_{A}(v)(T) \geq 1 / 2
$$

Moreover, for some $C_{T}>0$,

$$
\left\|f_{\mathcal{A}}-f_{\mathcal{A}^{\prime}}\right\|_{L^{2}((0, T) \times \omega)} \geq C_{T}
$$

Proof

\rightarrow Choose $\mathcal{A}^{\prime}=(1+\varepsilon) \mathcal{A}, \quad \varepsilon \neq 0$, small.
\rightarrow (GCC) also satisfied by (ω, T) for the metric \mathcal{A}^{\prime}.
\rightarrow Take a sequence $\left(u_{0}^{k}, u_{1}^{k}\right)$ such that $\left\|\left(\nabla_{\mathcal{A}} u_{0}^{k}, u_{1}^{k}\right)\right\|_{L^{2} \times L^{2}}=1$ and

$$
\left.u_{0}^{k}, u_{1}^{k}\right) \rightharpoonup(0,0) \quad \text { in } \quad H_{0}^{1} \times L^{2}
$$

$\rightarrow \quad f_{\mathcal{A}}^{k} \rightharpoonup 0$ in $L^{2}((0, T) \times \Omega)$. Hence $f_{\mathcal{A}}^{k} \rightarrow 0$ in $H^{-1}((0, T) \times \Omega)$
and

$$
\begin{gathered}
\partial_{t}^{2} f_{\mathcal{A}}^{k}-\Delta_{\mathcal{A}} f_{\mathcal{A}}^{k}=0 \\
E_{\mathcal{A}^{\prime}}\left(v^{k}\right)(T)-E_{\mathcal{A}^{\prime}}\left(v^{k}\right)(0)=2 \int_{0}^{T} \int_{\Omega} \chi_{\omega}^{2}(x) f_{g}^{k} \partial_{t} v^{k} d x d t \longrightarrow 0
\end{gathered}
$$

\rightarrow Tool : Localize the support of microlocal defect measures.
Remark: High frequency phenomena.

