Recent advances on the Beilinson-Bloch-Kato conjecture

Yifeng Liu

Institute for Advanced Study in Mathematics
Zhejiang University

ICTS Program on Elliptic Curves and the Special Values of L-functions Bangalore, India

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V \simeq V^\vee(1)$.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V \simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to $\mathbb C$ and satisfy a functional equation centered at s=0.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s,V) = \dim \operatorname{H}^1_f(F,V) - \dim \operatorname{H}^0(F,V).$$

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H_f^1(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H_f^1(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$. When $\ell\nmid v$, $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H_f^1(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$. When $\ell\nmid v$, $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia. When $\ell\mid v$, if we assume for simplicity that V is crystalline at v, then $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are again crystalline.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H^1_f(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}_f^1(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}_f^1(F_v,V)$. When $\ell \nmid v$, $\mathrm{H}_f^1(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia. When $\ell \mid v$, if we assume for simplicity that V is crystalline at v, then $\mathrm{H}_f^1(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are again crystalline.

Example. Let A be an elliptic curve over F. Then the ℓ -adic rational Tate module $V := \mathrm{T}_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ is an example of polarized Galois representations considered above.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to $\mathbb C$ and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H^1_f(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$. When $\ell\nmid v$, $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia. When $\ell\mid v$, if we assume for simplicity that V is crystalline at v, then $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are again crystalline.

Example. Let A be an elliptic curve over F. Then the ℓ -adic rational Tate module $V:=\mathrm{T}_\ell(A)\otimes_{\mathbb{Z}_\ell}\mathbb{Q}_\ell$ is an example of polarized Galois representations considered above. We have $L(s,V)=L(s-1,A),\ \mathrm{H}^0(F,V)=0$ and that $\mathrm{H}^1_f(F,V)$ can be obtained as the rationalization of the inverse limit of the ℓ -power Selmer groups of A.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to $\mathbb C$ and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H^1_f(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$. When $\ell\nmid v$, $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia. When $\ell\mid v$, if we assume for simplicity that V is crystalline at v, then $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are again crystalline.

Example. Let A be an elliptic curve over F. Then the ℓ -adic rational Tate module $V:=\mathrm{T}_\ell(A)\otimes_{\mathbb{Z}_\ell}\mathbb{Q}_\ell$ is an example of polarized Galois representations considered above. We have $L(s,V)=L(s-1,A),\ \mathrm{H}^0(F,V)=0$ and that $\mathrm{H}^1_f(F,V)$ can be obtained as the rationalization of the inverse limit of the ℓ -power Selmer groups of A. In particular, the BBK conjecture recovers the BSD conjecture.

Let F be a number field, with \overline{F} its algebraic closure. Consider a continuous representation ρ of $\operatorname{Gal}(\overline{F}/F)$ on a finite-dimensional \mathbb{Q}_ℓ (or, more generally, a finite extension of \mathbb{Q}_ℓ)-vector space V that is "geometric", equipped with a polarization $V\simeq V^\vee(1)$. We can define an L-function L(s,V) associated with (ρ,V) , which is conjectured to have a meromorphic continuation to \mathbb{C} and satisfy a functional equation centered at s=0. The Beilinson–Bloch–Kato (BBK) conjecture predicts the vanishing order of L(s,V) at the center in terms of certain Galois cohomological invariants of V as follows:

$$\operatorname{ord}_{s=0} L(s, V) = \dim H_f^1(F, V) - \dim H^0(F, V).$$

Here, $\mathrm{H}^1_f(F,V)\subseteq\mathrm{H}^1(F,V)$ is the **Bloch–Kato Selmer group**, which is the subspace consisting of classes whose localization at every finite place v of F belongs to $\mathrm{H}^1_f(F_v,V)$. When $\ell\nmid v$, $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are trivial after restriction to the inertia. When $\ell\mid v$, if we assume for simplicity that V is crystalline at v, then $\mathrm{H}^1_f(F_v,V)$ classifies extensions of V by \mathbb{Q}_ℓ that are again crystalline.

Example. Let A be an elliptic curve over F. Then the ℓ -adic rational Tate module $V:=\mathrm{T}_\ell(A)\otimes_{\mathbb{Z}_\ell}\mathbb{Q}_\ell$ is an example of polarized Galois representations considered above. We have $L(s,V)=L(s-1,A),\ \mathrm{H}^0(F,V)=0$ and that $\mathrm{H}^1_f(F,V)$ can be obtained as the rationalization of the inverse limit of the ℓ -power Selmer groups of A. In particular, the BBK conjecture recovers the BSD conjecture. Due to the efforts of many mathematicians since 1980s, the BBK conjecture in this case is known when $F=\mathbb{Q}$ and $\max\{\mathrm{ord}_{s=0}\ L(s,V),\dim\mathrm{H}^1_t(\mathbb{Q},V)\}\leqslant 1$.

Rankin–Selberg product

Rankin-Selberg product

Now we take a positive integer n, and denote by $n_0 = 2r_0$ and $n_1 = 2r_1 + 1$ the unique member in $\{n, n+1\}$ that are even and odd, respectively.

3 / 19

Rankin-Selberg product

Now we take a positive integer n, and denote by $n_0 = 2r_0$ and $n_1 = 2r_1 + 1$ the unique member in $\{n, n+1\}$ that are even and odd, respectively. Consider two elliptic curves A_0 and A_1 over F. For i=0,1, put

$$T_{i,\ell} \coloneqq \operatorname{\mathsf{Sym}}^{n_i-1}_{\mathbb{Z}_\ell} \mathrm{T}_\ell(A_i), \quad T_\ell \coloneqq (T_{0,\ell} \otimes_{\mathbb{Z}_\ell} T_{1,\ell})(1-n), \quad V_\ell \coloneqq T_\ell \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell.$$

Rankin–Selberg product

Now we take a positive integer n, and denote by $n_0 = 2r_0$ and $n_1 = 2r_1 + 1$ the unique member in $\{n, n+1\}$ that are even and odd, respectively. Consider two elliptic curves A_0 and A_1 over F. For i=0,1, put

$$T_{i,\ell} \coloneqq \operatorname{\mathsf{Sym}}_{\mathbb{Z}_\ell}^{n_i-1} \mathrm{T}_\ell(A_i), \quad T_\ell \coloneqq (T_{0,\ell} \otimes_{\mathbb{Z}_\ell} T_{1,\ell})(1-n), \quad V_\ell \coloneqq T_\ell \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell.$$

Then V_ℓ is a continuous \mathbb{Q}_ℓ -linear representation of $\operatorname{Gal}(\overline{F}/F)$ of dimension n(n+1), equipped with a canonical polarization. Moreover, in this case we know that $L(s,V_\ell)$ is independent of ℓ , which we simply denote as L(s,V).

Rankin–Selberg product

Now we take a positive integer n, and denote by $n_0=2r_0$ and $n_1=2r_1+1$ the unique member in $\{n,n+1\}$ that are even and odd, respectively. Consider two elliptic curves A_0 and A_1 over F. For i=0,1, put

$$T_{i,\ell} \coloneqq \operatorname{\mathsf{Sym}}_{\mathbb{Z}_\ell}^{n_i-1} \mathrm{T}_\ell(A_i), \quad T_\ell \coloneqq (T_{0,\ell} \otimes_{\mathbb{Z}_\ell} T_{1,\ell})(1-n), \quad V_\ell \coloneqq T_\ell \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell.$$

Then V_ℓ is a continuous \mathbb{Q}_ℓ -linear representation of $\operatorname{Gal}(\overline{F}/F)$ of dimension n(n+1), equipped with a canonical polarization. Moreover, in this case we know that $L(s,V_\ell)$ is independent of ℓ , which we simply denote as L(s,V).

Theorem (L.–Tian–Xiao–Zhang–Zhu + Newton–Thorne)

In the above situation, suppose that

- (1) F is a solvable CM field;
- (2) $[F:\mathbb{Q}] \geqslant 4$ if $n \geqslant 3$;
- (3) both A_0 and A_1 can be defined over \mathbb{Q} ;
- (4) neither A_0 nor A_1 has complex multiplication over \overline{F} ;
- (5) A_0 and A_1 are not isogenous over \overline{F} .
- If $L(0, V) \neq 0$, then $H^1_{\ell}(F, V_{\ell}) = 0$ for all but finitely many ℓ .

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 .

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying (L1) ℓ does not belong to Σ .

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over $\mathbb Q$. Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over $\mathbb Q$. Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over $\mathbb Q$. Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H_I^1(F,V_\ell)\neq 0$.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over $\mathbb Q$. Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H_I^1(F,V_\ell)\neq 0$.

Step 1: Take a non-torsion element $s \in \mathrm{H}^1_f(F, T_\ell)$ of zero divisibility. Then $\mathrm{loc}_v(s) \in \mathrm{H}^1(F_v, T_\ell)$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_m the image of s in $\mathrm{H}^1(F, T_\ell \otimes \mathbb{Z}/\ell^m)$.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d\geqslant 0$ such that $x\in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H_t^1(F,V_\ell)\neq 0$.

Step 1: Take a non-torsion element $s \in H_f^1(F, T_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, \mathcal{T}_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, \mathcal{T}_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over $\mathbb Q$. Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H^1_\ell(F,V_\ell) \neq 0$.

Step 1: Take a non-torsion element $s \in H^1_f(F, T_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, \mathcal{T}_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, \mathcal{T}_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Step 3: Suppose that ℓ is sufficiently large. For some $\mathfrak p$ in Step 2, construct an element $c_m \in \mathrm{H}^1(F, \mathcal{T}_\ell \otimes \mathbb{Z}/\ell^m)$ satisfying the property that $\mathrm{loc}_{\nu}(c_m)$ is crystalline if $v \mid \ell$, that the image of $\mathrm{loc}_{\mathfrak p}(c_m)$ in $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, \mathcal{T} \otimes \mathbb{Z}/\ell^m) := \mathrm{H}^1(F_{\mathfrak p}, \mathcal{T} \otimes \mathbb{Z}/\ell^m) / \mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal{T} \otimes \mathbb{Z}/\ell^m)$ has bounded divisibility (independent of m) and that $\mathrm{loc}_{\nu}(c_m)$ is unramified if $v \neq \mathfrak p$ and is not above $\Sigma \cup \{\ell\}$.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H^1_\ell(F,V_\ell) \neq 0$.

Step 1: Take a non-torsion element $s \in \mathrm{H}^1_f(F, \mathcal{T}_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, \mathcal{T}_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, \mathcal{T}_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Step 3: Suppose that ℓ is sufficiently large. For some $\mathfrak p$ in Step 2, construct an element $c_m \in \mathrm{H}^1(F, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ satisfying the property that $\mathrm{loc}_{\nu}(c_m)$ is crystalline if $v \mid \ell$, that the image of $\mathrm{loc}_{\mathfrak p}(c_m)$ in $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m) := \mathrm{H}^1(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)/\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)$ has bounded divisibility (independent of m) and that $\mathrm{loc}_{\nu}(c_m)$ is unramified if $v \neq \mathfrak p$ and is not above $\Sigma \cup \{\ell\}$.

It is the construction of c_m in Step 3 that uses the condition $L(0, V) \neq 0$.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H^1_\ell(F,V_\ell) \neq 0$.

Step 1: Take a non-torsion element $s \in H^1_f(F, T_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, T_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, T_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Step 3: Suppose that ℓ is sufficiently large. For some $\mathfrak p$ in Step 2, construct an element $c_m \in \mathrm{H}^1(F, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ satisfying the property that $\mathrm{loc}_{\nu}(c_m)$ is crystalline if $v \mid \ell$, that the image of $\mathrm{loc}_{\mathfrak p}(c_m)$ in $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m) := \mathrm{H}^1(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)/\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)$ has bounded divisibility (independent of m) and that $\mathrm{loc}_{\nu}(c_m)$ is unramified if $v \neq \mathfrak p$ and is not above $\Sigma \cup \{\ell\}$.

It is the construction of c_m in Step 3 that uses the condition $L(0, V) \neq 0$. Combining with the three steps, one sees that the Tate duality pairing $\langle s_m, c_m \rangle$ is nonzero when m is large enough.

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_{ℓ} -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H^1_\ell(F,V_\ell) \neq 0$.

Step 1: Take a non-torsion element $s \in \mathrm{H}^1_f(F, \mathcal{T}_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, \mathcal{T}_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, \mathcal{T}_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Step 3: Suppose that ℓ is sufficiently large. For some $\mathfrak p$ in Step 2, construct an element $c_m \in H^1(F, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ satisfying the property that $\mathrm{loc}_{\nu}(c_m)$ is crystalline if $\nu \mid \ell$, that the image of $\mathrm{loc}_{\mathfrak p}(c_m)$ in $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, \mathcal T \otimes \mathbb Z/\ell^m) := \mathrm{H}^1(F_{\mathfrak p}, \mathcal T \otimes \mathbb Z/\ell^m)/\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T \otimes \mathbb Z/\ell^m)$ has bounded divisibility (independent of m) and that $\mathrm{loc}_{\nu}(c_m)$ is unramified if $\nu \neq \mathfrak p$ and is not above $\Sigma \cup \{\ell\}$.

It is the construction of c_m in Step 3 that uses the condition $L(0,V) \neq 0$. Combining with the three steps, one sees that the Tate duality pairing $\langle s_m, c_m \rangle$ is nonzero when m is large enough. However, this is not possible!

Let F^+ be the maximal totally real subfield of F. Regard A_0 and A_1 as elliptic curves over \mathbb{Q} . Let Σ be the set of prime factors of the discriminant of F and the conductors of A_0 and A_1 . We take a prime number ℓ satisfying

(L1) ℓ does not belong to Σ .

For a nonzero element x in a finitely generated \mathbb{Z}_ℓ -module X, we define the **divisibility** of x to be the largest integer $d \geqslant 0$ such that $x \in \ell^d X$.

We explain a strategy for showing the vanishing of the Selmer group, which is originally due to Kolyvagin. Suppose on the contrary that $H_I^1(F,V_\ell) \neq 0$.

Step 1: Take a non-torsion element $s \in H^1_f(F, T_\ell)$ of zero divisibility. Then

 $\operatorname{loc}_{v}(s) \in \operatorname{H}^{1}(F_{v}, \mathcal{T}_{\ell})$ is torsion for every nonarchimedean place v of F above Σ . For every $m \geqslant 1$, denote by s_{m} the image of s in $\operatorname{H}^{1}(F, \mathcal{T}_{\ell} \otimes \mathbb{Z}/\ell^{m})$.

Step 2: For each m, find sufficiently many primes $\mathfrak p$ of F^+ inert in F and not above $\Sigma \cup \{\ell\}$ such that $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ is a free $\mathbb Z/\ell^m$ -module of rank 1 and that $\mathrm{loc}_{\mathfrak p}(s_m)$ is an element of $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ of zero divisibility.

Step 3: Suppose that ℓ is sufficiently large. For some $\mathfrak p$ in Step 2, construct an element $c_m \in \mathrm{H}^1(F, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ satisfying the property that $\mathrm{loc}_{\nu}(c_m)$ is crystalline if $v \mid \ell$, that the image of $\mathrm{loc}_{\mathfrak p}(c_m)$ in $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m) := \mathrm{H}^1(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)/\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, T \otimes \mathbb Z/\ell^m)$ has bounded divisibility (independent of m) and that $\mathrm{loc}_{\nu}(c_m)$ is unramified if $v \neq \mathfrak p$ and is not above $\Sigma \cup \{\ell\}$.

It is the construction of c_m in Step 3 that uses the condition $L(0,V) \neq 0$. Combining with the three steps, one sees that the Tate duality pairing $\langle s_m, c_m \rangle$ is nonzero when m is large enough. However, this is not possible!

To simply our lectures, from now on, we assume $F^+ \neq \mathbb{Q}$ and make a further assumption that F contains an imaginary quadratic field F_0 .

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3.

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

(L2) The image of $\operatorname{Gal}(\overline{F}/F)$ in $\operatorname{GL}_{\mathbb{Z}_\ell}(\operatorname{T}_\ell(A_0)) \times \operatorname{GL}_{\mathbb{Z}_\ell}(\operatorname{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.

5 / 19

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

(L2) The image of $\mathsf{Gal}(\overline{F}/F)$ in $\mathsf{GL}_{\mathbb{Z}_\ell}(\mathsf{T}_\ell(A_0)) \times \mathsf{GL}_{\mathbb{Z}_\ell}(\mathsf{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.

By Serre's theorem, (L2) is satisfied for all but finitely many $\ell.$

5 / 19

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

(L2) The image of $\mathsf{Gal}(\overline{F}/F)$ in $\mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_0)) \times \mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.

By Serre's theorem, (L2) is satisfied for all but finitely many ℓ .

Definition

We say that a prime p is a **level-raising prime** with respect to ℓ^m if

- (P1) p is odd, inert in F_0 and splits completely in F^+ ;
- (P2) $a_p(A_0)^2 \equiv (p+1)^2 \mod \ell^m$;
- (P3) $\ell \nmid p \prod_{i=1}^{n_0} (1 (-p)^i);$
- (P4) $\ell \nmid \prod_{i=1}^{r_1} \left((S_j(a_p(A_1)) + p^{2r_1+1} + p^{2r_1-1}) \prod_{i=0}^{r_0} (S_j(a_p(A_1)) p^{2r_1+2i} p^{2r_1-2i}) \right).$

In (P4), S_j are polynomials defined inductively by the formulae $S_0(x)=2$, $S_1(x)=x^2-2p$ and $S_j(x)=x^{2j}-\sum_{k=1}^j\binom{2j}{k}p^kS_{j-k}(x)$ in general.

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

(L2) The image of $\mathsf{Gal}(\overline{F}/F)$ in $\mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_0)) \times \mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.

By Serre's theorem, (L2) is satisfied for all but finitely many $\ell.$

Definition

We say that a prime p is a **level-raising prime** with respect to ℓ^m if

- (P1) p is odd, inert in F_0 and splits completely in F^+ ;
- (P2) $a_p(A_0)^2 \equiv (p+1)^2 \mod \ell^m$;
- (P3) $\ell \nmid p \prod_{i=1}^{n_0} (1 (-p)^i);$
- (P4) $\ell \nmid \prod_{i=1}^{r_1} \left((S_j(a_p(A_1)) + p^{2r_1+1} + p^{2r_1-1}) \prod_{i=0}^{r_0} (S_j(a_p(A_1)) p^{2r_1+2i} p^{2r_1-2i}) \right).$

In (P4), S_j are polynomials defined inductively by the formulae $S_0(x)=2$, $S_1(x)=x^2-2p$ and $S_j(x)=x^{2j}-\sum_{k=1}^j\binom{2j}{k}p^kS_{j-k}(x)$ in general.

We have two assertions concerning level-raising primes.

Level-raising primes

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

- (L2) The image of $\operatorname{Gal}(\overline{F}/F)$ in $\operatorname{GL}_{\mathbb{Z}_\ell}(\operatorname{T}_\ell(A_0)) \times \operatorname{GL}_{\mathbb{Z}_\ell}(\operatorname{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.
- By Serre's theorem, (L2) is satisfied for all but finitely many ℓ .

Definition

We say that a prime p is a **level-raising prime** with respect to ℓ^m if

- (P1) p is odd, inert in F_0 and splits completely in F^+ ;
- (P2) $a_p(A_0)^2 \equiv (p+1)^2 \mod \ell^m$;
- (P3) $\ell \nmid p \prod_{i=1}^{n_0} (1 (-p)^i);$
- (P4) $\ell \nmid \prod_{j=1}^{r_1} \left((S_j(a_p(A_1)) + p^{2r_1+1} + p^{2r_1-1}) \prod_{i=0}^{r_0} (S_j(a_p(A_1)) p^{2r_1+2i} p^{2r_1-2i}) \right)$

In (P4), S_j are polynomials defined inductively by the formulae $S_0(x) = 2$, $S_1(x) = x^2 - 2p$ and $S_j(x) = x^{2j} - \sum_{k=1}^{j} {2j \choose k} p^k S_{j-k}(x)$ in general.

We have two assertions concerning level-raising primes.

(1) For (effectively) sufficiently large ℓ , there exist infinitely many level-raising primes with respect to ℓ^m with positive density for each m > 0.

Level-raising primes

We introduce the candidate primes $\mathfrak p$ in Steps 2 & 3. Take a prime number ℓ satisfying (L1) and

- (L2) The image of $\mathsf{Gal}(\overline{F}/F)$ in $\mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_0)) \times \mathsf{GL}_{\mathbb{Z}_\ell}(\mathrm{T}_\ell(A_1))$ is the maximal possible one, that is, the subgroup of pairs with common determinants.
- By Serre's theorem, (L2) is satisfied for all but finitely many ℓ .

Definition

We say that a prime p is a **level-raising prime** with respect to ℓ^m if

- (P1) p is odd, inert in F_0 and splits completely in F^+ ;
- (P2) $a_p(A_0)^2 \equiv (p+1)^2 \mod \ell^m$;
- (P3) $\ell \nmid p \prod_{i=1}^{n_0} (1 (-p)^i);$
- (P4) $\ell \nmid \prod_{j=1}^{r_1} \left((S_j(a_p(A_1)) + p^{2r_1+1} + p^{2r_1-1}) \prod_{i=0}^{r_0} (S_j(a_p(A_1)) p^{2r_1+2i} p^{2r_1-2i}) \right).$
 - In (P4), S_j are polynomials defined inductively by the formulae $S_0(x) = 2$, $S_1(x) = x^2 2p$ and $S_j(x) = x^{2j} \sum_{k=1}^{j} {2j \choose k} p^k S_{j-k}(x)$ in general.

We have two assertions concerning level-raising primes.

- (1) For (effectively) sufficiently large ℓ , there exist infinitely many level-raising primes with respect to ℓ^m with positive density for each m > 0.
- (2) For every prime $\mathfrak p$ of F^+ above a level-raising prime p with respect to ℓ^m , the $\mathbb Z/\ell^m$ -modules $\mathrm{H}^1_{\mathrm{unr}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ and hence $\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak p}, \mathcal T_\ell \otimes \mathbb Z/\ell^m)$ are both free of rank 1.

Combining the modularity of rational elliptic curves, recent breakthrough of Newton–Thorne on the automorphy of symmetric power of modular forms and the cyclic automorphic base change, we have for i=0,1 a unique up to isomorphism cuspidal automorphic representation Π_{n_i} of $\mathrm{GL}_{n_i}(\mathbb{A}_F)$ satisfying

Combining the modularity of rational elliptic curves, recent breakthrough of Newton–Thorne on the automorphy of symmetric power of modular forms and the cyclic automorphic base change, we have for i=0,1 a unique up to isomorphism cuspidal automorphic representation Π_{n_i} of $\mathrm{GL}_{n_i}(\mathbb{A}_F)$ satisfying

 \diamond For every p-adic place v of F so that A_i has good reduction at p, $\Pi_{n_i,v}$ is an unramified representation of Satake parameters $\{\alpha_p^{f_{\nu}i}\beta_p^{f_{\nu}}(n_i^{-1}-i)\mid 0\leqslant i\leqslant n_i-1\}$, where α_p,β_p are the roots of the polynomial $X^2-\sqrt{p}^{-1}a_p(A_i)X+1$ and f_v is the residual extension degree of F_v/\mathbb{Q}_p .

Combining the modularity of rational elliptic curves, recent breakthrough of Newton–Thorne on the automorphy of symmetric power of modular forms and the cyclic automorphic base change, we have for i=0,1 a unique up to isomorphism cuspidal automorphic representation Π_{n_i} of $\mathrm{GL}_{n_i}(\mathbb{A}_F)$ satisfying

- \diamond For every p-adic place v of F so that A_i has good reduction at p, $\Pi_{n_i,v}$ is an unramified representation of Satake parameters $\{\alpha_p^{f_v^i}/\beta_p^{f_v^i(n_i-1-i)}\mid 0\leqslant i\leqslant n_i-1\}$, where α_p,β_p are the roots of the polynomial $X^2-\sqrt{p}^{-1}a_p(A_i)X+1$ and f_v is the residual extension degree of F_v/\mathbb{Q}_p .
- \diamond For every (complex) archimedean place v of F, $\Pi_{n_i,v}$ is the principal series of characters $\{\arg^{n_i-1}, \arg^{n_i-3}, \dots, \arg^{3-n_i}, \arg^{1-n_i}\}$, where $\arg : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is the argument character.

Combining the modularity of rational elliptic curves, recent breakthrough of Newton–Thorne on the automorphy of symmetric power of modular forms and the cyclic automorphic base change, we have for i=0,1 a unique up to isomorphism cuspidal automorphic representation Π_{n_i} of $\mathrm{GL}_{n_i}(\mathbb{A}_F)$ satisfying

- \diamond For every p-adic place v of F so that A_i has good reduction at p, $\Pi_{n_i,v}$ is an unramified representation of Satake parameters $\{\alpha_p^{f_{v^i}}\beta_p^{f_v(n_i-1-i)}\mid 0\leqslant i\leqslant n_i-1\}$, where α_p,β_p are the roots of the polynomial $X^2-\sqrt{p}^{-1}a_p(A_i)X+1$ and f_v is the residual extension degree of F_v/\mathbb{Q}_p .
- \diamond For every (complex) archimedean place v of F, $\Pi_{n_i,v}$ is the principal series of characters $\{\arg^{n_i-1}, \arg^{n_i-3}, \ldots, \arg^{3-n_i}, \arg^{1-n_i}\}$, where $\arg : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is the argument character.

Moreover, we know that

- \diamond The field of definition of Π_{n_i} is \mathbb{Q} .
- $\diamond L(s,V) = L(s + \frac{1}{2}, \Pi_n \times \Pi_{n+1}).$

6 / 19

Combining the modularity of rational elliptic curves, recent breakthrough of Newton–Thorne on the automorphy of symmetric power of modular forms and the cyclic automorphic base change, we have for i=0,1 a unique up to isomorphism cuspidal automorphic representation Π_{n_i} of $\mathrm{GL}_{n_i}(\mathbb{A}_F)$ satisfying

- \diamond For every p-adic place v of F so that A_i has good reduction at p, $\Pi_{n_i,v}$ is an unramified representation of Satake parameters $\{\alpha_p^{f_{v^i}}\beta_p^{f_{v^i}}(n_i-1-i)\mid 0\leqslant i\leqslant n_i-1\}$, where α_p,β_p are the roots of the polynomial $X^2-\sqrt{p}^{-1}a_p(A_i)X+1$ and f_v is the residual extension degree of F_v/\mathbb{Q}_p .
- \diamond For every (complex) archimedean place v of F, $\Pi_{n_i,v}$ is the principal series of characters $\{\arg^{n_i-1}, \arg^{n_i-3}, \ldots, \arg^{3-n_i}, \arg^{1-n_i}\}$, where $\arg : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is the argument character.

Moreover, we know that

- \diamond The field of definition of Π_{n_i} is \mathbb{Q} .
- $\diamond L(s,V) = L(s + \frac{1}{2}, \Pi_n \times \Pi_{n+1}).$

For $N \in \{n, n+1\}$, the Satake parameters of Π_N give a homomorphism

$$\phi_N \colon \mathbb{T}_N^{\Sigma} \to \mathbb{Z},$$

in which \mathbb{T}_N^{Σ} denotes the abstract spherical Hecke algebra of the unitary group over $O_F[\Sigma^{-1}]/O_{F^+}[\Sigma^{-1}]$ of rank N.

Due to the recent breakthrough on the Gan–Gross–Prasad conjecture by Beuzart-Plessis–L.–Zhang–Zhu, there exist

 \diamond a totally positive definite hermitian O_F/O_{F^+} -lattice Λ_n of rank n that is perfect away from Σ ,

Due to the recent breakthrough on the Gan–Gross–Prasad conjecture by Beuzart-Plessis–L.–Zhang–Zhu, there exist

- \diamond a totally positive definite hermitian O_F/O_{F^+} -lattice Λ_n of rank n that is perfect away from Σ ,
- \diamond a positive integer $D \geqslant 3$ with prime factors in Σ ,

Due to the recent breakthrough on the Gan–Gross–Prasad conjecture by Beuzart-Plessis–L.–Zhang–Zhu, there exist

- \diamond a totally positive definite hermitian O_F/O_{F^+} -lattice Λ_n of rank n that is perfect away from Σ ,
- \diamond a positive integer $D \geqslant 3$ with prime factors in Σ ,

such that the functional

$$\mathbb{Z}[H_n(\mathbb{Q})\backslash H_n(\mathbb{A}^{\infty})/K_n^D][\ker \phi_n] \otimes \mathbb{Z}[H_{n+1}(\mathbb{Q})\backslash H_{n+1}(\mathbb{A}^{\infty})/K_{n+1}^D][\ker \phi_{n+1}] \to \mathbb{Z}$$

$$f_n \otimes f_{n+1} \mapsto \sum_{h \in H_n(\mathbb{Q})\backslash H_n(\mathbb{A}^{\infty})/K_n^D} f_n(h)f_{n+1}(h)$$

is nontrivial.

Due to the recent breakthrough on the Gan–Gross–Prasad conjecture by Beuzart-Plessis–L.–Zhang–Zhu, there exist

- \diamond a totally positive definite hermitian O_F/O_{F^+} -lattice Λ_n of rank n that is perfect away from Σ ,
- \diamond a positive integer $D \geqslant 3$ with prime factors in Σ ,

such that the functional

$$\mathbb{Z}[H_{n}(\mathbb{Q})\backslash H_{n}(\mathbb{A}^{\infty})/K_{n}^{D}][\ker \phi_{n}] \otimes \mathbb{Z}[H_{n+1}(\mathbb{Q})\backslash H_{n+1}(\mathbb{A}^{\infty})/K_{n+1}^{D}][\ker \phi_{n+1}] \to \mathbb{Z}$$

$$f_{n} \otimes f_{n+1} \mapsto \sum_{h \in H_{n}(\mathbb{Q})\backslash H_{n}(\mathbb{A}^{\infty})/K_{n}^{D}} f_{n}(h)f_{n+1}(h)$$

is nontrivial. Here, for $N \in \{n, n+1\}$, we

- \diamond put $H_N := \operatorname{Res}_{F^+/\mathbb{O}} \mathrm{U}(\Lambda_N \otimes_{O_F} F)$, where $\Lambda_{n+1} := \Lambda_n \oplus O_F \cdot 1$,
- \diamond for a positive integer D, denote by $K_N^D \subseteq H_N(\mathbb{A}^\infty)$ the full level D open compact subgroup with respect to Λ_N .

Due to the recent breakthrough on the Gan–Gross–Prasad conjecture by Beuzart-Plessis–L.–Zhang–Zhu, there exist

- \diamond a totally positive definite hermitian O_F/O_{F^+} -lattice Λ_n of rank n that is perfect away from Σ ,
- \diamond a positive integer $D \geqslant 3$ with prime factors in Σ ,

such that the functional

$$\mathbb{Z}[H_{n}(\mathbb{Q})\backslash H_{n}(\mathbb{A}^{\infty})/K_{n}^{D}][\ker \phi_{n}] \otimes \mathbb{Z}[H_{n+1}(\mathbb{Q})\backslash H_{n+1}(\mathbb{A}^{\infty})/K_{n+1}^{D}][\ker \phi_{n+1}] \to \mathbb{Z}$$

$$f_{n} \otimes f_{n+1} \mapsto \sum_{h \in H_{n}(\mathbb{Q})\backslash H_{n}(\mathbb{A}^{\infty})/K_{n}^{D}} f_{n}(h)f_{n+1}(h)$$

is nontrivial. Here, for $N \in \{n, n+1\}$, we

- $\diamond \ \, \mathsf{put} \,\, H_N := \mathsf{Res}_{F^+/\mathbb{Q}} \, \mathrm{U}(\Lambda_N \otimes_{\mathcal{O}_F} F), \,\, \mathsf{where} \,\, \Lambda_{n+1} := \Lambda_n \oplus \mathcal{O}_F \cdot 1,$
- \diamond for a positive integer D, denote by $K_N^D \subseteq H_N(\mathbb{A}^\infty)$ the full level D open compact subgroup with respect to Λ_N .

In what follows, we explain the construction of the class c_m in Step 3. Fix a choice of the pair (Λ_n, D) as above.

8 / 19

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0,i_0,λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0\colon O_F\overset{\sim}{\longrightarrow} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0,i_0,λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0\colon O_F\overset{\sim}{\longrightarrow} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 . Take a degree one prime $\mathfrak p$ of F^+ that is inert in F, with underlying prime number $p\not\in\Sigma$;

and fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the prime \mathfrak{p} .

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0,i_0,λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0\colon O_F\overset{\sim}{\longrightarrow} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

Take a degree one prime $\mathfrak p$ of F^+ that is inert in F, with underlying prime number $p \not\in \Sigma$; and fix an isomorphism $\mathbb C \simeq \overline{\mathbb Q}_p$ that induces the prime $\mathfrak p$.

For $N \in \{n, n+1\}$, we define a moduli space $\mathcal{M}_N = \mathcal{M}_{N,\mathfrak{p}}$ over $O_{F,(\mathfrak{p})}$ classifying quadruples $(A, \iota, \lambda, \eta)$ where

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0,i_0,λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0\colon O_F\overset{\sim}{\longrightarrow} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

Take a degree one prime \mathfrak{p} of F^+ that is inert in F, with underlying prime number $p \notin \Sigma$; and fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the prime \mathfrak{p} .

For $N \in \{n, n+1\}$, we define a moduli space $\mathcal{M}_N = \mathcal{M}_{N,\mathfrak{p}}$ over $O_{F,(\mathfrak{p})}$ classifying quadruples $(A, \iota, \lambda, \eta)$ where

 \diamond A is an abelian scheme of dimension $[F^+:\mathbb{Q}]N$,

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0,i_0,λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0\colon O_F\overset{\sim}{\longrightarrow} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

Take a degree one prime \mathfrak{p} of F^+ that is inert in F, with underlying prime number $p \notin \Sigma$; and fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the prime \mathfrak{p} .

For $N \in \{n, n+1\}$, we define a moduli space $\mathcal{M}_N = \mathcal{M}_{N,\mathfrak{p}}$ over $O_{\mathcal{F},(\mathfrak{p})}$ classifying quadruples $(A, \iota, \lambda, \eta)$ where

- \diamond A is an abelian scheme of dimension $[F^+:\mathbb{Q}]N$,
- \diamond $\iota \colon O_F \to \operatorname{End}(A)$ is an action of O_F whose characteristic polynomial on the Lie algebra is given by $(T \overline{a})(T a)^{N-1} \prod_{\tau \in \Phi \setminus \{\tau_0\}} (T \tau(a))^N$,

From now on, we fix an embedding $\tau_0 \colon F \hookrightarrow \mathbb{C}$. Put $\Phi \coloneqq \{\tau \colon F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0, i_0, λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0 \colon O_F \xrightarrow{\sim} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

Take a degree one prime \mathfrak{p} of F^+ that is inert in F, with underlying prime number $p \notin \Sigma$; and fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the prime \mathfrak{p} .

For $N \in \{n, n+1\}$, we define a moduli space $\mathcal{M}_N = \mathcal{M}_{N,\mathfrak{p}}$ over $\mathcal{O}_{F,(\mathfrak{p})}$ classifying quadruples $(A, \iota, \lambda, \eta)$ where

- \diamond A is an abelian scheme of dimension $[F^+:\mathbb{Q}]N$,
- $\diamond \ \iota \colon O_F \to \operatorname{End}(A)$ is an action of O_F whose characteristic polynomial on the Lie algebra is given by $(T \overline{a})(T a)^{N-1} \prod_{\tau \in \Phi \setminus \{\tau_0\}} (T \tau(a))^N$,
- $\diamond \lambda$ is a polarization of A that is compatible with ι , principal away from $\Sigma \cup \{p\}$, and satisfies that $\ker \lambda[p^{\infty}]$ is contained in $A[\mathfrak{p}]$ and has order p^2 ,

From now on, we fix an embedding $\tau_0 : F \hookrightarrow \mathbb{C}$. Put $\Phi := \{\tau : F \to \mathbb{C} \mid \tau|_{F_0} = \tau_0|_{F_0}\}$, which is a CM type of F.

For the simplicity of the lectures, we assume that there exists (and we fix such) a triple (A_0, i_0, λ_0) in which A_0 is an abelian scheme over $O_F[\Sigma^{-1}]$, $i_0 : O_F \xrightarrow{\sim} \operatorname{End}(A_0)$ is a complex multiplication of CM type Φ , and λ_0 is a principal polarization of A_0 that is compatible with i_0 .

Take a degree one prime p of F^+ that is inert in F, with underlying prime number $p \notin \Sigma$; and fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the prime \mathfrak{p} .

For $N \in \{n, n+1\}$, we define a moduli space $\mathcal{M}_N = \mathcal{M}_{N,\mathfrak{p}}$ over $\mathcal{O}_{F,(\mathfrak{p})}$ classifying quadruples $(A, \iota, \lambda, \eta)$ where

- \diamond A is an abelian scheme of dimension $[F^+:\mathbb{Q}]N$,
- \diamond $\iota \colon O_F \to \operatorname{End}(A)$ is an action of O_F whose characteristic polynomial on the Lie algebra is given by $(T-\overline{a})(T-a)^{N-1}\prod_{\tau\in\Phi\setminus\{\tau_0\}}(T-\tau(a))^N$,
- $\diamond \lambda$ is a polarization of A that is compatible with ι , principal away from $\Sigma \cup \{p\}$, and satisfies that $\ker \lambda[p^{\infty}]$ is contained in A[p] and has order p^2 ,
- $\diamond \eta$ is a level-D structure, that is, an isometry

$$\eta \colon \Lambda_N \otimes \mathbb{Z}/D \xrightarrow{\sim} \operatorname{\mathsf{Hom}}(A_0[D], A[D]).$$

Here, the right-hand side is equipped with a pairing that sends (x, y) to the composite morphism

$$A_0[D] \xrightarrow{x} A[D] \xrightarrow{\lambda} A^{\vee}[D] \xrightarrow{y^{\vee}} A_0^{\vee}[D] \xrightarrow{\lambda_0^{-1}} A_0[D]$$

regarded as an element in $\operatorname{End}_{O_F}(A_0[D]) = O_F \otimes \mathbb{Z}/D$.

9 / 19

Denote by $M'_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} F$ its generic fiber and $M_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} O_F/\mathfrak{p}$ its special fiber.

Denote by $M'_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} F$ its generic fiber and $M_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} O_F/\mathfrak{p}$ its special fiber.

For a point $(A, \iota, \lambda, \eta) \in M_N(S)$, the Hodge sequence

$$0 o \omega_{A^{\vee}/S} o \mathrm{H}^{\mathrm{dR}}_1(A/S) o \mathrm{Lie}_{A/S} o 0$$

admits a direct sum decomposition over $\mathsf{Hom}(F,\mathbb{C})$ via the action ι (and $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$):

$$0 \to \bigoplus_{\tau \colon F \to \mathbb{C}} \omega_{A^{\vee}/S, \tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathrm{H}^{\mathrm{dR}}_{1}(A/S)_{\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathsf{Lie}_{A/S, \tau} \to 0.$$

Denote by $M'_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} F$ its generic fiber and $M_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} O_F/\mathfrak{p}$ its special fiber.

For a point $(A, \iota, \lambda, \eta) \in M_N(S)$, the Hodge sequence

$$0 o \omega_{A^{\vee}/S} o \mathrm{H}^{\mathrm{dR}}_1(A/S) o \mathrm{Lie}_{A/S} o 0$$

admits a direct sum decomposition over $\mathsf{Hom}(F,\mathbb{C})$ via the action ι (and $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$):

$$0 \to \bigoplus_{\tau \colon F \to \mathbb{C}} \omega_{A^{\vee}/S,\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathrm{H}^{\mathrm{dR}}_1(A/S)_{\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathsf{Lie}_{A/S,\tau} \to 0.$$

Denote by

- $\diamond~M_N^{\circ}$ the closed locus of M_N on which $\lambda_*\omega_{A^{\vee}/S, au_0}=0$,
- $\diamond \ M_0^\bullet \ \text{the closed locus of} \ M_N \ \text{on which } \ker(\lambda_* \colon \mathrm{H}^{\mathrm{dR}}_1(A/S)_{\overline{\tau_0}} \to \mathrm{H}^{\mathrm{dR}}_1(A/S)_{\overline{\tau_0}}) \ \text{is contained in}$ $\overset{\omega_{A^\vee/S,\overline{\tau_0}}}{\longrightarrow} .$

Denote by $M'_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} F$ its generic fiber and $M_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} O_F/\mathfrak{p}$ its special fiber.

For a point $(A, \iota, \lambda, \eta) \in M_N(S)$, the Hodge sequence

$$0 o \omega_{A^{\vee}/S} o \mathrm{H}^{\mathrm{dR}}_1(A/S) o \mathrm{Lie}_{A/S} o 0$$

admits a direct sum decomposition over $\mathsf{Hom}(F,\mathbb{C})$ via the action ι (and $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$):

$$0 \to \bigoplus_{\tau \colon F \to \mathbb{C}} \omega_{A^{\vee}/S,\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathrm{H}^{\mathrm{dR}}_1(A/S)_{\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathsf{Lie}_{A/S,\tau} \to 0.$$

Denote by

- $\diamond~M_N^{\circ}$ the closed locus of M_N on which $\lambda_*\omega_{A^{\vee}/S,\tau_0}=0$,
- $\diamond \ M_{0}^{\bullet} \ \text{the closed locus of} \ M_{N} \ \text{on which } \ker(\lambda_{*} \colon \mathrm{H}^{\mathrm{dR}}_{1}(A/S)_{\overline{\tau_{0}}} \to \mathrm{H}^{\mathrm{dR}}_{1}(A/S)_{\overline{\tau_{0}}}) \ \text{is contained in}$ $\overset{\omega_{A^{\vee}/S,\overline{\tau_{0}}}}{\longrightarrow} \cdot$

We have a natural morphism over $O_{F,(\mathfrak{p})}$

$$\rho_M \colon \mathcal{M}_n \to \mathcal{M}_{n+1}$$

by "adding" $(A_0, \iota_0, \lambda_0)$. Then ρ_M restricts to morphisms

$$\rho_M^{\circ} \colon M_n^{\circ} \to M_{n+1}^{\circ}, \quad \rho_M^{\bullet} \colon M_n^{\bullet} \to M_{n+1}^{\bullet}.$$

Denote by $M'_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} F$ its generic fiber and $M_N := \mathcal{M}_N \otimes_{O_{F,(\mathfrak{p})}} O_F/\mathfrak{p}$ its special fiber.

For a point $(A, \iota, \lambda, \eta) \in M_N(S)$, the Hodge sequence

$$0 o \omega_{A^{\lor}/S} o \mathrm{H}^{\mathrm{dR}}_1(A/S) o \mathrm{Lie}_{A/S} o 0$$

admits a direct sum decomposition over $\mathsf{Hom}(F,\mathbb{C})$ via the action ι (and $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$):

$$0 \to \bigoplus_{\tau \colon F \to \mathbb{C}} \omega_{A^{\vee}/S,\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathrm{H}^{\mathrm{dR}}_1(A/S)_{\tau} \to \bigoplus_{\tau \colon F \to \mathbb{C}} \mathsf{Lie}_{A/S,\tau} \to 0.$$

Denote by

- $\diamond~M_N^\circ$ the closed locus of M_N on which $\lambda_*\omega_{A^\vee/S, au_0}=0$,
- $\diamond \ M_{\bullet}^{\bullet} \ \text{the closed locus of} \ M_N \ \text{on which } \ker(\lambda_* \colon \operatorname{H}^{\operatorname{dR}}_1(A/S)_{\overline{\tau_0}} \to \operatorname{H}^{\operatorname{dR}}_1(A/S)_{\overline{\tau_0}}) \ \text{is contained in}$

We have a natural morphism over $O_{F,(\mathfrak{p})}$

$$\rho_M \colon \mathcal{M}_n \to \mathcal{M}_{n+1}$$

by "adding" $(A_0, \iota_0, \lambda_0)$. Then ρ_M restricts to morphisms

$$\rho_M^{\circ} \colon M_n^{\circ} \to M_{n+1}^{\circ}, \quad \rho_M^{\bullet} \colon M_n^{\bullet} \to M_{n+1}^{\bullet}.$$

For future use, put $S_N^{\circ} := H_N(\mathbb{Q}) \setminus H_N(\mathbb{A}^{\infty}) / K_N^D$, regarded as a discrete scheme over O_F/\mathfrak{p} according to the context; and we have a similar map

$$\rho_S^{\circ} \colon S_n^{\circ} \to S_{n+1}^{\circ}.$$

We have the following properties for \mathcal{M}_N :

We have the following properties for \mathcal{M}_N :

 \diamond The functor \mathcal{M}_N is a projective, strictly semistable scheme over $O_{F,(\mathfrak{p})}$, of (pure) relative dimension N-1.

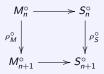
10 / 19

We have the following properties for \mathcal{M}_N :

- \diamond The functor \mathcal{M}_N is a projective, strictly semistable scheme over $O_{F,(\mathfrak{p})}$, of (pure) relative dimension N-1.
- \diamond Both M_N° and M_N^{\bullet} are projective smooth scheme over O_F/\mathfrak{p} of dimension N-1; and that $M_N^{\dagger}:=M_N^{\circ}\cap M_N^{\bullet}$ is smooth of dimension N-2.

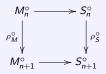
We have the following properties for \mathcal{M}_N :

- \diamond The functor \mathcal{M}_N is a projective, strictly semistable scheme over $O_{F,(\mathfrak{p})}$, of (pure) relative dimension N-1.
- \diamond Both M_N° and M_N^{\bullet} are projective smooth scheme over O_F/\mathfrak{p} of dimension N-1; and that $M_N^{\dagger}:=M_N^{\circ}\cap M_N^{\bullet}$ is smooth of dimension N-2.
- \diamond The scheme M_N° is a projective bundle over S_N° , which fits into the following diagram



We have the following properties for \mathcal{M}_N :

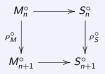
- \diamond The functor \mathcal{M}_N is a projective, strictly semistable scheme over $O_{F,(\mathfrak{p})}$, of (pure) relative dimension N-1.
- \diamond Both M_N° and M_N^{\bullet} are projective smooth scheme over O_F/\mathfrak{p} of dimension N-1; and that $M_N^{\dagger}:=M_N^{\circ}\cap M_N^{\bullet}$ is smooth of dimension N-2.
- \diamond The scheme M_N° is a projective bundle over S_N° , which fits into the following diagram



 \diamond The closed subscheme M_N^\dagger of M_N^\diamond is a Fermat hypersurface (of degree p+1).

We have the following properties for \mathcal{M}_N :

- \diamond The functor \mathcal{M}_N is a projective, strictly semistable scheme over $O_{F,(\mathfrak{p})}$, of (pure) relative dimension N-1.
- \diamond Both M_N° and M_N^{\bullet} are projective smooth scheme over O_F/\mathfrak{p} of dimension N-1; and that $M_N^{\dagger}:=M_N^{\circ}\cap M_N^{\bullet}$ is smooth of dimension N-2.
- \diamond The scheme M_N° is a projective bundle over S_N° , which fits into the following diagram



- \diamond The closed subscheme M_N^{\dagger} of M_N° is a Fermat hypersurface (of degree p+1).
- \diamond Let V_N' be the unique (up to isomorphism) F/F^+ -hermitian space that has signature (N-1,1) at $\tau_0|_{F^+}$ and is isomorphic to $V_N \coloneqq \Lambda_N \otimes_{\mathcal{O}_F} F$ away from $\tau_0|_{F^+}$ and $\mathfrak p$. Then M_N' is a Shimura variety associated with the unitary group $\mathrm{Res}_{F^+/\mathbb Q} \mathrm{U}(V_N')$ of a certain level that is maximal away from Σ (together with a functorial diagram as above).

(break point)

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map $\mathbb{T}_N^\Sigma \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$.

11 / 19

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map

 $\mathbb{T}_N^{\Sigma} \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$. By a result of Caraiani–Scholze, we know that all but finitely many prime numbers ℓ satisfy the following condition:

(L3) For N=n, n+1, $\mathrm{H}^i(M_N'\otimes_F\overline{F},\mathbb{Z}_\ell)_{\mathfrak{m}_N^\ell}=0$ as long as $i\neq N$.

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map $\mathbb{T}_N^{\Sigma} \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$. By a result of Caraiani–Scholze, we know that all but finitely many prime numbers ℓ satisfy the following condition:

(L3) For
$$N=n, n+1$$
, $\operatorname{H}^i(M_N'\otimes_F \overline{F}, \mathbb{Z}_\ell)_{\mathfrak{m}_N^\ell}=0$ as long as $i\neq N$.

Put $\mathcal{P} \coloneqq \mathcal{M}_n \times_{\mathcal{O}_{\mathcal{F},(\mathfrak{p})}} \mathcal{M}_{n+1}$, and similarly for P' and P. Then we have the closed subscheme $\mathcal{M}_{\mathrm{diag}} \subseteq \mathcal{P}$ that is the graph of ρ_M , and similarly for M'_{diag} and M_{diag} .

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map $\mathbb{T}_N^\Sigma \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$. By a result of Caraiani–Scholze, we know that all but finitely many prime numbers ℓ satisfy the following condition:

(L3) For
$$N=n, n+1$$
, $\mathrm{H}^i(M_N'\otimes_F\overline{F},\mathbb{Z}_\ell)_{\mathfrak{m}_N^\ell}=0$ as long as $i\neq N$.

Put $\mathcal{P}:=\mathcal{M}_n\times_{O_{\mathcal{F},(\mathfrak{p})}}\mathcal{M}_{n+1}$, and similarly for P' and P. Then we have the closed subscheme $\mathcal{M}_{\mathrm{diag}}\subseteq\mathcal{P}$ that is the graph of ρ_M , and similarly for M'_{diag} and M_{diag} . For every prime ℓ satisfying (L3) and every $m\geqslant 1$, we have the induced class

$$\alpha(M'_{\mathrm{diag}}) \in \mathrm{H}^1(F, \mathrm{H}^{2n-1}(P' \otimes_F \overline{F}, \mathbb{Z}_{\ell}(n))/\mathfrak{m}^{\ell^m})$$

via the Abel–Jacobi map, where $\mathfrak{m}^{\ell^m}:=\mathfrak{m}^{\ell^m}_n\times\mathfrak{m}^{\ell^m}_{n+1}.$

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map $\mathbb{T}_N^\Sigma \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$. By a result of Caraiani–Scholze, we know that all but finitely many prime numbers ℓ satisfy the following condition:

(L3) For
$$N=n, n+1$$
, $\mathrm{H}^i(M_N'\otimes_F\overline{F},\mathbb{Z}_\ell)_{\mathfrak{m}_N^\ell}=0$ as long as $i\neq N$.

Put $\mathcal{P}:=\mathcal{M}_n\times_{O_{\mathcal{F},(\mathfrak{p})}}\mathcal{M}_{n+1}$, and similarly for P' and P. Then we have the closed subscheme $\mathcal{M}_{\mathrm{diag}}\subseteq\mathcal{P}$ that is the graph of ρ_M , and similarly for M'_{diag} and M_{diag} . For every prime ℓ satisfying (L3) and every $m\geqslant 1$, we have the induced class

$$\alpha(M'_{\mathrm{diag}}) \in \mathrm{H}^1(F, \mathrm{H}^{2n-1}(P' \otimes_F \overline{F}, \mathbb{Z}_{\ell}(n))/\mathfrak{m}^{\ell^m})$$

via the Abel–Jacobi map, where $\mathfrak{m}^{\ell^m}:=\mathfrak{m}^{\ell^m}_n\times\mathfrak{m}^{\ell^m}_{n+1}$. The class c_m in Step 3 will be a certain factor of $\alpha(M'_{\mathrm{diag}})$.

For every positive integer M, we denote by \mathfrak{m}_N^M the kernel of the composite map $\mathbb{T}_N^\Sigma \xrightarrow{\phi_N} \mathbb{Z} \to \mathbb{Z}/M$. By a result of Caraiani–Scholze, we know that all but finitely many prime numbers ℓ satisfy the following condition:

(L3) For
$$N=n, n+1$$
, $\mathrm{H}^i(M_N'\otimes_F\overline{F},\mathbb{Z}_\ell)_{\mathfrak{m}_N^\ell}=0$ as long as $i\neq N$.

Put $\mathcal{P}:=\mathcal{M}_n\times_{\mathcal{O}_{F,(\mathfrak{p})}}\mathcal{M}_{n+1}$, and similarly for P' and P. Then we have the closed subscheme $\mathcal{M}_{\mathrm{diag}}\subseteq\mathcal{P}$ that is the graph of ρ_M , and similarly for M'_{diag} and M_{diag} . For every prime ℓ satisfying (L3) and every $m\geqslant 1$, we have the induced class

$$\alpha(M'_{\mathrm{diag}}) \in \mathrm{H}^1(F, \mathrm{H}^{2n-1}(P' \otimes_F \overline{F}, \mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m})$$

via the Abel–Jacobi map, where $\mathfrak{m}^{\ell^m}:=\mathfrak{m}_n^{\ell^m}\times\mathfrak{m}_{n+1}^{\ell^m}$. The class c_m in Step 3 will be a certain factor of $\alpha(M'_{\mathrm{diag}})$.

Denote by

$$\partial_{\mathfrak{p}} \colon \mathrm{H}^{1}(F_{\mathfrak{p}}, -) \to \mathrm{H}^{1}_{\mathrm{sing}}(F_{\mathfrak{p}}, -) \coloneqq \mathrm{H}^{1}(F_{\mathfrak{p}}, -) / \mathrm{H}^{1}_{\mathrm{unr}}(F_{\mathfrak{p}}, -)$$

the natural quotient map. In particular, we have the element

$$\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}}))) \in \mathrm{H}^{1}_{\mathrm{sing}}(F_{\mathfrak{p}}, \mathrm{H}^{2n-1}(P' \otimes_{F} \overline{F}, \mathbb{Z}_{\ell}(n))/\mathfrak{m}^{\ell^{m}}).$$

Theorem

There exists a positive integer $\ell_{A_0,A_1,F,n,\Lambda_n,D}$ depending only on the subscripts such that for every prime number $\ell \geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ (which includes (L1–3)) and every $m \geqslant 1$, if p (the underlying prime number of $\mathfrak p$) is a level-raising prime with respect to ℓ^m , then the following statements hold:

12 / 19

Theorem

There exists a positive integer $\ell_{A_0,A_1,F,n,\Lambda_n,D}$ depending only on the subscripts such that for every prime number $\ell\geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ (which includes (L1–3)) and every $m\geqslant 1$, if p (the underlying prime number of $\mathfrak p$) is a level-raising prime with respect to ℓ^m , then the following statements hold:

(1) As a $(\mathbb{Z}/\ell^m)[\mathsf{Gal}(\overline{F}/F)]$ -module, $\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m}$ is isomorphic to a finite copy of $T_\ell\otimes\mathbb{Z}/\ell^m$.

Theorem

There exists a positive integer $\ell_{A_0,A_1,F,n,\Lambda_n,D}$ depending only on the subscripts such that for every prime number $\ell \geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ (which includes (L1–3)) and every $m \geqslant 1$, if p (the underlying prime number of \mathfrak{p}) is a level-raising prime with respect to ℓ^m , then the following statements hold:

- (1) As a $(\mathbb{Z}/\ell^m)[\mathsf{Gal}(\overline{F}/F)]$ -module, $\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m}$ is isomorphic to a finite copy of $T_\ell\otimes\mathbb{Z}/\ell^m$.
- (2) There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_{\ell}(n))/\mathfrak{m}^{\ell^m})\simeq \mathbb{Z}[S_n^{\circ}]/\mathfrak{m}_n^{\ell^m}\otimes \mathbb{Z}[S_{n+1}^{\circ}]/\mathfrak{m}_{n+1}^{\ell^m}.$$

Theorem

There exists a positive integer $\ell_{A_0,A_1,F,n,\Lambda_n,D}$ depending only on the subscripts such that for every prime number $\ell \geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ (which includes (L1–3)) and every $m \geqslant 1$, if p (the underlying prime number of $\mathfrak p$) is a level-raising prime with respect to ℓ^m , then the following statements hold:

- (1) As a $(\mathbb{Z}/\ell^m)[\mathsf{Gal}(\overline{F}/F)]$ -module, $\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m}$ is isomorphic to a finite copy of $T_\ell\otimes\mathbb{Z}/\ell^m$.
- (2) There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m})\simeq \mathbb{Z}[S_n^\circ]/\mathfrak{m}_n^{\ell^m}\otimes \mathbb{Z}[S_{n+1}^\circ]/\mathfrak{m}_{n+1}^{\ell^m}.$$

(3) There exists a constant $\gamma = \gamma_{A_0,A_1,n,p} \in \mathbb{Z}_{(\ell)}^{\times}$ such that under the natural pairing $\mathbb{Z}[S_n^{\circ}]/\mathfrak{m}_n^{\ell^m} \otimes \mathbb{Z}[S_{n+1}^{\circ}]/\mathfrak{m}_{n+1}^{\ell^m} \times (\mathbb{Z}/\ell^m)[S_n^{\circ}][\mathfrak{m}_n^{\ell^m}] \otimes (\mathbb{Z}/\ell^m)[S_{n+1}^{\circ}][\mathfrak{m}_{n+1}^{\ell^m}] \to \mathbb{Z}/\ell^m$, we have

$$(\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}}))),f_{n}\otimes f_{n+1})=\gamma\sum_{h\in H_{n}(\mathbb{Q})\backslash H_{n}(\mathbb{A}^{\infty})/K_{n}^{D}}f_{n}(h)f_{n+1}(h).$$

Theorem

There exists a positive integer $\ell_{A_0,A_1,F,n,\Lambda_n,D}$ depending only on the subscripts such that for every prime number $\ell \geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ (which includes (L1–3)) and every $m \geqslant 1$, if p (the underlying prime number of $\mathfrak p$) is a level-raising prime with respect to ℓ^m , then the following statements hold:

- (1) As a $(\mathbb{Z}/\ell^m)[\mathsf{Gal}(\overline{F}/F)]$ -module, $\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m}$ is isomorphic to a finite copy of $T_\ell\otimes\mathbb{Z}/\ell^m$.
- (2) There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))/\mathfrak{m}^{\ell^m})\simeq \mathbb{Z}[S_n^\circ]/\mathfrak{m}_n^{\ell^m}\otimes \mathbb{Z}[S_{n+1}^\circ]/\mathfrak{m}_{n+1}^{\ell^m}.$$

(3) There exists a constant $\gamma = \gamma_{A_0,A_1,n,p} \in \mathbb{Z}_{(\star)}^{\times}$ such that under the natural pairing $\mathbb{Z}[S_n^{\circ}]/\mathfrak{m}_n^{\ell^m} \otimes \mathbb{Z}[S_{n+1}^{\circ}]/\mathfrak{m}_{n+1}^{\ell^m} \times (\mathbb{Z}/\ell^m)[S_n^{\circ}][\mathfrak{m}_n^{\ell^m}] \otimes (\mathbb{Z}/\ell^m)[S_{n+1}^{\circ}][\mathfrak{m}_{n+1}^{\ell^m}] \to \mathbb{Z}/\ell^m, \text{ we have }$

$$(\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}}))), f_n \otimes f_{n+1}) = \gamma \sum_{h \in H_n(\mathbb{Q}) \backslash H_n(\mathbb{A}^{\infty}) / K_n^{\mathbb{Q}}} f_n(h) f_{n+1}(h).$$

In what follows, we take a prime $\ell \geqslant \ell_{A_0,A_1,F,n,\Lambda_n,D}$ and assume that p is a level-raising prime with respect to ℓ^m for some $m \geqslant 1$.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{O_{F,(\mathfrak p)}}O_{F_{\mathfrak p}}$ along the closed subscheme $M_n^\circ\times M_{n+1}^\circ$, with $\mathcal Q':=\mathcal Q\otimes_{O_{F_{\mathfrak p}}}F_{\mathfrak p}$ and $\mathcal Q:=\mathcal Q\otimes_{O_{F_{\mathfrak p}}}O_F/\mathfrak p$.

13 / 19

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{O_{F, \mathfrak p}}O_{F_{\mathfrak p}}$ along the closed subscheme $M_n^\circ\times M_{n+1}^\circ$, with $\mathcal Q':=\mathcal Q\otimes_{O_{F_{\mathfrak p}}}F_{\mathfrak p}$ and $\mathcal Q:=\mathcal Q\otimes_{O_{F_{\mathfrak p}}}O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $O_{F_{\mathfrak p}}$ such that no three irreducible components of the special fiber have common intersection.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F, \mathfrak p}} \mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ \times M_{n+1}^\circ$, with $\mathcal Q' := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} F_\mathfrak p$ and $\mathcal Q := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} \mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond \ Q_1$ the disjoint union of the intersection of two different irreducible components of Q.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F, \mathfrak p}} \mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ \times M_{n+1}^\circ$, with $\mathcal Q' := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} F_\mathfrak p$ and $\mathcal Q := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} \mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F,\mathfrak p}}\mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ\times M_{n+1}^\circ$, with $Q':=\mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}}\mathcal F_{\mathfrak p}$ and $Q:=\mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}}\mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond \ Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

For $r \in \mathbb{Z}$, put

$$\begin{split} &B^r(Q) \coloneqq \ker \left(\delta_0^* : \mathrm{H}^{2r}(\overline{Q_0}, \mathbb{Z}_\ell(r)) \to \mathrm{H}^{2r}(\overline{Q_1}, \mathbb{Z}_\ell(r)) \right), \\ &B_r(Q) \coloneqq \operatorname{coker} \left(\delta_{1!} : \mathrm{H}^{2(2n-r-2)}(\overline{Q_1}, \mathbb{Z}_\ell(2n-r-2)) \to \mathrm{H}^{2(2n-r-1)}(\overline{Q_0}, \mathbb{Z}_\ell(2n-r-1)) \right), \end{split}$$

where δ_0^* and $\delta_{1!}$ are suitable alternating sums of restriction and Gysin maps as in the weight spectral sequence.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F, \mathfrak p}} \mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ \times M_{n+1}^\circ$, with $\mathcal Q' := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} F_\mathfrak p$ and $\mathcal Q := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} \mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

For $r \in \mathbb{Z}$, put

$$\begin{split} &B^r(Q) \coloneqq \ker \left(\delta_0^* \colon \mathrm{H}^{2r}(\overline{Q_0}, \mathbb{Z}_\ell(r)) \to \mathrm{H}^{2r}(\overline{Q_1}, \mathbb{Z}_\ell(r)) \right), \\ &B_r(Q) \coloneqq \operatorname{coker} \left(\delta_{1!} \colon \mathrm{H}^{2(2n-r-2)}(\overline{Q_1}, \mathbb{Z}_\ell(2n-r-2)) \to \mathrm{H}^{2(2n-r-1)}(\overline{Q_0}, \mathbb{Z}_\ell(2n-r-1)) \right), \end{split}$$

where δ_0^* and $\delta_{1!}$ are suitable alternating sums of restriction and Gysin maps as in the weight spectral sequence. Define $B^r(Q)^0$ and $B_{2n-r-1}(Q)_0$ to be the kernel and the cokernel of the tautological map $B^r(Q) \to B_{2n-r-1}(Q)$, respectively.

13 / 19

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F, \mathfrak p}} \mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ \times M_{n+1}^\circ$, with $\mathcal Q' := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} F_\mathfrak p$ and $\mathcal Q := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} \mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

For $r \in \mathbb{Z}$, put

$$\begin{split} &B^r(Q) \coloneqq \ker\left(\delta_0^* \colon \mathrm{H}^{2r}(\overline{Q_0},\mathbb{Z}_\ell(r)) \to \mathrm{H}^{2r}(\overline{Q_1},\mathbb{Z}_\ell(r))\right), \\ &B_r(Q) \coloneqq \operatorname{coker}\left(\delta_{1!} \colon \mathrm{H}^{2(2n-r-2)}(\overline{Q_1},\mathbb{Z}_\ell(2n-r-2)) \to \mathrm{H}^{2(2n-r-1)}(\overline{Q_0},\mathbb{Z}_\ell(2n-r-1))\right), \end{split}$$

where δ_0^* and $\delta_{1!}$ are suitable alternating sums of restriction and Gysin maps as in the weight spectral sequence. Define $B^r(Q)^0$ and $B_{2n-r-1}(Q)_0$ to be the kernel and the cokernel of the tautological map $B^r(Q) \to B_{2n-r-1}(Q)$, respectively. One can show that the composite map

$$\mathrm{H}^{2(r-1)}(\overline{Q_0},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_0^*} \mathrm{H}^{2(r-1)}(\overline{Q_1},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_{1!}} \mathrm{H}^{2r}(\overline{Q_0},\mathbb{Z}_\ell(r))$$

factors through a map $B_{2n-r}(Q)_0 \to B^r(Q)^0$.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F,\mathfrak p}}\mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ\times M_{n+1}^\circ$, with $\mathcal Q':=\mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}}\mathcal F_{\mathfrak p}$ and $\mathcal Q:=\mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}}\mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

For $r \in \mathbb{Z}$, put

$$\begin{split} &B^r(Q) \coloneqq \ker\left(\delta_0^* \colon \mathrm{H}^{2r}(\overline{Q_0},\mathbb{Z}_\ell(r)) \to \mathrm{H}^{2r}(\overline{Q_1},\mathbb{Z}_\ell(r))\right), \\ &B_r(Q) \coloneqq \operatorname{coker}\left(\delta_{1!} \colon \mathrm{H}^{2(2n-r-2)}(\overline{Q_1},\mathbb{Z}_\ell(2n-r-2)) \to \mathrm{H}^{2(2n-r-1)}(\overline{Q_0},\mathbb{Z}_\ell(2n-r-1))\right), \end{split}$$

where δ_0^* and $\delta_{1!}$ are suitable alternating sums of restriction and Gysin maps as in the weight spectral sequence. Define $B^r(Q)^0$ and $B_{2n-r-1}(Q)_0$ to be the kernel and the cokernel of the tautological map $B^r(Q) \to B_{2n-r-1}(Q)$, respectively. One can show that the composite map

$$\mathrm{H}^{2(r-1)}(\overline{Q_0},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_0^*} \mathrm{H}^{2(r-1)}(\overline{Q_1},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_{1!}} \mathrm{H}^{2r}(\overline{Q_0},\mathbb{Z}_\ell(r))$$

factors through a map $B_{2n-r}(Q)_0 \to B^r(Q)^0$. Put $C_r(Q) := B_r(Q)_0^\Gamma$ and $C^r(Q) := B^r(Q)_\Gamma^0$.

Let $\mathcal Q$ be the blow-up of $\mathcal P\otimes_{\mathcal O_{F, \mathfrak p}} \mathcal O_{F_\mathfrak p}$ along the closed subscheme $M_n^\circ \times M_{n+1}^\circ$, with $\mathcal Q' := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} F_\mathfrak p$ and $\mathcal Q := \mathcal Q\otimes_{\mathcal O_{F_\mathfrak p}} \mathcal O_F/\mathfrak p$. Then $\mathcal Q$ is a projective strictly semistable scheme over $\mathcal O_{F_\mathfrak p}$ such that no three irreducible components of the special fiber have common intersection. Denote by

- $\diamond Q_0$ the disjoint union of irreducible components of Q,
- $\diamond Q_1$ the disjoint union of the intersection of two different irreducible components of Q. In what follows, for a scheme X over O_F/\mathfrak{p} , we put $\overline{X} := X \otimes_{O_F/\mathfrak{p}} \overline{O_F/\mathfrak{p}}$. Denote by Γ the absolute Galois group of O_F/\mathfrak{p} .

For $r \in \mathbb{Z}$, put

$$B^r(Q) := \ker \left(\delta_0^* \colon \mathrm{H}^{2r}(\overline{Q_0}, \mathbb{Z}_\ell(r)) \to \mathrm{H}^{2r}(\overline{Q_1}, \mathbb{Z}_\ell(r)) \right),$$

$$\mathcal{B}_r(\mathcal{Q}) \coloneqq \mathsf{coker}\left(\delta_{1!} \colon \mathrm{H}^{2(2n-r-2)}(\overline{\mathcal{Q}_1}, \mathbb{Z}_\ell(2n-r-2)) \to \mathrm{H}^{2(2n-r-1)}(\overline{\mathcal{Q}_0}, \mathbb{Z}_\ell(2n-r-1))\right),$$

where δ_0^* and $\delta_{1!}$ are suitable alternating sums of restriction and Gysin maps as in the weight spectral sequence. Define $B^r(Q)^0$ and $B_{2n-r-1}(Q)_0$ to be the kernel and the cokernel of the tautological map $B^r(Q) \to B_{2n-r-1}(Q)$, respectively. One can show that the composite map

$$\mathrm{H}^{2(r-1)}(\overline{Q_0},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_0^*} \mathrm{H}^{2(r-1)}(\overline{Q_1},\mathbb{Z}_\ell(r-1)) \xrightarrow{\delta_{1!}} \mathrm{H}^{2r}(\overline{Q_0},\mathbb{Z}_\ell(r))$$

factors through a map $B_{2n-r}(Q)_0 \to B^r(Q)^0$. Put $C_r(Q) := B_r(Q)_0^\Gamma$ and $C^r(Q) := B^r(Q)_\Gamma^0$. We define the **potential map** to be the induced map

$$\Delta^r : C_{2n-r}(Q) \to C^r(Q).$$

 $\Delta: C_{2n-r}(Q) \to C(Q).$

Proposition

There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(\textit{n}))_{\mathfrak{m}^\ell})\xrightarrow{\sim}\mathsf{coker}\,\Delta^n_{\mathfrak{m}^\ell}.$$

Proposition

There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(\digamma_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{\digamma},\mathbb{Z}_\ell(n))_{\mathfrak{m}^\ell}) \xrightarrow{\sim} \mathsf{coker}\, \Delta^n_{\mathfrak{m}^\ell}.$$

Moreover, under the above isomorphism, the element $\partial_{\mathfrak{p}}(\operatorname{loc}_{\mathfrak{p}}(\alpha(M'_{\operatorname{diag}})))$ coincides with the image of the cycle class of the strict transform of M_{diag} in Q_0 (regarded as in $B^n(Q)^0_{\mathfrak{m}^\ell}$) under the natural map $B^n(Q)^0_{\mathfrak{m}^\ell} \to C^n(Q)_{\mathfrak{m}^\ell} \to \operatorname{coker} \Delta^n_{\mathfrak{m}^\ell}$.

Proposition

There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(\digamma_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_{\digamma}\overline{\digamma},\mathbb{Z}_{\ell}(\textit{n}))_{\mathfrak{m}^{\ell}})\xrightarrow{\sim}\mathsf{coker}\,\Delta^n_{\mathfrak{m}^{\ell}}.$$

Moreover, under the above isomorphism, the element $\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}})))$ coincides with the image of the cycle class of the strict transform of M_{diag} in Q_0 (regarded as in $B^n(Q)^0_{\mathfrak{m}^\ell}$) under the natural map $B^n(Q)^0_{\mathfrak{m}^\ell} \to C^n(Q)_{\mathfrak{m}^\ell} \to \mathrm{coker}\,\Delta^n_{\mathfrak{m}^\ell}$.

To further simplify the discussion, from now on, we will just consider the case where $n=n_0$, that is, n is **even**. We introduce more notation.

Proposition

There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))_{\mathfrak{m}^\ell})\xrightarrow{\sim}\mathsf{coker}\,\Delta^n_{\mathfrak{m}^\ell}.$$

Moreover, under the above isomorphism, the element $\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}})))$ coincides with the image of the cycle class of the strict transform of M_{diag} in Q_0 (regarded as in $B^n(Q)^0_{\mathfrak{m}^\ell}$) under the natural map $B^n(Q)^0_{\mathfrak{m}^\ell} \to C^n(Q)_{\mathfrak{m}^\ell} \to \mathrm{coker}\,\Delta^n_{\mathfrak{m}^\ell}$.

To further simplify the discussion, from now on, we will just consider the case where $n=n_0$, that is, n is **even**. We introduce more notation.

- \diamond Write n = 2r.
- \diamond Denote by $\sigma \colon \mathcal{Q} \to \mathcal{P}$ the blow-up morphism.
- \diamond Put $P^{\circ \bullet} := M_n^{\circ} \times M_{n+1}^{\bullet}$ and denote by $Q^{\circ \bullet}$ its strict transform under σ . Similarly, we have $P^{\circ \circ}$, $P^{\bullet \circ}$, $P^{\bullet \circ}$, and their versions in Q. In particular, Q_0 is the disjoint union of $Q^{\circ \circ}$, $Q^{\circ \bullet}$, $Q^{\bullet \circ}$ and $Q^{\bullet \circ}$.

Proposition

There is a canonical isomorphism

$$\mathrm{H}^1_{\mathrm{sing}}(F_{\mathfrak{p}},\mathrm{H}^{2n-1}(P'\otimes_F\overline{F},\mathbb{Z}_\ell(n))_{\mathfrak{m}^\ell})\xrightarrow{\sim}\mathsf{coker}\,\Delta^n_{\mathfrak{m}^\ell}.$$

Moreover, under the above isomorphism, the element $\partial_{\mathfrak{p}}(\mathrm{loc}_{\mathfrak{p}}(\alpha(M'_{\mathrm{diag}})))$ coincides with the image of the cycle class of the strict transform of M_{diag} in Q_0 (regarded as in $B^n(Q)^0_{\mathfrak{m}^\ell}$) under the natural map $B^n(Q)^0_{\mathfrak{m}^\ell} \to C^n(Q)_{\mathfrak{m}^\ell} \to \mathrm{coker}\ \Delta^n_{\mathfrak{m}^\ell}$.

To further simplify the discussion, from now on, we will just consider the case where $n=n_0$, that is, n is **even**. We introduce more notation.

- \diamond Write n = 2r.
- \diamond Denote by $\sigma \colon \mathcal{Q} \to \mathcal{P}$ the blow-up morphism.
- \diamond Put $P^{\circ \bullet} := M_n^{\circ} \times M_{n+1}^{\bullet}$ and denote by $Q^{\circ \bullet}$ its strict transform under σ . Similarly, we have $P^{\circ \circ}$, $P^{\bullet \circ}$, $P^{\bullet \circ}$, and their versions in Q. In particular, Q_0 is the disjoint union of $Q^{\circ \circ}$, $Q^{\circ \bullet}$, $Q^{\bullet \circ}$ and $Q^{\bullet \circ}$.

We now construct a canonical map

$$\nabla \colon \mathrm{H}^{2n}(\overline{\mathbb{Q}_0}, \mathbb{Z}_\ell(n)) \to \mathbb{Z}_\ell[S_n^\circ] \otimes_{\mathbb{Z}_\ell} \mathbb{Z}_\ell[S_{n+1}^\circ],$$

which turns out to factor through $C^n(Q)$ and induce an isomorphism

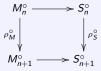
$$(\operatorname{coker} \Delta^n)/\mathfrak{m}^{\ell^m} \to \mathbb{Z}[S_n^\circ]/\mathfrak{m}_n^{\ell^m} \otimes \mathbb{Z}[S_{n+1}^\circ]/\mathfrak{m}_{n+1}^{\ell^m}$$

for the quotient.

To construct ∇ , we will find many cycles contained in Q_0 that are indexed by S_N° (for N=n,n+1). It turns out that the union of those cycles is exactly the basic locus of M_N , that is, the locus where $A[\mathfrak{p}^{\infty}]$ is supersingular.

To construct ∇ , we will find many cycles contained in Q_0 that are indexed by S_N° (for N=n,n+1). It turns out that the union of those cycles is exactly the basic locus of M_N , that is, the locus where $A[\mathfrak{p}^{\infty}]$ is supersingular.

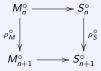
Indeed, the whole M_N° is contained in the basic locus. We also recall that it is a projective bundle over S_N° , which fits into the following diagram



and that the closed subscheme M_N^\dagger of M_N° is a Fermat hypersurface (of degree p+1).

To construct ∇ , we will find many cycles contained in Q_0 that are indexed by S_N° (for N=n,n+1). It turns out that the union of those cycles is exactly the basic locus of M_N , that is, the locus where $A[\mathfrak{p}^{\infty}]$ is supersingular.

Indeed, the whole M_N° is contained in the basic locus. We also recall that it is a projective bundle over S_N° , which fits into the following diagram



and that the closed subscheme M_N^{\dagger} of M_N° is a Fermat hypersurface (of degree p+1).

To study the basic locus on M_N^{\bullet} , we fix an O_F -submodule $\mathfrak{p}\Lambda_n \subseteq \Lambda_n^{\bullet} \subseteq \Lambda_n$ such that $\Lambda_n^{\bullet}/\mathfrak{p}\Lambda_n$ is a Lagrangian subspace of $\Lambda_n/\mathfrak{p}\Lambda_n$. Put $\Lambda_{n+1}^{\bullet} := \Lambda_n^{\bullet} \oplus O_F \cdot 1$. For $N \in \{n, n+1\}$, put

$$S_N^{\bullet} := H_N(\mathbb{Q}) \backslash H_N(\mathbb{A}^{\infty}) / K_N^{D \bullet},$$

where $K_N^{D\bullet}$ is defined similarly as K_N^D using Λ_N^{\bullet} . We also put $S_N^{\dagger} := H_N(\mathbb{Q}) \backslash H_N(\mathbb{A}^{\infty}) / K_N^{D\dagger}$, where $K_N^{D\dagger} := K_N^D \cap K_N^{D\bullet}$.

To construct ∇ , we will find many cycles contained in Q_0 that are indexed by S_N° (for N=n,n+1). It turns out that the union of those cycles is exactly the basic locus of M_N , that is, the locus where $A[\mathfrak{p}^{\infty}]$ is supersingular.

Indeed, the whole M_N° is contained in the basic locus. We also recall that it is a projective bundle over S_N° , which fits into the following diagram

$$\begin{array}{ccc} M_n^{\circ} & \longrightarrow & S_n^{\circ} \\ & & & \downarrow \rho_S^{\circ} \\ M_{n+1}^{\circ} & \longrightarrow & S_{n+1}^{\circ} \end{array}$$

and that the closed subscheme M_N^{\dagger} of M_N° is a Fermat hypersurface (of degree p+1).

To study the basic locus on M_N^{\bullet} , we fix an O_F -submodule $\mathfrak{p}\Lambda_n \subseteq \Lambda_n^{\bullet} \subseteq \Lambda_n$ such that $\Lambda_n^{\bullet}/\mathfrak{p}\Lambda_n$ is a Lagrangian subspace of $\Lambda_n/\mathfrak{p}\Lambda_n$. Put $\Lambda_{n+1}^{\bullet} := \Lambda_n^{\bullet} \oplus O_F \cdot 1$. For $N \in \{n, n+1\}$, put

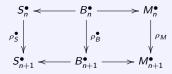
$$S_N^{ullet} := H_N(\mathbb{Q}) \backslash H_N(\mathbb{A}^{\infty}) / K_N^{D ullet},$$

where $K_N^{D\bullet}$ is defined similarly as K_N^D using Λ_N^{\bullet} . We also put $S_N^{\dagger} := H_N(\mathbb{Q}) \backslash H_N(\mathbb{A}^{\infty}) / K_N^{D\dagger}$, where $K_N^{D\dagger} := K_N^D \cap K_N^{D\bullet}$.

Similar to ρ_S° , we have the maps

$$\rho_S^{\bullet} \colon S_n^{\bullet} \to S_{n+1}^{\bullet}, \quad \rho_S^{\dagger} \colon S_n^{\dagger} \to S_{n+1}^{\dagger}.$$

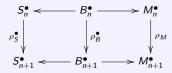
We construct a commutative diagram



in which ρ_B^{\bullet} is locally an isomorphism, $B_N^{\bullet} \to S_N^{\bullet}$ is projective smooth of dimension r, and $B_N^{\bullet} \to M_N^{\bullet}$ is a closed immersion when restricted to each connected component of the source.

Basic locus

We construct a commutative diagram



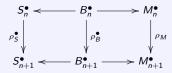
in which ρ_B^{\bullet} is locally an isomorphism, $B_N^{\bullet} \to S_N^{\bullet}$ is projective smooth of dimension r, and $B_N^{\bullet} \to M_N^{\bullet}$ is a closed immersion when restricted to each connected component of the source.

The fibers of the morphism $B_N^{\bullet} \to S_N^{\bullet}$ are certain Deligne–Lustig varieties. For example, when n=2, the fibers are isomorphic to \mathbb{P}^1 ; when n=4, the fibers are up to purely inseparable morphisms blow-ups of the Fermat surface along all O_F/\mathfrak{p} -points.

For $N \in \{n, n+1\}$, the union of M_N° and the image of $B_N^{\bullet} \to M_N^{\bullet}$ is exactly the basic locus of M_N .

Basic locus

We construct a commutative diagram



in which ρ_B^\bullet is locally an isomorphism, $B_N^\bullet \to S_N^\bullet$ is projective smooth of dimension r, and $B_N^\bullet \to M_N^\bullet$ is a closed immersion when restricted to each connected component of the source.

The fibers of the morphism $B_N^{\bullet} \to S_N^{\bullet}$ are certain Deligne–Lustig varieties. For example, when n=2, the fibers are isomorphic to \mathbb{P}^1 ; when n=4, the fibers are up to purely inseparable morphisms blow-ups of the Fermat surface along all O_F/\mathfrak{p} -points.

For $N \in \{n, n+1\}$, the union of M_N° and the image of $B_N^\bullet \to M_N^\bullet$ is exactly the basic locus of M_N . For the intersection between M_N° and B_N^\bullet , we have the commutative diagram

in the category of O_F/\mathfrak{p} -schemes, in which the fibers of the left morphism are isomorphic to \mathbb{P}^{r-1} .

We now define four maps, which we call incidence maps.

17 / 19

We now define four maps, which we call incidence maps.

$$\begin{split} \operatorname{Inc}_{\circ \uparrow} &: \operatorname{H}^{2n}(\overline{Q^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\sigma_{1}} \operatorname{H}^{2n}(\overline{P^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\dagger}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r+2}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r+1)) \\ &\xrightarrow{\operatorname{Lef}} \operatorname{H}^{2(n-1)}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(n-1)) \otimes \operatorname{H}^{2n}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\circ}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\circ}]. \end{split}$$

We now define four maps, which we call incidence maps.

$$\begin{split} \operatorname{Inc}_{\circ \uparrow} &: \operatorname{H}^{2n}(\overline{Q^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\sigma_{1}} \operatorname{H}^{2n}(\overline{P^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r)) \\ \xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r+2}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r+1)) \\ \xrightarrow{\operatorname{Lef}} \operatorname{H}^{2(n-1)}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(n-1)) \otimes \operatorname{H}^{2n}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\circ}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\circ}]. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\circ \bullet} \colon \operatorname{H}^{2n}(\overline{Q^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) &\xrightarrow{\sigma_{1}} \operatorname{H}^{2n}(\overline{P^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kün}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Lef}} \operatorname{H}^{2(n-1)}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(n-1)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\circ}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\circ}]. \end{split}$$

We now define four maps, which we call incidence maps.

$$\begin{split} \operatorname{Inc}_{\circ \uparrow} &: \operatorname{H}^{2n}(\overline{Q^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\sigma_{!}} \operatorname{H}^{2n}(\overline{P^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r+2}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(r+1)) \\ &\xrightarrow{\operatorname{Lef}} \operatorname{H}^{2(n-1)}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(n-1)) \otimes \operatorname{H}^{2n}(\overline{M_{n+1}^{\circ}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\circ}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\circ}]. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\circ \bullet} \colon \operatorname{H}^{2n}(\overline{Q^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) &\xrightarrow{\sigma_{!}} \operatorname{H}^{2n}(\overline{P^{\circ \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kün}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Lef}} \operatorname{H}^{2(n-1)}(\overline{M_{n}^{\circ}}, \mathbb{Z}_{\ell}(n-1)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ &\xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\circ}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\circ}]. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\bullet \uparrow} \colon \operatorname{H}^{2n}(\overline{Q^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) &\stackrel{\sigma_{1}}{\longrightarrow} \operatorname{H}^{2n}(\overline{P^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M^{\bullet}_{n}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M^{\bullet}_{n+1}}, \mathbb{Z}_{\ell}(r)) \\ &\stackrel{\operatorname{res}}{\longrightarrow} \operatorname{H}^{2r}(\overline{B^{\bullet}_{n}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M^{\uparrow}_{n+1}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \operatorname{H}^{2r}(\overline{B^{\bullet}_{n}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2(r+1)}(\overline{M^{\circ}_{n+1}}, \mathbb{Z}_{\ell}(r+1)) \\ \xrightarrow{\operatorname{Lef}} \operatorname{H}^{2r}(\overline{B^{\bullet}_{n}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2n}(\overline{M^{\circ}_{n+1}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S^{\bullet}_{n}] \otimes \mathbb{Z}_{\ell}[S^{\circ}_{n+1}]. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\bullet \bullet} \colon \operatorname{H}^{2n}(\overline{Q^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) &\xrightarrow{\sigma_{1}} \operatorname{H}^{2n}(\overline{P^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ \xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{B_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\bullet}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\bullet}]. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\bullet \bullet} \colon \operatorname{H}^{2n}(\overline{Q^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) & \xrightarrow{\sigma_!} \operatorname{H}^{2n}(\overline{P^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ & \xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{B_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\bullet}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\bullet}]. \end{split}$$

For $N \in \{n,n+1\}$, the correspondence $S_N^\circ \leftarrow S_N^\dagger \to S_N^\bullet$ of finite sets gives rise to two "transpose" maps

 $\mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\circ] \to \mathbb{Z}_\ell[S_N^\bullet], \quad \mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\bullet] \to \mathbb{Z}_\ell[S_N^\circ]$

according to the domain.

$$\begin{split} \operatorname{Inc}_{\bullet \bullet} \colon & \operatorname{H}^{2n}(\overline{Q^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\sigma_{1}} \operatorname{H}^{2n}(\overline{P^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ \xrightarrow{\operatorname{res}} & \operatorname{H}^{2r}(\overline{B_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\bullet}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\bullet}]. \end{split}$$

For $N \in \{n,n+1\}$, the correspondence $S_N^\circ \leftarrow S_N^\dagger \to S_N^\bullet$ of finite sets gives rise to two "transpose" maps

$$\mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\circ] \to \mathbb{Z}_\ell[S_N^\bullet], \quad \mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\bullet] \to \mathbb{Z}_\ell[S_N^\circ]$$

according to the domain. We now define abla to be the sum of the following four maps

$$\begin{split} & (\mathtt{T}_n^2 \otimes \mathtt{T}_{n+1}^2) \circ \mathtt{Inc}_{\circ \dagger}, \quad (\rho+1)^2 (\mathtt{T}_n^2 \otimes \mathtt{T}_{n+1}) \circ \mathtt{Inc}_{\circ \bullet}, \\ & (\rho+1) (\mathtt{T}_n \otimes \mathtt{T}_{n+1}^2) \circ \mathtt{Inc}_{\bullet \dagger}, \quad (\rho+1)^3 (\mathtt{T}_n \otimes \mathtt{T}_{n+1}) \circ \mathtt{Inc}_{\bullet \bullet}. \end{split}$$

$$\begin{split} \operatorname{Inc}_{\bullet \bullet} \colon \operatorname{H}^{2n}(\overline{Q^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) & \xrightarrow{\sigma_!} \operatorname{H}^{2n}(\overline{P^{\bullet \bullet}}, \mathbb{Z}_{\ell}(n)) \xrightarrow{\operatorname{Kun}} \operatorname{H}^{2r}(\overline{M_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{M_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \\ & \xrightarrow{\operatorname{res}} \operatorname{H}^{2r}(\overline{B_{n}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \otimes \operatorname{H}^{2r}(\overline{B_{n+1}^{\bullet}}, \mathbb{Z}_{\ell}(r)) \xrightarrow{\operatorname{Gys}} \mathbb{Z}_{\ell}[S_{n}^{\bullet}] \otimes \mathbb{Z}_{\ell}[S_{n+1}^{\bullet}]. \end{split}$$

For $N \in \{n,n+1\}$, the correspondence $S_N^\circ \leftarrow S_N^\dagger \to S_N^\bullet$ of finite sets gives rise to two "transpose" maps

$$\mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\circ] \to \mathbb{Z}_\ell[S_N^\bullet], \quad \mathtt{T}_N \colon \mathbb{Z}_\ell[S_N^\bullet] \to \mathbb{Z}_\ell[S_N^\circ]$$

according to the domain. We now define abla to be the sum of the following four maps

$$(\mathtt{T}_n^2 \otimes \mathtt{T}_{n+1}^2) \circ \mathtt{Inc}_{\circ \dagger}, \quad (p+1)^2 (\mathtt{T}_n^2 \otimes \mathtt{T}_{n+1}) \circ \mathtt{Inc}_{\circ \bullet},$$

$$(p+1) (\mathtt{T}_n \otimes \mathtt{T}_{n+1}^2) \circ \mathtt{Inc}_{\bullet \dagger}, \quad (p+1)^3 (\mathtt{T}_n \otimes \mathtt{T}_{n+1}) \circ \mathtt{Inc}_{\bullet \bullet}.$$

Proposition

The map $\nabla\colon \mathrm{H}^{2n}(\overline{\mathbb{Q}_0},\mathbb{Z}_\ell(n))\to \mathbb{Z}_\ell[S_n^\circ]\otimes_{\mathbb{Z}_\ell}\mathbb{Z}_\ell[S_{n+1}^\circ]$ defined above factors through $C^n(Q)$ and induce an isomorphism

$$(\operatorname{coker} \Delta^n)/\mathfrak{m}^{\ell^m} \to \mathbb{Z}[S_n^{\circ}]/\mathfrak{m}_n^{\ell^m} \otimes \mathbb{Z}[S_{n+1}^{\circ}]/\mathfrak{m}_{n+1}^{\ell^m}.$$

Thank you for your attention!