Dynamical Freezing and Emergent Conservations in
Interacting Systems

SQMVS 2024

Arnab Das
Indian Association for the Cultivation of Science

Collaborators: Asmi Haldar (MPI-PKS, Dresden), Roderich Moessner (MPI-PKS,
Dresden), Diptiman Sen (lISc, Bangalore)



Conservation laws and Statistical Mechanics
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+ (O, H| # 0 = O is not conserved
Hypothesis: What if:
ETH/Quantum Chaos

(O, H] = &(# 0) but small?

3 Will there be approximate but perpetual (stable) conservation of @ if € is small
enough?
» Not known for Sure: no KAM-like “Threshold Theorem” in quantum Mechanics.
General Belief: Conservations are destroyed even for an infinitesimal €



Non-trivial Steady States
in the absence of any exact conservation in “closed”
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/ Drive (Let’s Kill the Energy Conservation)
mm) Are there non-trivial “Stable States”

- 1!. In a closed many-body system?




Killing The Energy Conservation Minimally:
The Floguet Question

(No External Bath)
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Unbounded “Heating” (energy absorption)
from the drive
(Fermi’s Golden Rule type scenario)

Interesting Steady States/Non-equilibrium
Ensembles stabilized by quantum effects:
New sets of Floquet Conservation Laws/
f\\ /A f ‘ Constraints in the presence of the drive
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Integrable Ising Chain:
Dynamical Freezing and Emergent Conservation

AD, PRB (2010)
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Questions

<+ Why no unbounded heating? What is stopping it?

**Why there is an approximate but perpetual
conservation?

**What happens in interacting non-integrable
systems?



A Concrete Example:
Strong Drive + Non-Integrable Static Part

(A.Haldar, R. Moessner, AD., PRB 2018)

H(t) = Hy(t) + V,where
Hy(t) = H§ + Sgn(sin(wt))Hp, with

Tested up to 101° cycles
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The Floquet ThermalizationThreshold
(Reminiscence of KAM)
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» The threshold doesn’t move with the system-size.

» Finer resolution shows, m* is more strongly frozen for larger L above the threshold.




Beyond the Threshold: Dynamical Freezing
and Emergent Conservation

J =1,k =0.7n/3,h§ = /10, hj, = 40, L = 14
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Longitudinal magnetization emerges as an approximately conserved
guantity under the Drive condition:
= kW

This happens for a very broad range of W

A. Haldar, D. Sen, R. Moessner, AD (PRX, 2021)



Summary of the Emergent Conservation
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Resonances




m'pg / m(0)

Resonances are sufficiently Isolated!
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» Resonances are Isolated:
» Resonance-free parameter regimes: No Heating!



Analytical Approaches

» A Floquet Perturbation Theory
(Expected to explain the Resonances)

» Magnus Expansion in a Moving Frame
(Expected to explain the high w regime)



(1) Resonances: A Floguet Perturbation Theory

H(t) = Ho(t) + Vi [Ho(t),Ho(t)] =0 Vi, t' and (n|V|n) =0
Ho(t)|n) = En(t)|n); (mln) = nn

» Here V is the perturbation (small ) and for V =0, |n> are the Floquet states.

» Goal = Finding the Floquet State for finite V expanding perturbatively around |n>.
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The resonance condition: o foT dt[Em (t)—En(t)] _ 1




The ANNNI-Chain Case

H(t) = Hy(t) + V, where
Hy(t) = Hf + Sgn(sin(wt))HD,with
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(11) Strong-Drive Magnus Expansion
In A Rotating Frame

©. @)

Standard Magnus » Hepp = Z H{Ywhere Contains
Expansion n=0 large terms
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The Effective Hamiltonian in the Moving Frame
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The Generality of Dynamical Freezing:
Arbitrary Two-body Heisenberg Interactions (Static)

We get A Generalized Heisenberg Model by following substitutions in the
previous Hamiltonian:

Hi — H{(Heisenberg) = — E Jii0i07 + K E 0y 05 0 — hg E of
i, i\ i

V — V(Heisenberg) = — Z Jolod — Z Jijoi05 —h* Z o
i)j 0] e
This gives (up to two initial orders of Rotating Frame ME):
T . 1 i z y_y Z +Z
Hery = Hy(Heisenberg) — 5 Z(Jij + quj) [Ur..; o, + 0; Uj}

1]
= [Heffjmx] =0 \
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Emergent non-trivial U(1) Symmetric term




Generality of Dynamical Freezing
and Emergent Conservation Other Ising Examples
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Various Models (L-dependence at Freezing Point)
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(a) Ising: NN + NNN

(b) Ising: 3-spin Interactions

(c) Ising: 1/r Interactions (long-range)

(d) Heisenberg: Homogeneous, Isotropic
(e) Heisenberg: Homogeneous, Anisotropic




Further Structures and Conservation Laws!
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Strong Field:
A Surrogate Mother of Conservation Laws

— the o' Eigenstate of {7} Ordered by the
th . = » expectation value of C*
the o™ Floquet Eigenstate over them.

1 &
A:_ xaCxﬂjQ - a‘Cx Qo
i 2l ) = Gl )

For CX - Cz

— L =8
L =10
—— L =12

0.00 0.05 0.10 0.15 0.20
K

0.25 0.30

Asmi Haldar (Paul Sabatier University)
+
Anirban Das (IACS),

Sagnik Chaudhury (IACS), Luke Staszewski
(MPI-PKS), Alex Wietek (MPI-PKS),
Frank Pollmann (TUM)

R. Moessner (MPI-PKS), AD



Probably Divergent Series Hide the key!

¢ In general, Many-Body Series (including both we discussed) have
zero radii of convergence!
(The norm grows with the order as the number of processes explodes
with the order and diverges with L)

» But those divergences might not have any physical significance!
The Series can be Asymptotic to so well-behaved function with at most
(physically meaningful) isolated singularities!

Example: The Renormalized (the individual term after mass and charge
renormalization) series of QED for any observable

expanded as a perturbation series in e (€ = electron charge) after
integrating the equation of motion over time.
(F. J. Dyson, Phys. Rev. 85, 631 1952)

How to extract information from a divergent series?

Borel-Laplace summation and other summation machines.
Connection via Resurgence theory
(see, e.g. D. Dorigoni, Annals of Phys 409, 167914 2019).




Thanks!

IACS (1876)
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