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Conservation laws and Statistical Mechanics

Quantum Mechanics

Gibbs’ 
Statistical 
Mechanics

≡
Entropy Maximization Subject to Exact (local, additive) 

Conservation Laws

Additive Local 
Conserved 
Quantities

Lagrange Multipliers

Hypothesis:
ETH/Quantum Chaos

Many-body 
System

➢ Not known for Sure: no KAM-like “Threshold Theorem” in quantum Mechanics. 

General Belief: Conservations are destroyed even for an infinitesimal ε 

What if: 

❑ Will there be approximate but perpetual (stable) conservation of O if ε is small 

enough?

+



Non-trivial Steady States
in the absence of any exact conservation in “closed” 

systems?

Initial Conditions

Are there non-trivial “Stable States”

in a closed many-body system?

One initial Condition
(in ETH sense)

One
Conservation

Law

(Let’s Kill the Energy Conservation)

locally

~
Statistical Mechanics:

Generic  
System

Drive



+
(Unitary Periodic 

Drive) 

= ?

(A) Intuitive/Conventional
Unbounded “Heating” (energy absorption) 

from the drive
(Fermi’s Golden Rule type scenario)

(B) Recent

Interesting Steady States/Non-equilibrium 
Ensembles stabilized by quantum effects: 
New sets of Floquet Conservation Laws/ 
Constraints in the presence of the drive

Killing The Energy Conservation Minimally:

The Floquet Question

Interacting 
Degrees 

of Freedom 

(No External Bath)

Floquet Quantum Matter 



Integrable Ising Chain:

Dynamical Freezing and Emergent Conservation

    
AD, PRB (2010)

❖Freezing/Conservation of 𝑚𝑧 Happens 
for any Initial State!

𝑚𝑧

Approximately 
but 

Perpetually
Conserved

An Emergent Conservation 
Law



Questions

❖ Why no unbounded heating? What is stopping it?

❖Why there is an approximate but perpetual 
conservation? 

❖What happens in interacting non-integrable 
systems?



A Concrete Example:

Strong Drive + Non-Integrable Static Part

(A.Haldar, R. Moessner, AD., PRB 2018)

Te
Tested up to 1015 cycles
recently 



➢ The threshold doesn’t move with the system-size.

➢ Finer resolution shows, 𝑚𝑥 is more strongly frozen for larger L above the threshold.

The Floquet ThermalizationThreshold 

(Reminiscence of KAM)

Initial State = the Ground State of H(t=0)

Focus is on the
t → ∞ limit:

The Diagonal 
Ensemble Average

(DE/DEA)



Beyond the Threshold: Dynamical Freezing

and Emergent Conservation

Longitudinal magnetization emerges as an approximately conserved 

quantity under the Drive condition:  

This happens for a very broad range of 

A. Haldar, D. Sen, R. Moessner, AD (PRX, 2021)



Summary of the Emergent Conservation

Note that

Conserved
Quantity

➢ Affects Stat Mech:
Needs to take care of the 
Emergent Conservation to 

construct the correct 
ensemble

➢ Conservations are not 
Planter

 

Fragmentation



Resonances



Resonances are sufficiently Isolated! 

ω = 0.04 

β = 0.01T = 0 T = 0

➢Resonances are Isolated:
➢  Resonance-free parameter regimes: No Heating! 



Analytical Approaches

➢A Floquet Perturbation Theory 
(Expected to explain the Resonances)

➢Magnus Expansion in a Moving Frame
 (Expected to explain the high ω regime)

 



(I) Resonances: A Floquet Perturbation Theory

; and

➢ Here V is the perturbation (small ) and for V = 0,  |n> are the Floquet states. 

➢ Goal = Finding the Floquet State for finite V expanding perturbatively around |n>.

TDSE:

Expansion:

(to 1st order in V)

Coefficients:

The resonance condition:



The ANNNI-Chain Case

1st order Resonance Condition (isolated resonances)

Single Spin-flip Perturbation 

σ𝑥f (        )

ω = 0.04, β = 0.01

Mystery: All of the Resonances are 
captured by the 1st order 

perturbation theory!  
No other divergences are observed.



(II) Strong-Drive Magnus Expansion 

in A Rotating Frame

Standard Magnus 
Expansion

Switching to a 
Rotating Frame

This is chosen 
to cancel out 

the large term 
exactly

ME

Contains 
large terms 
in our case

The large number goes 
into the phase 

1st order is qualitatively 
wrong at

freezing points! 
(No hope of even an

asymptotic expansion) 



The Effective Hamiltonian in the Moving Frame

;
Any



The Generality of Dynamical Freezing:

 Arbitrary Two-body Heisenberg Interactions (Static)

We get A Generalized Heisenberg Model by following substitutions in the 
previous Hamiltonian:

This gives (up to two initial orders of Rotating Frame ME):

Emergent non-trivial U(1) Symmetric term



Generality of Dynamical Freezing

and Emergent Conservation Other Ising Examples



Various Models (L-dependence at Freezing Point)

(a) Ising: NN + NNN
(b) Ising: 3-spin Interactions
(c) Ising: 1/r Interactions (long-range)
(d) Heisenberg:  Homogeneous, Isotropic 
(e) Heisenberg: Homogeneous, Anisotropic 



Further Structures and Conservation Laws!

.

.

.



Strong Field: 

A Surrogate Mother of Conservation Laws

Ordered by the 
expectation value of  𝐶𝑥 

over them.  

𝐶𝑥 𝐶𝑥

For 𝐶𝑥 = 𝐶2   

Asmi Haldar (Paul Sabatier University) 
+ 

Anirban Das (IACS),
Sagnik Chaudhury (IACS), Luke Staszewski 

(MPI-PKS), Alex Wietek (MPI-PKS),  
Frank Pollmann (TUM)

R. Moessner (MPI-PKS), AD



Probably Divergent Series Hide the key!
❖ In general, Many-Body Series (including both we discussed) have 

zero radii of convergence! 
(The norm grows with the order as the number of processes explodes

with the order and diverges with L)
 

➢ But those divergences might not have any physical significance!  
The Series can be Asymptotic to so well-behaved function with at most 

(physically meaningful) isolated singularities!
 

Example: The Renormalized (the individual term after mass and charge 
renormalization) series of QED for any observable

expanded as a perturbation series in 𝑒2 (e = electron charge) after 
integrating the equation of motion over time. 

 (F. J. Dyson, Phys. Rev. 85, 631 1952)

How to extract information from a divergent series?

Borel-Laplace summation and other summation machines. 
Connection via Resurgence theory 
(see, e.g. D. Dorigoni, Annals of Phys 409, 167914 2019).



Thanks!
(1876)IACS
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