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The broad question

Question. If and when a system deviates from its usual
behaviour, how likely it is to cause a cascade of additional
deviations?

I Let X0,X1,X2, . . . be a stationary process with finite
mean µ.

I For fixed ε > 0, given that 1
n

∑n−1
i=0 Xi > µ+ ε, how

likely is it that

1

n

j+n−1∑
i=j

Xi > µ+ ε

for j = 1, 2, 3, . . .?
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An example
I Consider an insurance company which earns a premium

of Yi and settles claims worth Zi in the i-th year.

I If E(Yi ) > E(Zi ), then under some assumptions,

1

n

n∑
i=1

(Yi − Zi ) ≈ E(Y1 − Z1) > 0 ,

with high probability, for large n. That is, the company
makes profit in the long run.

I In case it does happen that
n∑

i=1

(Yi − Zi ) ≤ 0 ,

the company would be interested in knowing the
conditional probabilities of the following events for
j ≥ 1:

j+n−1∑
i=j

(Yi − Zi ) ≤ 0 .
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Large deviations

Theorem (Cramér (1938))

Let X1,X2, . . . be i.i.d. random variables with

Λ(t) = logE
(
etX1

)
<∞ , t ∈ R .

Then, for x > E(X1) with P(X1 > x) > 0,

lim
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi ≥ x

)
= −Λ∗(x) ,

where
Λ∗(x) = sup

t∈R
(tx − Λ(t)) .
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Strong large deviations

Theorem (Bahadur and Ranga Rao (1960))

Let X1,X2, . . . be i.i.d. from a non-lattice distribution with

Λ(t) = logE
(
etX1

)
<∞ , t ∈ R .

Then, for x0 > E(X1) with P(X1 > x0) > 0, there exists
a > 0 such that Λ′(a) = x0.

Furthermore,

P

(
1

n

n∑
i=1

Xi > x0

)
∼ 1

a
√

2πΛ′′(a)
n−1/2e−nΛ∗(x0) ,

that is,

lim
n→∞

n1/2enΛ∗(x0)P

(
1

n

n∑
i=1

Xi > x0

)
=

1

a
√

2πΛ′′(a)
.
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Non-identically distributed random variables

1. Results of Gärtner (1977) and Ellis (1984) yield large
deviations of sums of independent possibly
non-identically distributed random variables on the
logarithmic scale.

2. Chaganty and Sethuraman (1993) studied strong large
deviations of sums of independent possibly
non-identically distributed random variables.

3. Little is known about the asymptotic conditional
distribution given that a large deviation event has
occurred.
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Folklore

If Zn is the sum of several independent random variables,

I the event [Zn − E(Zn) > xVar(Zn)] is a “large
deviation” for fixed x > 0,

I while [Zn − E(Zn) > ηn] is a “moderate deviation”
event if √

Var(Zn)� ηn � Var(Zn) , n→∞ .

Important distinction: Large deviation probabilities depend
on the distribution while moderate deviation probabilities
depend only on the variance.
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Clustering of rare events

I Let (Xn : n ≥ 0) be a stationary ergodic process with

E
(
etX0

)
<∞ , t ∈ R .

I Denote µ = E(X0), and

Ej ,ε(n) =

1

n

j+n−1∑
i=j

Xi > µ+ ε

 ,
for ε > 0, j ≥ 0 and n ≥ 1. That is, Ej ,ε(n) is the event
that the mean of the sample Xj , . . . ,Xj+n−1 deviates
from the population mean by at least ε.
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The question

I For a fixed ε > 0 and large n, if E0,ε(n) occurs, how
many of the subsequent Ej ,ε(n)’s are made likely by it?

I Regardless of whether E0,ε(n) occurs or not, ergodicity
implies if P(E0,ε(n)) > 0, then

∞∑
j=1

1Ej,ε(n) =∞ a.s.

Occurrences of the “nearby” Ej ,ε(n)’s are to be
considered, therefore.

I The answer depends on the “memory” of (Xn : n ≥ 0).
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Memory of a Gaussian process

A stationary Gaussian process (Xn : n ∈ Z) has

I “short memory” if

∞∑
n=1

|Cov(X0,Xn)| <∞ ,

and
∞∑

n=−∞
Cov(X0,Xn) 6= 0 ,

I and “long memory” if

Cov(X0,Xn) ∼ cn−α , n→∞ ,

for some α ∈ (0, 1) and 0 < c <∞.
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Moving average process

I Let (Zn : n ∈ Z) be a collection of i.i.d. zero mean
random variables with finite exponential moments.

I Let a0, a1, . . . ∈ R be such that

∞∑
j=0

a2
j <∞ .

I Set

Xn = µ+
∞∑
j=0

ajZn−j , n ≥ 0 .

I Then, (Xn : n ≥ 0) is a moving average (M.A.) process
with inputs (Zn) and coefficients (aj). In particular, it is
ergodic and the marginal has mean µ.
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Moving average process (contd.)

I If
∞∑
j=0

|aj | <∞ ,

and
∞∑
j=0

aj 6= 0 ,

then (Xn) is a “short memory” process.

I On the contrary, if

aj ∼ j−α , j →∞ ,

for some 1
2 < α < 1, then (Xn) has a “long memory”.
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The short memory regime

In this regime, the clustering is studied in 3 steps.

1. Given E0,ε(n), for a fixed ε > 0,(
1Ej,ε(n) : j = 1, 2, 3, . . .

)
is shown to have an asymptotic non-degenerate weak
limit as n→∞.
Consequently, for fixed K ∈ N,

P

 K∑
j=1

1Ej,ε(n) ∈ ·
∣∣∣E0,ε(n)

⇒ νK ,ε(·) ,

for some probability measure νK ,ε on R.
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The short memory regime (contd.)

2. For fixed ε, the “total cluster size” is finite, that is,

νK ,ε ⇒ νε ,K →∞ .

Letting n→∞ and K →∞ in this order makes precise
that νε is the law of the total number of events whose
occurrence has been caused by that of E0,ε(n), for large
n.

3. The behaviour of the total cluster size νε is studied,
after appropriate scaling, as ε ↓ 0.
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The short memory setup

I Let (Xn : n ≥ 0) be an M.A. process with i.i.d. zero
mean inputs (Zn : n ∈ Z) having all exponential
moments finite, and coefficients (aj : j ≥ 0) satisfying

∞∑
j=0

|aj | <∞ , and A :=
∞∑
j=0

aj 6= 0 .

I Assume µ = 0 without loss of generality.

I Assume Z0 is not supported on a lattice, that is,∣∣∣E(eιtZ0

)∣∣∣ < 1 , t ∈ R \ {0} , ι =
√
−1 .

I Without loss of generality, assume A > 0 .
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I For all θ ∈ R, let Gθ be the probability measure on R
obtained by “exponentially tilting” the distribution of
Z0 by θ, that is,

Gθ(dx) =
[
E
(
eθZ0

)]−1
eθxP(Z0 ∈ dx) .

I Denote

s0 = sup {z ∈ R : P(Z0 ≤ z) < 1} ∈ (0,∞] .

I Fix ε such that
0 <

ε

A
< s0 .
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I There exists unique τ(ε) > 0 such that∫ ∞
−∞

Gτ(ε)(dx) x =
ε

A
.

I Let {Zu
j : j ∈ Z, u = + or −} be a collection of

independent random variables with distributions given
as follows:

Z−−j ∼ G(1−A−1Aj−1)τ(ε) , j ≥ 1 ,

Z−j ∼ Gτ(ε) , j ≥ 0 ,

Z+
−j ∼ GA−1Aj−1τ(ε) , j ≥ 1 ,

Z+
j ∼ G0 , j ≥ 0 ,

where

Aj =

j∑
i=0

ai , j ≥ 0 .
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I Let T ∗ follow exponential with parameter τ(ε)/A
independently of the above family.

I Define

U−n =
∞∑
i=0

aiZ
−
n−i , n ≥ 0 ,

U+
n =

∞∑
i=0

aiZ
+
n−i , n ≥ 0 .
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Theorem (C. and Samorodnitsky (2022+))

For fixed ε such that 0 < A−1ε < s0, as n→∞,

P
(
(1(Ej ,ε(n)) : j ∈ N) ∈ ·

∣∣E0,ε(n)
)

⇒ P
(
(V1(ε),V2(ε), . . .) ∈ ·

)
,

where

Vj(ε) = 1

(
T ∗ >

j−1∑
i=0

(U−i − U+
i )

)
, j ≥ 1 .
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The special case of i.i.d.

When X0,X1,X2, . . . are i.i.d., Vj(ε) has the following simple
form:

Vj(ε) = 1

(
T ∗ >

j−1∑
i=0

(Y−i − Y +
i )

)
, j ≥ 1 .

Here Y−0 ,Y
−
1 , . . . are i.i.d. copies of X0, and Y +

0 ,Y
+
1 , . . . are

i.i.d. from the tilted distribution of X0 so that the mean is ε,
and the 2 families are independent of each other, and of T ∗.
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Intuition

I For i.i.d. zero mean X1,X2, . . ., conditionally on the
event [X1 + . . .+ Xn > nε],

(X1, . . . ,Xk)⇒ (X ∗1 , . . . ,X
∗
k ) , n→∞ , (1)

where X ∗1 , . . . ,X
∗
k are i.i.d. from a distribution obtained

by exponentially tilting that of X1 by an amount such
that the mean is ε.

I Furthermore, conditionally on the above event,

n∑
i=1

Xi − nε⇒ T ∗ ,

together with (1), where T ∗ follows exponential with
some parameter, independently of (X ∗1 , . . . ,X

∗
k ).
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The limiting cluster size

I For fixed ε, the “limiting cluster size” as n→∞ is

Dε =
∞∑
j=1

Vj(ε) .

I The right hand side is finite a.s.

I Next question. How does Dε behave as ε ↓ 0 ?
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Theorem (C. and Samorodnitsky (2022+))

As ε→ 0,

ε2Dε ⇒ A2σ2
Z

∫ ∞
0

dt 1
(
T0 ≥ (

√
2Bt + t)

)
,

where
σ2
Z = Var(Z0) ,

T0 follows standard exponential and (Bt : t ≥ 0) is a
standard Brownian motion independent of T0.
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Understanding the invariance

Question. For ε fixed, the limiting distribution as n→∞
depend on the law of Z0. However, the subsequent limit as
ε→ 0 does not. Why ?

Answer. For fixed ε, [X1 + . . .+ Xn > nε] is a large
deviation event, and hence the limiting law as n→∞
depends on the distribution of Z0.
As ε→ 0, the above becomes a moderate deviation, and
hence limit depends on the distribution of Z0 only through
its variance.
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Gaussian short-memory processes

For a Gaussian process (Xn : n ∈ Z), the stated results hold
whenever

∞∑
n=0

|Cov(X0,Xn)| <∞ ,

and
∞∑

n=−∞
Cov(X0,Xn) 6= 0 .

The above is a weaker assumption than that in terms of
coefficients of the M.A. process, in the Gaussian case.



Clustering of rare
events

Arijit Chakrabarty

Motivation

History

Our work

The short memory
regime

The long memory
regime

A main ingredient

Future work

Gaussian short-memory processes

For a Gaussian process (Xn : n ∈ Z), the stated results hold
whenever

∞∑
n=0

|Cov(X0,Xn)| <∞ ,

and
∞∑

n=−∞
Cov(X0,Xn) 6= 0 .

The above is a weaker assumption than that in terms of
coefficients of the M.A. process, in the Gaussian case.



Clustering of rare
events

Arijit Chakrabarty

Motivation

History

Our work

The short memory
regime

The long memory
regime

A main ingredient

Future work

Conclusions in the short memory regime

1. Conditionally on E0,ε(n), as n→∞,(
1(E1,ε(n)), 1(E2,ε(n)), . . .

)
⇒
(
V1(ε),V2(ε), . . .

)
,

where V1(ε),V2(ε), . . . are 0-1 valued random variables
whose distribution depends on that of Z0.

2. As ε→ 0,

ε2
∞∑
j=1

Vj(ε)⇒ A2σ2
Z

∫ ∞
0

dt 1
(
T0 ≥ (

√
2Bt + t)

)
.

The RHS depends on the distribution of Z0 only
through its variance.

3. For Gaussian processes, the results can be stated in
terms of the correlations.
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Long memory

I Let (Zn : n ∈ Z) be as before, a0, a1, . . . ∈ R be such
that

aj ∼ j−α , j →∞ ,

for some 1
2 < α < 1, and (Xn) be constructed from the

above as before.

I It turns out in this regime that for all fixed j ∈ N,

lim
n→∞

P
(
Ej ,ε(n)

∣∣E0,ε(n)
)

= 1 .

That is, infinitely many Ej ,ε(n)’s occur due to the
occurrence of E0,ε(n).

I Therefore, the cluster analysis done in the short memory
regime does not make sense any more.
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Why the difference?

I In the long memory regime,[
1

n

n∑
i=1

Xi > µ+ ε

]

is actually a moderate deviation event.

I That is,

Var

(
n∑

i=1

Xi

)
� n , n→∞ .
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Persistence time

I Define

In(ε) = inf {j ≥ 1 : Ej ,ε(n) does not occur } .

I For ε fixed, conditional on E0,ε(n),

In(ε)→∞ a.s.

I Question. At what rate ?
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Assumptions

1. The sequence (an) is eventually non-increasing.

2. The family (Zn : n ∈ Z) is i.i.d. from a distribution with
all exponential moments finite satisfying

sup
|θ|≤θ0

∫ ∞
−∞

dt t2

∣∣∣∣∫ ∞
−∞

P(Z0 ∈ dz) e(ιt+θ)z

∣∣∣∣ <∞ ,

for some θ0 > 0, where ι =
√
−1.

3. The first κ moments of Z0 match with those of
N(0, σ2

Z ), where

κ =

[
1 + 2α

2− 2α

]
,

and
σ2
Z = Var(Z0) .
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Let

I

β =
4− 4α

3− 2α
,

I

H =
3

2
− α ,

I T0 be a standard exponential random variable,

I and (BH(t) : t ≥ 0) be a fractional Brownian motion,
independent of T0, with Hurst index H, that is, it is a
zero mean Gaussian process with continuous paths and

E (BH(s)BH(t)) =
1

2

(
s2H + t2H − |s − t|2H

)
, s, t ≥ 0 .
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Furthermore,

I set

C =
σ2
Z

(1− α)(3− 2α)
B(1− α, 2α− 1) ,

I where B(·, ·) is Euler’s Beta-function,

I σ2
Z = Var(Z0) ,

I and

τε = inf
{
t ≥ 0 : BH(t) ≤ (2C )−1/2εt2H − ε−1C 1/22−1/2T0

}
, ε > 0 .
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Theorem (C. and Samorodnitsky (2022+))

For ε > 0 fixed,

P
(
n−βIn(ε) ∈ ·

∣∣E0,ε(n)
)
⇒ P (τε ∈ ·) ,

as n→∞.

Unsurprisingly, the limiting law depends on Z0 only through
its variance.



Clustering of rare
events

Arijit Chakrabarty

Motivation

History

Our work

The short memory
regime

The long memory
regime

A main ingredient

Future work

I Let

Sn(j) =

j+n−1∑
i=j

Xi , n ≥ 1 , j ≥ 0 .

I Conditionally on E0,ε(n), as n→∞,(
n−(2−2α)

(
Sn([nβt])− Sn(0)

)
: t ≥ 0

)
⇒
(

(2C )1/2BH(t)− εt3−2α : t ≥ 0
)
.

I Conditional on the same event,

n−(2−2α) (Sn(0)− nε)⇒ C

ε
T0 ,

jointly with the above.
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I Combining the two convergences,(
n−(2−2α)

(
Sn([nβt])− nε

)
: t ≥ 0

)
⇒
(

(2C )1/2BH(t)− εt3−2α +
C

ε
T0 : t ≥ 0

)
,

conditionally on E0,ε(n), as n→∞.

I Continuous mapping theorem:

n−βIn(ε)⇒ τε .
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Remarks

I Self-similarity of fractional Brownian motion implies

τε
d
= ε−1/Hτ1 .

Recall that in the short memory regime, the cluster size
≈ ε−2 for small ε.

I If α ↑ 1, then

β → 0 and H → 1

2
.

Growth rate of In(ε) becomes slower and the fBM
approaches a B.M.
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Why additional assumptions?

I The behaviour in the moderate deviations regime is in
line with the central limit theorem, that is, like a normal
distribution.

I For technical reasons, the approximation by normal was
needed to be stronger than that provided by the
standard Berry-Eseen theorem.

I Matching of the first few moments with those of normal
enables an argument as in the Edgeworth expansions.
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Conclusions in the long memory regime

I The deviations are moderate, and hence the behaviour
depends only on the variance.

I The total cluster size is infinite.

I Fluctuations of the persistence time are governed by a
fBM.

I Additional assumptions are required for technical
reasons.
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A main ingredient of all the proofs

I Consider the simplest case: X1,X2, . . . are i.i.d. zero
mean with all exponential moments finite.

I Fix an �
√
n. We want to study

P (Sn > an) ,

where Sn = X1 + . . .+ Xn.

I Let θn be such that[
E
(
eθnX1

)]−1
E
(
X1e

θnX1

)
=

an
n
.

Such a θn exists if P(Sn > an) > 0.
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I Let Fn be the measure on R defined by

Fn(dx) =
[
E
(
eθnX1

)]−1
eθnxP(X1 ∈ dx) .

I For n ≥ 1, let X ∗n1,X
∗
n2, . . . be i.i.d. from Fn.

I Set

S∗n =
n∑

i=1

X ∗ni − an .
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Write

P(Sn > an)

=

∫ ∞
−∞

P(X1 ∈ dx1) . . .

∫ ∞
−∞

P(Xn ∈ dxn)1

(
n∑

i=1

xi > an

)

=

∫ ∞
−∞

P(X1 ∈ dx1)eθnx1 . . .

∫ ∞
−∞

P(Xn ∈ dxn)eθnxn1

(
n∑

i=1

xi > an

)

exp

(
−θn

n∑
i=1

xi

)

= E
(
eθnSn

)∫ ∞
−∞

Fn(dx1) . . .

∫ ∞
−∞

Fn(dxn)1

(
n∑

i=1

xi > an

)

exp

(
−θn

n∑
i=1

xi
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= E
(
eθnSn

)
E

[
exp

(
−θn

n∑
i=1

X ∗ni

)
1

(
n∑

i=1

X ∗ni > an

)]

= e−θnanE
(
eθnSn

)
E
[
e−θnS

∗
n 1(S∗n > 0)

]
.

I By definition, S∗n is the sum of i.i.d. zero mean random
variables.

I Use Berry-Eseen type bounds to estimate the error
incurred in replacing S∗n by a zero mean normal random
variable with the same variance in

E
[
e−θnS

∗
n 1(S∗n > 0)

]
.
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= E
(
eθnSn

)
E

[
exp

(
−θn

n∑
i=1

X ∗ni

)
1

(
n∑

i=1

X ∗ni > an

)]
= e−θnanE

(
eθnSn

)
E
[
e−θnS

∗
n 1(S∗n > 0)

]
.

I By definition, S∗n is the sum of i.i.d. zero mean random
variables.

I Use Berry-Eseen type bounds to estimate the error
incurred in replacing S∗n by a zero mean normal random
variable with the same variance in

E
[
e−θnS

∗
n 1(S∗n > 0)

]
.
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I For fixed N ≥ 1, in the long memory regime,

N∑
j=1

1 (Ej ,ε(n))
P−→ N ,

conditionally on E0,ε(n), as n→∞.

I Question. Is it possible to scale

N∑
j=1

1 (Ej ,ε(n))− N

in a way such that there is a limiting distribution which
is not degenerate at 0 ?
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I Question. What happens in the “negative memory”
regime, that is, when

aj ∼ j−α ,

for some α > 1 and

∞∑
j=0

aj = 0 ?

I In this regime,

lim
n→∞

P
(
E1,ε(n)

∣∣E0,ε(n)
)

= 0 .

I The precise question to ask is not clear a priori.
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I Question. What happens in the “negative memory”
regime, that is, when

aj ∼ j−α ,

for some α > 1 and

∞∑
j=0
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Future work (contd.)

I In the negative memory regime, E0,ε(n) is a “huge
deviation” event because the deviation therein is much
larger than the variance.

I Huge deviations is a largely uncharted territory.
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