Introduction to flavour experiments

In memoriam of Sheldon Stone (Feb. 14, 1946 – Oct. 6, 2021)

https://cerncourier.com/a/sheldon-stone-1946-2021/

ICTS 2022 Bengaluru (India), April 2022 Arantza.Oyanguren@ific.uv.es

Outline

- Lesson 1: Introduction to flavour physics
- Lesson 2: The CKM matrix
- Lesson 3: Rare decays of heavy hadrons
- Lesson 4: Mixing and CP violation

What is a rare decay?

Four-leaf clover: 1/10000, symbol of good luck

b→s,d quark transitions are Flavor Changing Neutral Currents (FCNCs),
 → in the SM they only can occur through loops (penguin and box diagrams), excellent probe for physics beyond the SM

Experimentally \rightarrow leptons/photons with high transverse momenta **Theoretically** \rightarrow observables can be calculated in terms of Wilson coefficients

What do we need?

• A lot of data! \rightarrow High luminosity and large b cross section (LHC experiments, BELLE II)

 μ_1

- ullet High momentum and impact parameter resolutions ightarrow
- high mass resolution
- good signal and background separation

Reconstructed mass resolution $\sigma_{\rm M}~(J/\psi \,{\rightarrow}\,\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +})$

LHCb = 13 MeV ATLAS = 71 MeV CMS = 40 MeV BELLE II = 4 MeV

Absolute branching fractions:

 \rightarrow we need to know precisely how many events are produced and reconstructed [Reconstruction efficiencies are taken from simulation and validated with data]

$$N_{B\to\tau\nu} = 2 \times N_{BB} \times BR (B\to\tau\nu) \times BR (\tau\to\mu\nu\nu) \times \varepsilon_{rec}$$

 \rightarrow known from the B recoil hemisphere (~ $\mathcal{L} \times \sigma_{e+e-\rightarrow Y(4S)}$)

$\frac{\text{Rare decays of B mesons}}{PV B_{s}^{0}/B^{0}} SV + K^{+}$ • <u>Relative branching fractions:</u> \rightarrow we need a well known and abundant normalization channel [Ratios of efficiencies are taken from simulation and validated with data] $\frac{N_{B_{s}^{0}} \rightarrow \phi\gamma}{N_{B^{0}} \rightarrow K^{*0}\gamma} = \frac{f_{s}}{f_{d}} \times \underbrace{\frac{\mathcal{B}(B_{s}^{0} \rightarrow \phi\gamma)}{\mathcal{B}(B^{0} \rightarrow K^{*0}\gamma)}}_{\mathcal{B}(B^{0} \rightarrow K^{*0}\gamma)} \times \frac{\mathcal{B}(\phi \rightarrow KK)}{\mathcal{B}(K^{*} \rightarrow K\pi)} \times \frac{\epsilon_{sel}^{B_{s}^{0} \rightarrow \phi\gamma}}{\epsilon_{sel}^{B^{0} \rightarrow K^{*0}\gamma}}$

 f_s gives the probability of hadronization of a b quak into a B_s meson f_d gives the probability of hadronization of a b quark into B_d meson If we use the same data sample, \mathcal{L} and $\sigma_{pp \rightarrow b \text{ quark}}$ cancel in the ratio

Efficiencies usually have different contributions, and some of they cancel in the ratio \rightarrow less systematic uncertainties

$$\begin{aligned} \epsilon_{\rm sel} &= \epsilon_{\rm acc} \times \epsilon_{\rm trigger} \times \epsilon_{\rm reco} \times \epsilon_{\rm offline} \times \epsilon_{\gamma \rm PID} \times \epsilon_{tr \rm PID} \\ & {}_{\rm Detector} & {}_{\rm event} & {}_{\rm event} & {}_{\rm Background} \\ & {}_{\rm subtraction} & {}_{\rm subtraction} \end{aligned}$$

How do we compute expected values?

Remind the Fermi's theory of the β decay:

We can consider the 4-point fermion vector current, coupled under Fermi's Coupling Constant $G_{\rm F}$.

One can consider any description depending on the energy scale we are working on

How do we compute expected values?

Same idea for FCNC processes:

 \rightarrow OPE: a series of effective vertices multiplied by effective coupling constants C_i .

$$A(M \to F) = \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i (\mu) \langle F | O_i(\mu) | M \rangle$$

CKM Wilson Hadronic Matrix
couplings (\mu = scale) Elements

 \rightarrow OPE: a series of effective vertices multiplied by effective coupling constants C_i .

Hadronic uncertainties in decay constants or form factors

 \rightarrow OPE: a series of effective vertices multiplied by effective coupling constants C_i .

Some examples of dependences in B decays:

Decay	$C_{7}^{(\prime)}$	$C_{9}^{(\prime)}$	$C_{10}^{(\prime)}$
$B ightarrow X_{s} \gamma$	Х		
${\it B} ightarrow {\it K}^* \gamma$	Х		
$B ightarrow X_{s} \mu^{+} \mu^{-}$	Х	Х	Х
$B ightarrow K\mu^+\mu^-$	Х	Х	Х
${\it B} ightarrow {\it K}^* \mu^+ \mu^-$	Х	Х	Х
$B_s ightarrow \mu^+ \mu^-$			Х

<u>Rare decays of B mesons $B \rightarrow K^* \gamma$ </u>

$$\Delta E = (E_{K^*} + E_{\gamma}) - E_{beam} \approx 0$$
$$M_B = \sqrt{E_{beam}^2 - (\vec{p}_{K^*} + \vec{p}_{\gamma})^2}$$

<u>Rare decays of B mesons $B \rightarrow \rho \gamma$ </u>

 $\underbrace{\overset{b}{\overset{}}}_{V_{tb}} \underbrace{V_{tb}}_{W} \underbrace{V_{td}}^{t} \underbrace{V_{td}}^{\gamma}$

Even more suppressed: $b \rightarrow d\gamma$ at Belle (with 657 million B mesons!)

[arXiv:0804.4770 [hep-ex]]

Mode	Yield	Significance	Efficiency $(\%)$	$\mathcal{B}(10^{-7})$
$B^+ \to \rho^+ \gamma$	$45.8^{+15.2}_{-14.5}{}^{+2.6}_{-3.9}$	3.3	8.03 ± 0.59	$8.7^{+2.9}_{-2.7}{}^{+0.9}_{-1.1}$
$B^0 \to \rho^0 \gamma$	$75.7^{+16.8}_{-16.0}{}^{+5.1}_{-6.1}$	5.0	14.81 ± 0.95	$7.8{}^{+1.7}_{-1.6}{}^{+0.9}_{-1.0}$
$B^0\to\omega\gamma$	$17.5^{\ +8.2}_{\ -7.4}{}^{\ +1.1}_{\ -1.0}$	2.6	6.58 ± 0.76	$4.0{}^{+1.9}_{-1.7}\pm1.3$

- Very rare decay: FCNC and helicity suppressed BR_{SM} = 3.66(14) x 10⁻⁹
- Searched for over the last 30 years, observed by LHCb and CMS [Nature 522 (2015) 68]

A lot of events with two muons, very difficult to distinguish them:

- Background: BR($B \rightarrow X\mu^+$) = 10⁻¹
- Signal: $BR(B_s^0 \rightarrow \mu^+ \mu^-) < 10^{-8}$

 10^{12} B events produced, BR ~ 10^{-9} , Eff~5% \rightarrow expected ~ 50 events

• New results by LHCb (Run1+Run2 = 9fb⁻¹):

[arXiv:2108.09283 and 2108.09284v2 [hep-ex]]

μ*

b

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43} - 0.11) \times 10^{-9}$$

• Also measured by ATLAS and CMS (2011-2016 data), combined result*:

[CMS PAS BPH-20-003]

ATLAS [JHEP04(2019)098] CMS [JHEP04(2020)188] LHCb [PRL118(2017)191801]

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69 \,{}^{+0.37}_{-0.35}) \times 10^{-9}$$

Below, but compatible with the SM at 2.1σ

* Result from LHCb with partial statistics

• Even more rare! (BR_{SM} ~ 10^{-10}), still not observed:

(Primed C'_i \rightarrow right handed currents: suppressed in SM)

25

• Differential decay width as function of $q^2 = m^2_{\mu\mu}$

[arXiv:2105.14007] In the q² region 1.1-6 GeV² \rightarrow **3.6** σ away from SM predictions

Rare decays of B mesons: $B \rightarrow h \mu^+ \mu^-$

Results in other channels:

• Angular distribution in $B_s \rightarrow \phi \ell^- \ell^+$: it depends on q^2 and three angles

 \rightarrow Function of observables related to CP-averages and asymmetries: F_L, A_{FB}, S_i, A_i

 \rightarrow In general good agreement with SM, deviations less than 2σ

"Optimized observables", with form factor cancellations
 [JHEP 05 (2013) 137]

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

Two new analyses by LHCb with full data:

- ► Angular analysis of B⁺→K^{*+}µ⁺µ⁻ [PRL 126 (2021) 161802]
- ► Angular analysis of B⁰→K*⁰µ⁺µ⁻ [PRL 125 (2020) 011802]

 \rightarrow Negative shift of Re(C₉) preferred over SM hypothesis at level of 2-3 σ

[JHEP 10 ('18) 047] [PRL 118 ("17) 111801]

[PLB 781 ("18) 517]

Rare decays of B mesons: R_K

• In the SM all leptons are expected to behave in the same way

Test of lepton universality:

$$R_{K} = rac{\mathcal{B}(B^{+} o K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} o K^{+} e^{+} e^{-})}$$
 = 1.000 + O(m_µ²/m_b²)

- Precise theory prediction due to cancellation of hadronic form factor uncertainties
- Challenge: bremsstrahlung by electrons

• Experimentally, we perform a double ratio to cancel systematic uncertainties

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} \bigg/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))}$$

Reconstructed B mass for $B^+ \rightarrow K^+ \ell^+ \ell^-$ (muons vs electrons)

[arXiv:2103.11769]

 \rightarrow Deviation from SM at **3.1** $\sigma \Rightarrow$ <u>evidence of LFU violation</u>

Rare decays of B mesons: R_K

- Previous results in other channels:
- → LHCb measurement in the B→K^{*} $\mu^+\mu^$ channel, **R**_{K*}, with 3fb⁻¹

[JHEP 08 (2017) 055]

→ LHCb measurement in the $\Lambda_b \rightarrow pK\mu^+\mu^$ channel, **R**_{pK}, with 5fb⁻¹

[[]JHEP 05 (2020) 040]

Rare decays of B mesons: $b \rightarrow s\gamma$ $|L\rangle$ First measurement of the **photon polarization** in a b-baryon system! • (Expected to be left handed in the SM) [LHCb-PAPER-2021-03] m^y N b b d d Λ ΥL $S = \frac{1}{2}$ α_{γ} u u γ_L Collision _____ _____cτ= 0.4 mm s,d b $c\tau = 8 \text{ cm}$ $\Lambda_{\rm b}^0$ SV H⁻, χ⁻, ğ, χ⁰... Λ pAngular distribution: $\Gamma_{\Lambda_b} = \frac{1}{\Lambda} \left(1 - \alpha_{\gamma} \alpha_{\Lambda} \cos \theta_{\rho} \right)$ Λ_{h} Λ θ 36 π

<u>Rare decays of B mesons</u>: $b \rightarrow s\gamma$

• First measurement of the **photon polarization** in a b-baryon system! (Expected to be left handed in the SM) [LHCb-PAPER-2021-03]

(syst.)

 $\alpha_{\gamma} = 0.82^{+0.17}_{-0.26} \text{ (stat.)}^{+0.04}_{-0.13}$

In agreement with SM

<u>Rare decays of B mesons</u>: $b \rightarrow s\gamma$

• Constraints from radiative (C7^(')):

Global fits (more than 100 observables)

New Physics hypothesis preferred over SM by more than 4 - 5σ Main effect on the C_{9µ} coefficient: **4.27SM -1.1**^{NP}

Triggered models with Z', leptoquarks (LQ), new fermions and scalars....

Just a reminder ...

	Particle	Indirect			Direct		
	ν	β decay		1932	Reactor v-CC	Cowan, Reines	1956
	W	β decay		1932	W→ev	UA1, UA2	1983
	С	Kº → µµ	GIM	1970	J/ψ	Richter, Ting	1974
	b	СРV <i>К⁰ →пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977
	Z	v-NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983
	t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995
	Н	e+e-	EW fit, LEP	2000	$H \rightarrow 4 \mu / \gamma \gamma$	CMS, ATLAS	2012
	?	What's next ?		?			?
d -		e^{-} $\bar{\nu}_e s$ $v_0 \left(\begin{array}{c} s \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\ w \\ w \\ w \\ w \\ w \end{array} \right) \left(\begin{array}{c} v \\ w \\$	$ \begin{array}{c} \nu \\ \mu^{-} \\ p \\ \mu^{+} \\ \mu^{+} \end{array} $	ν Z E	$B^{0} = \begin{bmatrix} W \\ t \\ W \end{bmatrix} t$	$ \begin{array}{c} e^{+} \\ \downarrow \\ \downarrow \\ \bar{B}^{0} \\ e^{-} \\ \downarrow \\ d \\ Niels \end{array} $	H