Introduction to flavour experiments

In memoriam of Sheldon Stone (Feb. 14, 1946 – Oct. 6, 2021)

https://cerncourier.com/a/sheldon-stone-1946-2021/

ICTS 2022 Bengaluru (India), April 2022 Arantza.Oyanguren@ific.uv.es

Outline

- Lesson 1: Introduction to flavour physics
- Lesson 2: The CKM matrix
- Lesson 3: Rare decays of heavy hadrons
- Lesson 4: Mixing and CP violation

The Standard Model of Particle Physics:

Flavour Physics: study of the transitions between different types of particles (**quarks** and leptons), governed by the weak interaction (Z,W)

The Standard Model of Particle Physics:

Free parameters:

3 gauge couplings: α_{em} , α_{weak} , α_{strong}

2 Higgs parameters m_H, v

6 quark masses

```
3 quark mixing angles + 1 phase (CKM matrix)
```

3 (+3) lepton masses

(3 lepton mixing angles + 1 phase) (PMNS matrix)

To be measured by experiments !

 \rightarrow Related to flavour

Unknown in the Standard Model:

- Quantum Theory of Gravity
- Inflation
- Quark/lepton generation masses: compositeness?

Substructure? Strings?

Common sub-elements quarks and leptons?

Why three families?

Matter-Antimatter asymmetry

CPV in SM (K, B) + Big Bang ?

- Cosmological constant (dark energy ...)
- Dark matter
- EW symmetry breaking, Higgs? Forces Unification?
- Neutrinos (mass?, hierarchy?...)

Many of them are related to flavour!

Looking for New Physics...

Direct searches:

2012

200

250 m₄ [GeV]

High energy

 \rightarrow particles created on-shell: Evidence in mass plots

Higgs discovery, 2012

Looking for New Physics...

Indirect searches:

High precision

 \rightarrow particles created off-Shell: Evidence in quantum effects (loops)

(BR's, asymmetries...)

* ¡Oh!, Josse Goffin

* ¡Oh!, Josse Goffin

• The GIM mechanism:

In 1970's Glashow, Iliopoulos and Maini described the mechanism by which flavour-changing neutral currents (FCNCs) were suppressed, and predicted the existence of the c quark

• Gaillard, Lee and Rosner : $m_c \sim 1.5$ GeV from kaon mixing

$$\Delta m_{K} = \frac{G_{F}^{2}}{4\pi} m_{K} f_{K}^{2} m_{c}^{2} \cos^{2} \theta_{c} \sin^{2} \theta_{c}$$

 1974 c quark discovered
 (B. Richter at SLAC and S. Ting at BNL)

 Z^0

S

e

W۱

S

https://cerncourier.com/a/50-years-of-the-gim-mechanism/

<u>Introduction</u>

The MARK 1 detector at the e⁺e⁻ storage ring SPEAR (1973-1976) [SLAC-LBL]

Charm physics has been studied in e^+e^- experiments working at the $\Psi(3770)$ resonance (charm threshold: production of $D\overline{D}$ mesons) Ex: CLEO-c at CESR and BES III at BEPC

• The CKM mechanism:

• In the Standard Model of Particle Physics, transitions between different quarks are governed by the CKM mechanism:

- Transitions between the same family are favoured
- Some of the processes are rare (ex: V_{ub})
- Need to change charge: FCNC not allowed at tree level, need to proceed via loop diagrams (CKM suppressed)
- Matrix elements have to be determined by experiments
- Transition probabilities can be thus calculated in this framework
- If a transition occurs with larger probability than expected
 → New Particle (i.e. New Physics)

In summary:

• We understand that the Standard Model cannot be the ultimate theory

It should be a low-energy effective theory of a more fundamental theory at a higher energy scale (TeV range or even higher) \rightarrow it could happen than one cannot access it by direct searches at LHC

- New Physics requires to keep the predictions from the SM unaltered, since they are quite successful (hundreds of observables!)
- Flavour mechanism in the SM:
 - \rightarrow provide the suppression mechanism for FCNC processes already observed

 \rightarrow In the recent years several *anomalies* in different observables have been found \rightarrow we need to measure the flavour structure to distinguish between possible new physics scenarios

• The physics performed at LHCb and Belle II (flavour physics) goes hand-in-hand with direct searches (ATLAS and CMS) but have larger range of accessibility to new physics

Why b-hadrons ?

- The *b*-quark is the heaviest quark forming hadronic bound states (m~4.7 GeV)
- Must decay outside the 3rd family
 - \rightarrow Long lifetime (~1.6 ps)
 - \rightarrow Many accessible decay channels (small BR's)
- Type of processes:

Dominant: $b \rightarrow c$ (favoured) and $b \rightarrow u$ (suppressed)

Rare: Flavour Changing Neutral Current (FCNC): $b \rightarrow s, d$

Flavour oscillations and CP violation

Good for theorists!

The *b* quark was discovered by the E288 experiment at Fermilab (fixed targed p (400 GeV) + Be):

Phys.Rev.Lett. 39 (1977) 252-255

Y(1S) resonance m ~ 9.5 GeV

☆ The first measurements of B meson decays
 were performed by the CLEO experiment at CESR
 (e⁺e⁻ collider ring) Phys.Rev.Lett. 50 (1983) 881
 B mesons were coming from decays of the Y(4S)

Some basic definitions:

 E_{CM} = center-of-mass energy. Available energy for particle creation

Fixed target experiment: $E_{\rm cm}^2=(m_1^2+m_2^2+2m_2E_{1,{\rm lab}})$ Collider: $E_{\rm cm}^2=(E_1+E_2)^2$

Luminosity = a measurement of the number of collisions that can be produced in a detector per cm^2 and per second

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y} \quad \text{[cm-2s-1]}$$

 n_1 , n_2 : the number of particles per bunch σ_x , σ_y : beam transverse size at the interaction point *f*: collision rate

Rate $R = \mathcal{L} \sigma [s^{-1}]$ σ : cross section of the physics process ["barn" - 1 b = 10⁻²⁴ cm²]

Ex: for \mathcal{L} = 10³⁴ cm ⁻² s⁻¹ and σ = 1 nb \rightarrow R = 10 Hz

CDF, D0 LHCb, ATLAS, CMS

How b-hadrons decay?

Dominant tree decays:

Rare hadronic decays

Radiative and leptonic decays

How we detect them?

Introduction

Typical structure of a HEP detector:

(1999 - 2008 / 2010)

The flavour experiments

* First measurement of CPV in the B system* High precision CKM matrix

* Discovery of $\eta_{\rm b}$

The precessors, key in flavour physics:

The b-factories: Belle at KEK (Japan) and BaBar at PEP-II (California)

Asymmetric e^+e^- colliders working at the Y(4S) energy (10.54 GeV).

The precessors, key in flavour physics:

The Tevatron at Fermilab (Illinois): CDF and D0 $p\overline{p}$ collider working at cm of mass energy of 1.96 TeV.

TEVATRON

Superconducting pp ring Energy : 1 TeV/beam Detectors: CDF, D0 Luminosity: 10³² cm⁻²s⁻¹ Physics: W, Z, Top Production Higgs searches B physics

(1987-2011)

- * Discovery of the top quark
- * First measurement of B_s oscillations
- * Discovery of the $\Xi_{\rm b}$ baryon

The precessors, key in flavour physics:

The SLC (California): SLD The LEP (CERN): ALEPH, DELPHI, L3 and OPAL e⁺e⁻ colliders working at cm of mass energy of the Z

SLC / LEP

e+e- linear collider / ring Energy : ~50 / 45 -104 GeV /beam Detectors: SLD / ALEPH, DELPHI, L3, OPAL Luminosity: 2 / ~ 20 x 10³⁰ cm⁻²s⁻¹ Physics: Z / W, Z B physics Higgs searches

(1989-2000)

- * R_b, R_c
- * b-hadron lifetimes
- * B oscillations
- * The CKM matrix
- * Discovery of ${\rm B_s}$ and $\Lambda_{\rm b}$

LHCb

SHILSS

CMS

CERN Prévessi

ATLAS

SPS

CERN Meyrin

ALICE

LHC: the proton-proton collider at CERN with an energy of 13TeV

27 km

• The LHCb idea: to build a single-arm forward spectrometer: ~ 4% of the solid angle (2 < η < 5), ~ 30% of the *b* hadron production

N=∫∠σ

What do we need?

- To reconstruct the production and decay vertices
 - \rightarrow Good decay vertex resolution
 - \rightarrow Good impact parameter resolution
- To reconstruct the particle trajectory
 - \rightarrow Good momentum resolution

Vertex detector (VELO)

How long will a $\Lambda_{\rm b}$ baryon be travelling in the detector before decaying? (p_{Λb}~80 GeV)

Tracking at LHCb:

The LHCb magnet:

	Magnetic Parameters	
	Bending power	$\int B dl = 4 Tm (10 m track length)$
	Non-uniformity of B dl	$\leq \pm 5\%$ in acceptance
		(hor.: ±300 mrad, vert.: ±250 mrad)
	Excitation current	$NI = 2 \times 1.3 MA$
	Electric power dissipation	$P_e = 4.2 \text{ MW}$
	Stored magnetic energy	$W_m \approx 32 \text{ MJ}$
	Inductance	$L \approx 2 H$
11/1		

 \rightarrow Inversion of polarity to study detector asymmetries

To recognize the type of particles
 → Good particle identification systems (PID)

Cherenkov detectors (RICH)

Calorimeters (ECAL, HCAL)

Muon chambers

- \rightarrow B mesons oscillates between particle and antiparticle
- \rightarrow We need to know the flavour of the particle at the production point

<u>Flavour tagging</u> Use different algorithms that make use of the characteristics of the fragmentation of the b quark, the charge of the decay products or the charge related to the other b hadron produced in $pp \rightarrow X b\overline{b}$

Tagging efficiency ε_{tag} : fraction of events with a flavour tag decision **Wrong-tag fraction** ω : fraction of tagged events for which tagging decision is wrong

 \rightarrow Figure of merit: *effective tagging power* $\epsilon_{eff} = \epsilon_{tag} D^2 = \epsilon_{tag} (1 - 2\omega)^2$

 $D^2 \equiv$ dilution factor

The other LHC experiments

The Belle II experiment

• Upgrade of the KEK e⁺e⁻ asymmetric accelerator and the Belle experiment, working at the Y(4S) (10.54 GeV). It is taking data since 2019.

The data:

In terms of *b*-hadrons: $N=\int \mathcal{L}\sigma$ at LHCb:

 $\rightarrow \sigma \sim 600 \ \mu b$ at 13TeV, x 30% (due to the acceptance) = 180 μb $\rightarrow b\overline{b}$ pairs produced in *1 inverse femtobarn* (N/fb⁻¹) = 10¹⁵ * 180 x 10⁻⁶

44

~ 1.8 x 10¹¹

• Comparison between facilities:

	$e^+e^- \to \Upsilon(4S) \to B\bar{B}$	$p\bar{p} \rightarrow b\bar{b}X$	$pp \rightarrow b\bar{b}X$
	PEP-II, KEKB	$(\sqrt{s} = 2 \text{ Tev})$ Tevatron	$(\sqrt{s} = 14 \text{ lev})$ LHC
Production cross-section	1 nb	$\sim 100\mu b$	$\sim 500~\mu b$
Typical $b\bar{b}$ rate	10 Hz	$\sim 100\mathrm{kHz}$	$\sim 500\mathrm{kHz}$
Pile-up	0	1.7	0.5-20
b hadron mixture	B^+B^- (50%), $B^0\overline{B}^0$ (50%)	B^+ (40%), B^0 (40%), B^0_s (10%),	
		Λ_{h}^{0} (10%),	others $(< 1\%)$
b hadron boost	small ($\beta \gamma \sim 0.5$)	large ($\beta \gamma \sim 100$)	
Underlying event	BB pair alone	Many additional particles	
Production vertex	Not reconstructed	ted Reconstructed from many tracks	
$B^0 - \overline{B}^0$ pair production	Coherent (from $\Upsilon(4S)$ decay)) Incoherent	
Flavour tagging power	$arepsilon D^2 \sim 30\%$	εD^2	$^2 \sim 5\%$

: Which is the maximum momentum of the pion in the B $\rightarrow \pi \ell \nu$ decay in the lab frame in Belle II at (SuperKEK) and LHCb (at LHC) experiments ?

What do we measure? Examples of observables:

- ► *Invariant masses:* from momentum and PID hypothesis of the detected particles
- Decay time distributions: from distance between the origin and decay vertices (and using information of the particle momentum)
- Angular distributions: from directions of the decay products (momentum, vertices)
- ► **Branching fractions:** from the mass distributions, counting the number of events
- ► Differential decay widths: as function of q², for instance, the 4-momentum transfer
- Time-dependent asymmetries (needed flavour tagging!)
- ► *Ratios of observables:* cancellation of experimental or theoretica uncertainties

Including experimental effects:

- One can use MC simulations to study the acceptance and resolution functions

- Better: use control samples from data (similar to the signal channel) to extract them

Some key references:

The Physics of B factories https://arxiv.org/abs/1406.6311

PDG (reviews) https://pdg.lbl.gov/

Heavy Flavour Averaging Group: https://hflav.web.cern.ch/