Natural Swarms in 3.99 Dimensions

oh, btw – yes, we do experiments!

spatial correlations

equal-time velocity correlation function

 $C(r) = \langle \delta \vec{v}(x_0, t_0) \cdot \delta \vec{v}(x_0 + r, t_0) \rangle$

temporal correlations

space-time correlation function

 $C(r,t) = \langle \delta \vec{v}(x_0, t_0) \cdot \delta \vec{v}(x_0 + r, t_0 + t) \rangle$

$$\tau \sim \xi^z$$

dynamical critical exponent z

$$z = 1.37 \pm 0.11$$

key experimental facts about natural swarms:

- scale-free correlations, $\xi \sim L$
- critical slowing down, $\tau \sim \xi^z$
- dynamical critical exponent, $z = 1.37 \pm 0.11$

theory

ingredient #1

imitation aka ferromagnetism

simple ferromagnets

 $z \approx 2$

Wilson, Fisher (1972) Halperin, Hohenberg, Ma (1972)

RG - ferromagnetism

Halperin, Hohenberg, Ma (1972)

something is missing

what a low critical exponent is telling us?

$$\tau \sim \xi \bar{s} pace \sim time \omega \sim k^z$$

the smaller is z, the more effective is the transport of fluctuations across the system

$$z = 1.37$$
 vs $z \approx 2$

an exponent $z \ll 2$ implies that fluctuations propagate much more effectively than mere diffusion

ingredient #2 activity

active ferromagnets: the Vicsek model

$$\begin{pmatrix} \frac{d\boldsymbol{\sigma}_i}{dt} = J \sum_j n_{ij}(t) \,\boldsymbol{\sigma}_j + \boldsymbol{\zeta}_i \\ \frac{d\boldsymbol{r}_i}{dt} = v_0 \,\boldsymbol{\sigma}_i \end{pmatrix}$$

$$v_0 \sigma_i = v_i$$
 is the velocity

Model A meets Navier-Stokes: Toner-Tu field theory

Vicsek
$$\begin{cases} \frac{d\boldsymbol{\sigma}_{i}}{dt} = J \sum_{j} n_{ij}(t) \, \boldsymbol{\sigma}_{j} + \boldsymbol{\zeta}_{i} \\ \frac{d\boldsymbol{r}_{i}}{dt} = v_{0} \, \boldsymbol{\sigma}_{i} \end{cases} \text{ Toner-Tu} \begin{cases} D_{t} \boldsymbol{v}(x,t) = -\Gamma \frac{\delta \mathcal{H}}{\delta \boldsymbol{v}} - \nabla P + \boldsymbol{\theta}(x,t) \\ \frac{\partial \rho(x,t)}{\partial t} + \nabla(\rho \, \boldsymbol{v}(x,t)) = 0 \end{cases}$$

$$\mathcal{H} = \int d^d x \left\{ (\nabla \mathbf{v})^2 + r \mathbf{v}^2 + u \mathbf{v}^4 \right\}$$

material derivative $D_t \mathbf{v}(x, t) = \partial_t \mathbf{v} + \lambda(\mathbf{v} \cdot \nabla) \mathbf{v}$

- - -

incompressible case: $\rho(x, t) = \rho_0$

$$\begin{cases} D_t \mathbf{v}(x,t) = -\Gamma \frac{\delta \mathcal{H}}{\delta \mathbf{v}} - \nabla P + \boldsymbol{\theta}(x,t) \\ \nabla \cdot \mathbf{v} = 0 \end{cases}$$

Chen, Toner, Lee (2015)

see also Forster, Nelson, Stephens (1977)

activity brings the RG flow to a new fixed point

this RG exponent is also confirmed by simulations of the *compressible* case

let's go back to the experimental evidence

and remember:

a smaller exponent z suggests that

a more efficient propagation mechanism is at play

fact: temporal relaxation in natural swarms is underdamped

why this should help?

underdamping requires a real part of the frequency

because alignment requires a Laplacian, a real part of ω indicates there are *two* derivatives in time:

$$\frac{\partial}{\partial t} \sim \nabla^2 \longrightarrow i\omega \sim k^2 \longrightarrow z_{\text{naive}} \sim 2$$

$$\frac{\partial^2}{\partial t^2} \sim \nabla^2 \longrightarrow \omega^2 \sim k^2 \longrightarrow z_{\text{naive}} \sim 1 \quad \text{looks promising!}$$

we must go back to underdamped dynamics

conjugate variables and their Poisson relations

we need to restore the generator of the *rotations* of the polarization field ψ this is the *internal* angular momentum, aka **spin** *s*:

$$\{s_{\alpha}, s_{\beta}\} = \epsilon_{\alpha\beta\gamma} s_{\gamma} \qquad \left\{ \begin{array}{l} \dot{\psi} = \psi \times s \\ s_{\alpha}, \psi_{\beta}\} = \epsilon_{\alpha\beta\gamma} \psi_{\gamma} \end{array} \right\} \begin{pmatrix} \dot{\psi} = \psi \times s \\ \dot{s} = -\psi \times \frac{\partial H}{\partial \psi} - \eta s + \theta \end{pmatrix} \stackrel{\text{back to}}{\longleftarrow} \dot{\psi} = -\frac{\partial H}{\partial \psi} + \theta$$

Attanasi et al 2014, Cavagna et al 2015

Theory of dynamic critical phenomena

P. C. Hohenberg

Bell Laboratories, Murray Hill, New Jersey 07974 and Physik Department, Technische Universität München, 8046, Garching, W. Germany

B. I. Halperin*

Department of Physics, Harvard University, Cambridge, Mass. 02138

Reviews of Modern Physics, July 1977

CONTENTS

- I. Introduction
- II. The Symmetric Binary Fluid-A Simple Example
 - A. Hydrodynamics
 - B. Static critical behavior
 - C. Critical dynamics
 - D. The coupled-mode theory
- III. Basic Definitions and Formalism
 - A. Stochastic models
 - B. Linear and nonlinear hydrodynamics
 - C. Critical behavior
 - 1. Static properties
 - 2. Dynamic properties
 - D. The dynamic universality classes
- IV. Renormalization Group for Relaxational Models
 - A. System with no conservation laws: Model A
 - 1. The model
 - 2. Perturbation theory
 - 3. Recursion relations near d=4

- VI. Planar Magnet and Superfluid Helium
 - A. Models E and F
 - B. Dynamic scaling
 - C. Renormalization group
 - D. Comparison with experiment
 - E. Microscopic models
 - F. ³He-⁴He mixtures and tricritical dynamics
 - G. Two-dimensional superfluid films
- VII. Heisenberg Magnets
 - A. Antiferromagnet
 - 1. Model G
 - 2. Critical behavior
 - 3. Couplings to other fields and effects of anisotropy
 - 4. Experimental studies
 - B. Isotropic ferromagnet
 - 1. Model J
 - 2. Dynamic scaling and mode coupling
 - 3. Renormalization group
 - 4. Comparison with experiment

Halperin-Hohenberg's Model G

Model G

the rotational symmetry of the dynamics implies that the spin s(x, t) is a conserved quantity

spin conservation law $\implies \omega = iDk^2 \pm ck$ and z = 1.5 fix this!

Emmy Noether Seminar Room

ingredient #3

underdamping - inertia - spin conservation

(but this is not your regular inertia!)

promoting Model G to an active field theory

Equilibrium Model G:

$$\begin{pmatrix} \frac{\partial v(x,t)}{\partial t} = +g \, v \times \frac{\delta \mathcal{H}}{\delta s} - \Gamma \frac{\delta \mathcal{H}}{\delta v} + \, \theta_v(x,t) \\ \frac{\partial s(x,t)}{\partial t} = -g \, v \times \frac{\delta \mathcal{H}}{\delta v} - \Lambda \frac{\delta \mathcal{H}}{\delta s} + \, \theta_s(x,t) \end{cases}$$
go active:
$$\begin{cases} \partial_t v \to D_t v = \partial_t v + \gamma_v \left(v \cdot \nabla \right) v \\ \partial_t s \to D_t s = \partial_t s + \gamma_s \left(v \cdot \nabla \right) s \end{cases}$$

Self-Propelled Model G (or Active Model G) - our theory:

$$\begin{cases} D_t \mathbf{v}(x,t) = +g \, \mathbf{v} \times \frac{\delta \mathcal{H}}{\delta s} - \Gamma \frac{\delta \mathcal{H}}{\delta v} - \nabla P + \, \boldsymbol{\theta}_v(x,t) \\ D_t s(x,t) = -g \, \mathbf{v} \times \frac{\delta \mathcal{H}}{\delta v} - \Lambda \frac{\delta \mathcal{H}}{\delta s} + \, \boldsymbol{\theta}_s(x,t) \end{cases}$$
to be studied in the swarm phase

4 dynamical fields and 5 non-linear couplings

all coupling constants have RG scaling dimension equal to $\varepsilon = 4 - d$, hence:

expansion for $d = 4 - \varepsilon$

a handful of 1-loop diagrams

a novel fixed point emerges

numerical simulations

numerical simulations - Inertial Spin Model

$$\begin{cases} \frac{d\boldsymbol{v}_i}{dt} = \frac{1}{\chi} \boldsymbol{s}_i \times \boldsymbol{v}_i & \text{Sriram, notice this... and yet spin cannot be eliminated!} \\ \frac{d\boldsymbol{s}_i}{dt} = \boldsymbol{v}_i \times \frac{J}{n_i} \sum_j n_{ij}(t) \boldsymbol{v}_j \boxed{-\frac{\eta}{\chi} \boldsymbol{s}_i} + \boldsymbol{v}_i \times \boldsymbol{\zeta}_i & \langle \boldsymbol{\zeta}_i(t) \cdot \boldsymbol{\zeta}_j(t') \rangle = 2dT \ \eta \ \delta_{ij} \delta(t-t') \\ \frac{d\boldsymbol{r}_i}{dt} = \boldsymbol{v}_i & \text{Cavagna et al 2015} \end{cases}$$

0.1

logξ

0.2

0.3

0

final comparison

summary: experiments - simulations - RG theory

too good to be true?

$$z_{\text{RG},1-\text{loop}} = 1.35 \qquad z_{\text{sim}} = 1.35 \pm 0.04$$
$$z_{\text{RG},2-\text{loop}} = ? \qquad \text{will the 2-loop corrections be just zero ?!?}$$

$$z_{\text{RG}}^{\text{Model G}} = 1.5 \qquad \delta z_{1-\text{loop}} = 0.15$$
$$\delta z_{2-\text{loop}} = ?$$
$$\delta z_{2-\text{loop}}^{\text{Ising}} = 0.02$$

it's not to good to be true – we are in line with standard calculations

RG crossover

spin dynamics:

$$\dot{s} = -\Lambda s + \dots$$

conservative:

$$\Lambda = \lambda k^2$$

non - conservative:

$$\Lambda = \lambda k^2 + \eta$$

 η is an RG-relevant variable

temporal relaxation in natural swarms is clearly underdamped

Vicsek swarms - simulations

RG crossover

RG crossover

the 3.99 group

Luca Di Carlo Princeton

Giulia Pisegna *Göttingen*

Mattia Scandolo *Rome*

Irene Giardina *Rome*

Tomas Grigera *La Plata*

Stefania Melillo *Rome*

Leonardo Parisi *Rome*

"Natural Swarms in 3.99 Dimensions" Nature Physics, 2023