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Messy systems —condensed matter physics perspective
(Symmetry-breaking, ordering, phase transitions)




Active matter

Microscopic free energy supply
Conversion to work

Equilibrium

o Equal-time correlators —free energy (equipartition theorem)
« No knowledge of dynamics required
 Existence of ordered state — independent of presence of fluid

e Doesn’t depend on momentum or other conservation laws
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We construct the hydrodynamic equations for suspensions of self-propelled particles (SPPs) with
spontaneous orientational order, and make a number of striking, testable predictions: (i) Nematic SPP
suspensions are always absolutely unstable at long wavelengths. (ii) SPP suspensions support novel
propagating modes at long wavelengths, coupling orientation, flow, and concentration. (iii) In a wave
number regime accessible only in low Reynolds number systems such as bacteria, polar-ordered
suspensions are invariably convectively unstable. (iv) The variance in the number N of particles, divided
by the mean (N), diverges as (N)*/ in polar-ordered SPP suspensions.
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(1) Nematic SPP
suspensions are always absolutely unstable at long wavelengths.
(iii) In a wave
number regime accessible only in low Reynolds number systems such as bacteria, polar-ordered
suspensions are invariably convectively unstable.

Simha-Ramaswamy instability of uniaxial active suspensions




Active Liquid Crystalline Fluids

Uniaxial order in momentum-conserved fluids?

Proof by contradiction: Assume an ordered state; show it is unstable
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Simha & Ramaswamy, PRL 2002
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Uniaxial order in momentum-conserved fluids?

Proof by contradiction: Assume an ordered state; show it is unstable
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Pressure gradient \ / / /
Z

Incompressible
Flow. ,/
Enforces /

V:-v=20 Active force density

/ Director: n (unit vector)

/// Degree of ordering Q = <nn -
Apolar order parameter

Simha & Ramaswamy, PRL 2002
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Proof by contradiction: Assume an ordered state; show it is unstable

0,0 = }/5F Q- Q-Q-Q-J4
o0

nV2v=VII+¢AuV-0 V-v=0

Parametrisation
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Proof by contradiction: Assume an ordered state; show it is unstable

oF £
00=—-y FQ-Q-Q-Q—-1A 4’&@
oQ &
nVv=VI+{AuV-Q V.v=0 V¢
Parametrisation Eigenfrequency of orientational fluctuations

YA

<cos 20  sin26 > w0 = i 08 26(1 = 2.cos 20)

sin20 —cos 26 21
Positive growth rate above or below ¢ = 7/4
H > Growth rate independent of wavenumber

Viscosity/activity = Unique timescale
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Uniaxial order in momentum-conserved fluids?

CAu >0

Active fluid flow Flow alignment Fluid Flow
Destabilises bend
Simha & Ramaswamy, PRL 2002; gb ~ (0
Eigenfrequency of orientational fluctuations Ramaswamy & Rao, NJP 2007

Ap
cos 2¢(1 — A cos 2¢)
21

w =1
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Uniaxial order in momentum-conserved fluids?

CAu <0
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Active fluid flow Flow alignment

Simha & Ramaswamy, PRL 2002;

Eigenfrequency of orientational fluctuations
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Momentum conservation + Number/ mass conservation

— Nematic phase doesn’t exist
— Polar phase doesn’t exist in the Stokesian regime *

* With inertia: Polar flock saved by Toner-Tu waves— See Chatterjee et al. PRX 2021
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Momentum conservation + Number/ mass conservation

— Nematic phase doesn’t exist
— Polar phase doesn’t exist in the Stokesian regime *

How to have uniaxial suspensions in Stokesian active fluids?

* With inertia: Polar flock saved by Toner-Tu waves— See Chatterjee et al. PRX 2021
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Momentum conservation + Number/ mass conservation

— Nematic phase doesn’t exist
— Polar phase doesn’t exist in the Stokesian regime *

How to have uniaxial suspensions in Stokesian active fluids?

Momentum-conservation
Or
Mass/-number-conservation

* With inertia: Polar flock saved by Toner-Tu waves— See Chatterjee et al. PRX 2021
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Momentum conservation + Number/ mass conservation

— Nematic phase doesn’t exist
— Polar phase doesn’t exist in the Stokesian regime *

How to have uniaxial suspensions in Stokesian active fluids?

Momentum-conservation

* With inertia: Polar flock saved by Toner-Tu waves— See Chatterjee et al. PRX 2021
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Nematic order in active fluids on a substrate or in a confined geometry

L

X Examine the thickness-averaged 2d dynamics




Active Nematic Fluids

Degenerate planar anchoring

No slip P
| — T T — —
T ——— ———— -
7 —_———— h‘ —
Y — T TT—— T—

X Examine the thickness-averaged 2d dynamics

Expectation Voituriez, Joanny, Prost, EPL 2005

Hydrodynamics cut-off at scale ~ h Active growth rate ~ q2

Average with lubrication approximation Fights against elasticity

(Vz =0, ()g > ayzc’ 03) w=ig’ CZA—F'M cos 2¢(1 — Acos2¢)—yK

2d incompressibility V - v =0
(V — 2d gradient, v — z-averaged velocity)
Effective friction: I o #/h?

Stable at small Ayu but unstable for
| Au > 2yKT'/ ||
(Au 2 2yKT'/| | when |1] < 1)
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Nematic order in active fluids on a substrate or in a confined geometry

L

X Examine the thickness-averaged 2d dynamics
Reality Maitra et al., PNAS 2018

Not extensive in the z direction — Need more careful gradient expansion




Active Nematic Fluids

Degenerate planar anchoring

X Examine the thickness-averaged 2d dynamics
Reality Maitra et al., PNAS 2018

Not extensive in the z direction — Need more careful gradient expansion

As viscosity leads to friction ﬂV%V3 ~ ;78§V3 — —nv/h?> = =TV (03 X 1/h2)
Higher order in gradient active stresses can affect ¢ — O dynamics
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Nematic order in active fluids on a substrate or in a confined geometry

L

X Examine the thickness-averaged 2d dynamics
Reality Maitra et al., PNAS 2018

ST
0-3 X [V3(Q3 ‘ V3 ‘ Q3)] :’ fa X V%(Qf} ‘ V3 ‘ Q3)
Projected z-averaged active force (dg X 1/h2) —-Q-V-0Q
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Nematic order in active fluids on a substrate or in a confined geometry

L

X Examine the thickness-averaged 2d dynamics
Reality Maitra et al., PNAS 2018

ST
0-3 X [V3(Q3 ‘ V3 ‘ Q3)] :’ fa X V%(Qf} ‘ V3 ‘ Q3)
Projected z-averaged active force (dg X 1/h2) —-Q-V-0Q

Not derivable from a stress — only possible if momentum is not conserved
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Nematic order in active fluids on a substrate or in a confined geometry

L

X Examine the thickness-averaged 2d dynamics

Reality Maitra et al., PNAS 2018
ST
0-3 X [V3(Q3 ‘ V3 ‘ Q3)] :’ fa X V%(Qf} ‘ V3 ‘ Q3)

Projected z-averaged active force (dg X 1/h2) —-Q-V-0Q

Not derivable from a stress — only possible if momentum is not conserved

Different angular symmetry from the usual active force x V - Q




Active Nematic Fluids

0,0 = y§g+Q-Q—Q-Q—/1A

['v=—VII-AuV -0 +5,AuQ - (V- Q)

What does this mean?

Different active force along and transverse to the ordering direction

Different active force for splay n(V - n) and bend n - Vn distortions
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0,0 = y§g+Q-Q—Q-Q—/1A

['v=—VII-AuV -0 +5,AuQ - (V- Q)

What does this mean?

Different active force along and transverse to the ordering direction
Different active force for splay n(V - n) and bend n - Vn distortions

Active force in systems not conserving momentum: F“ « p (polarisation)
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0,0 = y§g+Q-Q—Q-Q—/1A

['v=—VII-AuV -0 +5,AuQ - (V- Q)

What does this mean?

Different active force along and transverse to the ordering direction
Different active force for splay n(V - n) and bend n - Vn distortions
Active force in systems not conserving momentum: F“ « p (polarisation)

A general polarisation in a nematic: p=an(V -n) + bn - Vn




Active Nematic Fluids

oF

00=—y7y—+0Q-Q-Q-Q—-41A4

0Q

['v=—VII-AuV-0Q +5,AuQ - (V- Q)

Parametrisation

cos260 sin 20
sin280 —cos 26

/‘>9 »

)

Ordered state: Along X
HO — O

Spatio-temporal fluctuations:

O(r, t) about this state
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A

1 =2 1+ A 3 ¢
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Elasticity IW
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‘Active force for splay \

A
Eigenfrequency: w = — iq2 [}/K — 2—1'11(51 cos 2¢p—C,)(1 — A cos 2(/))]

<
<
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1—2 ) YR
0.0 =|yK V-0 > 0,v, > 0y Vy g&
Elasticity IW g"’&

['v=—-VII- (Cl R CZ)Aluaxej} o (Cl_l_CQ) All/tayeje
‘Active force for splay \

A
Eigenfrequency: w = — iq2 [}/K — 2—1'11(51 cos 2¢p—C,)(1 — A cos 2(/))]

Important: Ay dependent part does not change sign around ¢ = x/4

Depending on £/, and 4, may never change sign— always stable
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Stable even for Ay — oo
in flow-tumbling systems

Iz, Al =-0.2
Afi = —0.4
Afi = -0.6
1=-0.8
1-
O R
_1 . q
'¢\\
Ny

Quasi-long-range ordered nematic
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G/G Afil =-0.2
Afl = -0.4
Afl =-0.6
1=-0.8
1t
O i
-1t q
0\\
N

10 1

Quasi-long-range ordered nematic at arbitrary activity withf* x Q -V - Q
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Iz, Al =-0.2
Afi = —0.4
Afi = -0.6
1=-0.8
1-
O R
_1 . q
'6\\
Ny
1 0 1

Quasi-long-range ordered nematic at arbitrary activity withf* x Q -V - Q

Large scales: f* x Q - V - Q dominates over V - Q
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& Nishiguchi et al. PRE 2018

Quasi-long-range ordered nematic at arbitrary activity withf* x Q -V - Q

Large scales: f* x Q - V - Q dominates over V - Q
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Polar order in active fluids on a substrate or in a confined geometry

L

X

Maitra et al., PRL 2020




Active Polar Fluids

No slip 1 v I ;

ZL{ *'* 4-" Vg 'V IIT
St h TR TII

X Maitra et al., PRL 2020

Active polar order in bulk Stokesian fluid — orientation fluctuation = apolar

Generically unstable — no order
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No slip 1 v I ;

ZL{ *'*Hv$ I IIT
Imxixfﬁm TII

X Maitra et al., PRL 2020

Active polar order in bulk Stokesian fluid — orientation fluctuation = apolar

Generically unstable — no order

Confined fluid — Subdominant terms in the bulk equations become important!
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No slip V{ v I ;

ZL{ *'% <—-‘ aV < v 3 T
<5 fﬁmHﬂ B

X Maitra et al., PRL 2020

Active polar order in bulk Stokesian fluid — orientation fluctuation = apolar
Generically unstable — no order

Confined fluid — Subdominant terms in the bulk equations become important!

. oF >

P3=—7’E+Q'P3—AP3'A — {4 V3V3
. 3 . Polar

Equivalent to active apolar order Terms

nV3ivy = ViI1+ (AuV, - (pp) \+ ,AuV3p
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No slip V{ v I ;

1y B cr b Tl et v
£ ST {ﬁmﬂﬂr LTy

Maitra et al., PRL 2020

Active polar order in bulk Stokesian fluid — orientation fluctuation = apolar
Generically unstable — no order

Confined fluid — Subdominant terms in the bulk equations become important!

oF Polar '
- 7 passive
P; = — 7’5_p3 +Q-p;—Ap; - A| = |4, Vivs - Flow-alignment
Polar

Equivalent to active apolar order Terms

nV3ivy = ViI1+ (AuV, - (pp) \+ ,AuV3p
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No slip V{ v I ;

1L end b v
L Imﬁ:fﬁm“ﬂ ﬁ'ﬁ“T

X Maitra et al., PRL 2020

Active polar order in bulk Stokesian fluid — orientation fluctuation = apolar
Generically unstable — no order

Confined fluid — Subdominant terms in the bulk equations become important!

oF Polar '
- 7 passive
P; = — 7’5_p3 +Q-p;—Ap; - A| = |4, Vivs - Flow-alignment
Polar

Equivalent to active apolar order Terms

Active polar force
2w — 2
nV3vy = V3l + CAuV; - (pp) "" A1 V3P Fore-aft asymmetry; motility
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Polar order in active fluids on a substrate or in a confined geometry

L

X

Maitra et al., PRL 2020

Thickness average using lubrication approximation
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No slip q* I ;

ZL{ *V$Hv$ Ven VY IIT
E T T T it

Maitra et al., PRL 2020

Thickness average using lubrication approximation Steady state: py = pofc
. oF SF _ A%,
p= AV_)/— ; I'v = — VII+ op A VYo (W/]\)g/ )x
oP L

'+ A2
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No slip V{ v I ;
ZL{ * Y * - * Yeu ¥ $ I : T
¥ ‘TI II
X I ﬂ I I I I II I Maitra et al., PRL 2020
Thickness average using lubrication approximation Steady state: p, = ppX
S a._oF _ L\ OF Vo = (wpy/ MR,
p=Av yép, ['v=—VII+ vp Aép o Ab

Long-range interaction due to incompressibility [+ A2
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, No slip
24[ y VY T b JTen Yy ¥

ST R M

i1t T

Maitra et al., PRL 2020

Thickness average using lubrication approximation Steady state: p, = ppX
, oF OF = %
p=Av—y—; Tv=-VI4+op A  [Y0= WPIAR

op op w =
Long-range interaction due to incompressibility [+ A2

2
q
Angular fluctuations not hydrodynamic! @ = —1i (w—y2+}/Kq2> + 1.4,
q




Active Polar Fluids

, No slip I ;
SR SRR NI N ADA.
ISR i A
X I I I I Maitra et al., PRL 2020
Thickness average using lubrication approximation Steady state: p, = ppX
p= AV—)/5—F - I'v=—VII+ vp —A5_F Yo = (w/]\ag/A)x.
op op W=

Long-range interaction due to incompressibility [+ A2

2
q
Angular fluctuations not hydrodynamic! @ = —1i (w—y2+}/Kq2> + 1.4,
q

Long-range order
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Polar order in active fluids on a substrate or in a confined geometry

L

X Maitra et al., PRL 2020
q2
Angular fluctuations not hydrodynamic! @ = — i w—y2+7/Kq2
q

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994)
(Advection irrelevant)
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1 ¥ :Iw“ﬁ: RS2

-~ .

i, epd h

Y < Py
<A RN "I'Iﬁ':“T
X I ﬂ I I I I II I Maitra et al., PRL 2020
2
Angular fluctuations not hydrodynamic! @ = — 1 <wq—y2+qu2>
q

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994)
(Advection irrelevant)

Exact static exponents (Chen et al. Nat. Commun. 2016; Kashuba PRL, 1994)

Dynamical exponent from dynamical RG (Chen, Lee, Maitra, Toner, arXiv 2023)
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No sli
o slip V{* I;
2 S u«' b es g

z = mxix F-'Im LTy

Maitra et al., PRL 2020

Angular fluctuations not hydrodynamic! @ = — w—+7/Kq >
q°

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994)
(Advection irrelevant)

Exact static exponents (Chen et al. Nat. Commun. 2016; Kashuba PRL, 1994)
Dynamical exponent from dynamical RG (Chen, Lee, Maitra, Toner, arXiv 2023)

Surprising variant of Anderson mechanism
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Polar order in active fluids on a substrate or in a confined geometry

L

X

Maitra et al., PRL 2020

2

Angular fluctuations not hydrodynamic! @ = — i w—y2+7/Kq2 + 1.9,
q

LRO even on disordered substrate (Maitra, PRE 2020; Chen, Lee, Maitra, Toner, PRL 2022)

Exponents on disordered substrates via RG (Chen, Lee, Maitra, Toner, PRE 2022)
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Polar order in active fluids on a substrate or in a confined geometry

L

X

Maitra et al., PRL 2020

2

Angular fluctuations not hydrodynamic! @ = — i w—y2+7/Kq2 + 1.9,
q

LRO even on disordered substrate (Maitra, PRE 2020; Chen, Lee, Maitra, Toner, PRL 2022)

Exponents on disordered substrates via RG (Chen, Lee, Maitra, Toner, PRE 2022)

Self-advection important. LRO in disordered media not possible in passive systems
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Momentum conservation + Number/ mass conservation

— Nematic phase doesn’t exist
— Polar phase doesn’t exist in the Stokesian regime *

How to have uniaxial suspensions in Stokesian active fluids?

Mass/-number-conservation

* With inertia: Polar flock saved by Toner-Tu waves— See Chatterjee et al. PRX 2021



Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

“ Particle exchange between bulk and interface

s’

Maitra, Nat. Phys. 2023




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

e’
— =

\ |
\ \ "/ / \\ //9\\93;L
N[ — ~

Particle exchange between bulk and interface

Maitra, Nat. Phys. 2023

Momentum conserved systems




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

e’
= == — -

?/Q_ y i\\_ - ?}o\éll/
N )|~

Part1cle exchange between bulk and interface

Maitra, Nat. Phys. 2023

Momentum conserved systems
Interface provides a degenerate set of planar easy axes

Ordered wetting layer




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid

id-air interfaces

Fluid flows in z direction In the fluid,
AN V.-V =0;
¢! 3 )
s D W At the interface,
e M0V, £0 = VoV £
ot 1D \ \ I

™~ \W ?\‘)\/
N[ — N \/

Particle exchange between bulk and interface

Maitra, Nat. Phys. 2023

Momentum conserved systems

Interface provides a degenerate set of planar easy axes

Ordered wetting layer




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-

air interfaces

Fluid flows in z direction
'6\
AR, A\
«E E—
C7 T o\ \

™~ \W ?\‘)\/
N[ — N |l -

Particle exchange between bulk and interface

In the fluid,

V;-V=0;

At the interface,
,V,#0 — V-v' #£0
2d boundary flow not
incompressible.

Maitra, Nat. Phys. 2023

Momentum conserved systems

Interface provides a degenerate set of planar easy axes

Ordered wetting layer
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Uniaxial active ordering at fluid-fluid or fluid-

air interfaces

In the fluid,

V;-V=0;

At the interface,
,V,#0 — V-v' #£0
2d boundary flow not
incompressible.

Fluid flows in z direction
[ - Q\\)\d\
ey
¢TI \ \ I
\ \ / ?\_\)\ /

Particle exchange between bulk and interface

Maitra, Nat. Phys. 2023

Interfacial order parameter Q and interfacial active surface stress 6° o« Q




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid

-air interfaces

Fluid flows in z direction

In the fluid,

V;-V=0;

At the interface,
,V,#0 — V-v' #£0
2d boundary flow not
incompressible.

Particle exchange between bulk and interface

Maitra, Nat. Phys. 2023

Interfacial order parameter Q and interfacial active surface stress 6° o« Q

Interfacial velocity v =M - F' =M - (V . ¢°)
| <%? +2q;  —q.4,

M = -
4n|q|

-q.9, 2q;+ qy2> n= (7 +m)/2




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Interfacial velocity v =M - F*; M ~ © (q_l)

F = — itAu (qyefc + qxey)




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

A

'y

Interfacial velocity v =M - F*; M ~ © (q_l)

3
F = — itAu (qyefc + qxey) ¢
§

Oy

(=4 1+a :
atg =1 Tvay o 0 vax + @(q )

w~|q| - o= iCAi‘ [l [cos(qu)[l — 1 cos(2¢)] —% sin?(2¢)

n




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

, , 4 Because no conservation law
Interfacial velocity v =M - F°; M ~ O (q )

FW:-xAﬂ(%ax+qﬂy)

(=4 1+a :
atg =1 TQxVy o 7 vax + @(q )

w~|qg| »>w= i(:AZ 4] [cos(2gb)[1 — Acos(2¢)] B sin®(2¢),

n




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Because no conservation law

. . S Se —1
Interfacial velocity v =M - F*; M ~ 0 (q ) Dilation or contraction of 2d flow

. S uo .
F = — itAu (q,0%+ 4,09 ) i, vt == g sin 24

(=4 1+a )
atg =1 TQxVy o 7 vax + @(q )

w~|qg| »>w= i(:AZ 4] [cos(2gb)[1 — Acos(2¢)] B sin®(2¢),

n




Active Uniaxial Surface Order

Uniaxial active ordering at fluid-fluid or fluid-air interfaces

. L N _1\ |Because no conservation law
Interfacial velocity v: =M - F; M~ 0 (q ) Dilation or contrgction of 2d flow
: s H -
F = —icAu (08 + 4,05 ) 4 v =27 glsin2g
[ 1=2 1+ 4 sin®2¢) # 0 at ¢p = 7/4
aﬂ =1 <TQXV; — qu;> + @(QZ) ~

w~|qg| »>w= i(:AZ 4] [cos(Zgb)[l — Acos(2¢)] —% sin®(2¢),

n
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Interfacial velocity v =M - F*; M ~ © (q_l)

F = — itAu (qyefc + qxey)
1+

1-4
00 =1 quvy—

_iCAulq|

o~ |q] = o=

4n

Because no conservation law
Dilation or contraction of 2d flow

Aub
iq, v =22 |sin 24
4n

sin®2¢ # 0 at ¢ = /4

qu;§> + O(q?)

Pl
[cos(2gb)[1 — A cos(2¢)] —% sin®(2¢),

Lack of number/ mass conservation— stabilising
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Splay instability
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Bend instability

Stable at Ay — oo for {A > 0and [A| > 1
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Interfacial velocity v =M - F*; M ~ © (q_l)

F = — itAu (qyefc + qxey)
1+

1-4
00 =1 quvy—

_iCAulq|

o~ |q] = o=

4n

Because no conservation law
Dilation or contraction of 2d flow

Aub
iq, v =22 |sin 24
4n

sin®2¢ # 0 at ¢ = /4

qu;§> + O(q?)

Pl
[cos(2gb)[1 — A cos(2¢)] —% sin®(2¢),

Lack of number/ mass conservation— stabilising < |9|2> ~ 1/]q| = 2d LRO!
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Interfacial velocity v =M - F*; M ~ © (q_l)

F = — itAu (qyefc + qxey)
1+

1-4
00 =1 quvy—

_iCAulq|

o~ |q] = o=

4n

Because no conservation law
Dilation or contraction of 2d flow

Aub
iq, v =22 |sin 24
4n

sin®2¢ # 0 at ¢ = /4

qu;§> + 0(q%)
2

[cos(2gb)[1 — A cos(2¢)] —% sin®(2¢),

Lack of number/ mass conservation— stabilising < |9|2> ~ 1/]q| = 2d LRO!

No relevant nonlinearity — Linear theory is exact
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Because no conservation law

. . S Se —1
Interfacial velocity v" = M - F'; M ~ O (q ) Dilation or contraction of 2d flow

. S uo .
F = —icAu (08 + 4,05 ) 4 v =27 glsin2g
1—2 1+ 2 sin2¢ # 0 at ¢ = z/4
00 =i (—qxv; - qu;§> + O(q?) ’ ’
2 >
A A
w~|qg| »>w= i Zlcﬂ [cos(Zgb)[l — Acos(2¢)] B sin®(2¢),
i

Interfacial order in system without bulk order < 16 |2> ~ 1/]¢g| = 2d LRO!
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

. . ) N _1 Because no conservation law
Interfacial velocity v =M - F'; M ~ O (q ) Dilation or contraction of 2d flow
. ,  CAud :
F = — itAu (q,0%+ 4,09 ) i, vt == g sin 24
1 - 144 sin®2¢ # 0 at ¢p = 7/4
0,0 =i (quv; - qu;:) + 0(q?)
Pl
0~ gl = =2t [cos(2qb)[1 — 4 cosCpIl- sin’ )
n
Interfacial order in system without bulk order < 16 |2> ~ 1/]g| — 2d LRO!

No extraordinary transition from surface to bulk order

The ordered wetting layer never acquires macroscopic thickness
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Because no conservation law

. . S Se —1
Interfacial velocity v" = M - F'; M ~ O (q ) Dilation or contraction of 2d flow

oy GAul
F = — itAu (q,0%+ 4,09 ) i, vt == g sin 24

1-1 1+ 2 sin?2¢ # 0 at ¢p = n/4
00 =i <—qxv; - qu;:) + 0(g% proes
z ya
CA A
w~|qg| »>w= i f|6]| [cos(Zgb)[l — Acos(2¢)] B sin®(2¢),
n

Simha-Ramaswamy instability in the bulk; screening of fluctuations at the surface
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Because no conservation law
Dilation or contraction of 2d flow

oy GAul
F = — itAu (q,0%+ 4,09 ) i, vt == g sin 24

Interfacial velocity v =M - F*; M ~ © (q_l)

1-1 1+ 2 sin?2¢ # 0 at ¢p = n/4
00 =i <—qxv; - qu;:) + 0(g% proes
z ya
CA A
w~|qg| »>w= i f|6]| [cos(Zgb)[l — Acos(2¢)] B sin®(2¢),
n

Simha-Ramaswamy instability in the bulk; screening of fluctuations at the surface
Gravitational Jeans-like bulk instability, Coulomb-like screening at the surface

The active stress that destroys bulk order, anomalously stabilises surface order
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}d Number conservation

Apolar order when active units are confined to interfac

Maitra, Nat. Phys. 2023

Generically unstable — apolar state doesn’t exist
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

}d Number conservation

Apolar order when active units are confined to interfac

Maitra, Nat. Phys. 2023

Generically unstable — apolar state doesn’t exist

Different from Simha-Ramaswamy instability of incompressible active nematic fluids
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

log?,

- 2A.¢

J
Finite A,

A, — Inverse compressibility

Maitra, Nat. Phys. 2023

Instability lengthscale independent
of activity at large activity.
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

2d Number conservation

Polar order when active units are confined to interface

Maitra, Nat. Phys. 2023

Stable! Escapes the instability due to Toner-Tu waves.
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

155 Low Motility
kot | Instability
@g 1-0."\:\ \\E’\\\‘
L RNVRRNY

0.5_"Homogeneous Maitra, Nat. Phys. 2023

- Polar Phase

oo .. ... .. 1 | When motility is hish— polar LRO
0.0 0.5 1.0 1.5 20 25
R — 1/motility

1 AR, — measure of compressibility
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

2d Number conservation

Polar order when active units are confined to interface

Maitra, Nat. Phys. 2023

Stable! Escapes the instability due to Toner-Tu waves.

Linear theory is exact: no relevant nonlinearity.
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Natural in experiments

=01l
I Active nematic
<——=Water

o Instability in this geometry
not generic. Depends on
experimental details.

Martinez-Prat et al., PRX 2021
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Natural in experiments

&=0il

ctive nematic

Natural in bacterial fluid.
Interfacial order possible.

Instability in this geometry
not generic. Depends on
experimental details.

Martinez-Prat et al., PRX 2021
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Uniaxial active ordering at fluid-fluid or fluid-air interfaces

Water

Substrate

Natural in experiments

&=0il

Active nematic

Natural in bacterial fluid.
Interfacial order possible.

7<——=Water

Instability in this geometry
not generic. Depends on
experimental details.

Martinez-Prat et al., PRX 2021

Possibility of protocortex
in protocells (liquid-
liquid phase-separation)
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Active Liquid Crystalline Fluids

Summary

Simha-Ramaswamy instability — No order in Stokesian bulk fluids

But does not preclude order in fluids even at infinite activity

QLRO nematic phase at arbitrary activity in fluids on substrates

LRO polar phase in active fluids on substrates— (almost) massive Goldstone mode
Interfacial LRO polar and apolar order in bulk, Stokesian fluids

Fluid flows that destabilise bulk order, anomalously stabilise interfacial order
Apolar order impossible when particles live at interface, but motile polar LRO

Unlike in passive systems, existence of order depends on details of the medium




Active Liquid Crystalline Fluids

Simha-Ramaswamy instability doesn’t preclude ordering
at any activity in most experimental active fluids
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