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Messy systems condensed matter physics perspective 
(Symmetry-breaking, ordering, phase transitions) 
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Active matter
Microscopic free energy supply 
        Conversion to work

Collective behaviour

Equilibrium

• Equal-time correlators free energy (equipartition theorem) 

• No knowledge of dynamics required 

• Existence of ordered state  independent of presence of fluid 

• Doesn’t depend on momentum or other conservation laws 

→

→
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Simha-Ramaswamy instability of uniaxial active suspensions

Uniaxial order in momentum-conserved fluids?



Active Liquid Crystalline Fluids

Proof by contradiction: Assume an ordered state; show it is unstable

n

Director:  (unit vector)n
Degree of ordering

Apolar order parameter

Q = ⟨nn −
I
d ⟩

Simha  Ramaswamy, PRL 2002 &

Strain-rate alignment

A =
1
2 [∇v + (∇v)T]

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

Passive  
alignment

Co-rotation

Ω =
1
2 [∇v − (∇v)T]

Uniaxial order in momentum-conserved fluids?



Active Liquid Crystalline Fluids

Proof by contradiction: Assume an ordered state; show it is unstable

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

η∇2v = ∇Π + ζΔμ∇ ⋅ Q

Active force density

Simha  Ramaswamy, PRL 2002 &

Pressure gradient 
Incompressible 
Flow. 
Enforces 
∇ ⋅ v = 0

n

Director:  (unit vector)n
Degree of ordering

Apolar order parameter

Q = ⟨nn −
I
d ⟩

Uniaxial order in momentum-conserved fluids?



Active Liquid Crystalline Fluids

Proof by contradiction: Assume an ordered state; show it is unstable

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

η∇2v = ∇Π + ζΔμ∇ ⋅ Q ∇ ⋅ v = 0

Q ∝ (cos 2θ sin 2θ
sin 2θ −cos 2θ)

x

Y

θ

Parametrisation

Uniaxial order in momentum-conserved fluids?



Active Liquid Crystalline Fluids

Proof by contradiction: Assume an ordered state; show it is unstable

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

η∇2v = ∇Π + ζΔμ∇ ⋅ Q ∇ ⋅ v = 0

Q ∝ (cos 2θ sin 2θ
sin 2θ −cos 2θ)

x

Y

θ

Parametrisation Eigenfrequency of orientational fluctuations 

 ω = i
ζΔμ
2η

cos 2ϕ(1 − λ cos 2ϕ)

Positive growth rate above or below ϕ = π /4
Growth rate independent of wavenumber

Viscosity/activity  Unique timescale→

w
av

ev
ec

to
r q

ϕ̂x

Uniaxial order in momentum-conserved fluids?



Extensile

Active fluid flow Flow alignment

Ramaswamy  Rao, NJP 2007&

Fluid Flow
Destabilises bend

Active Liquid Crystalline Fluids

Simha  Ramaswamy, PRL 2002; &

Eigenfrequency of orientational fluctuations 

 ω = i
ζΔμ
2η

cos 2ϕ(1 − λ cos 2ϕ)

ϕ ≈ 0

ζΔμ > 0

Uniaxial order in momentum-conserved fluids?



Contractile

Active fluid flow Flow alignment

Ramaswamy  Rao, NJP 2007&

Fluid Flow
Destabilises splay

Active Liquid Crystalline Fluids

Simha  Ramaswamy, PRL 2002; &

Eigenfrequency of orientational fluctuations 

 ω = i
ζΔμ
2η

cos 2ϕ(1 − λ cos 2ϕ)

ϕ ≈
π
2

ζΔμ < 0

Uniaxial order in momentum-conserved fluids?



Active Liquid Crystalline Fluids
Simha-Ramaswamy instability for uniaxial suspensions

Momentum conservation + Number/ mass conservation

 Nematic phase doesn’t exist 
 Polar phase doesn’t exist in the Stokesian regime * 

→
→

* With inertia: Polar flock saved by Toner-Tu waves See Chatterjee et al. PRX 2021→
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Momentum conservation + Number/ mass conservation

 Nematic phase doesn’t exist 
 Polar phase doesn’t exist in the Stokesian regime * 
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How to have uniaxial suspensions in Stokesian active fluids?
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Momentum conservation + Number/ mass conservation

Momentum conservation 
Or 

Mass/ number conservation 

 Nematic phase doesn’t exist 
 Polar phase doesn’t exist in the Stokesian regime * 

→
→

* With inertia: Polar flock saved by Toner-Tu waves See Chatterjee et al. PRX 2021→

How to have uniaxial suspensions in Stokesian active fluids?



Active Liquid Crystalline Fluids

Momentum conservation + Number/ mass conservation

Momentum conservation 
Or 

Mass/ number conservation 

 Nematic phase doesn’t exist 
 Polar phase doesn’t exist in the Stokesian regime * 

→
→

* With inertia: Polar flock saved by Toner-Tu waves See Chatterjee et al. PRX 2021→

How to have uniaxial suspensions in Stokesian active fluids?
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Nematic order in active fluids on a substrate or in a confined geometry 

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

No slip

X

YZ



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Expectation

Hydrodynamics cut-off at scale ∼ h
Average with lubrication approximation  

(vz = 0, ∂2
z ≫ ∂2

x, ∂2
y)

No slip

2d incompressibility   
( 2d gradient, z-averaged velocity)

∇ ⋅ v = 0
∇ → v →

X

YZ

Effective friction: Γ ∝ η/h2

ω = iq2 [ ζΔμ
2Γ

cos 2ϕ(1 − λ cos 2ϕ)−γK]
Active growth rate  
Fights against elasticity

∼ q2

Stable at small  but unstable for 
  

(  when )

Δμ
Δμ ≫ 2γK Γ/ |ζ |
Δμ ≳ 2γK Γ/ |ζ | |λ | < 1

Voituriez, Joanny, Prost, EPL 2005 

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Reality

No slip

X

YZ

Maitra et al., PNAS 2018 

Not extensive in the z direction  Need more careful gradient expansion→

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Reality

No slip

X

YZ

Maitra et al., PNAS 2018 

Not extensive in the z direction  Need more careful gradient expansion→

As viscosity leads to friction   

Higher order in gradient active stresses can affect  dynamics

η∇2
3v3 ≈ η∂2

zv3 → − ηv/h2 = − Γv (∂2
z ∝ 1/h2)

q → 0

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Reality

No slip

X

YZ

Maitra et al., PNAS 2018 

σ3 ∝ [∇3(Q3 ⋅ ∇3 ⋅ Q3)]ST ⟹ fa ∝ ∇2
3(Q3 ⋅ ∇3 ⋅ Q3)

Projected z-averaged active force  (∂2
z ∝ 1/h2) → Q ⋅ ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Reality

No slip

X

YZ

Maitra et al., PNAS 2018 

σ3 ∝ [∇3(Q3 ⋅ ∇3 ⋅ Q3)]ST ⟹ fa ∝ ∇2
3(Q3 ⋅ ∇3 ⋅ Q3)

Not derivable from a stress  only possible if momentum is not conserved→

Projected z-averaged active force  (∂2
z ∝ 1/h2) → Q ⋅ ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Degenerate planar anchoring

h
Examine the thickness-averaged 2d dynamics

Reality

No slip

X

YZ

Maitra et al., PNAS 2018 

σ3 ∝ [∇3(Q3 ⋅ ∇3 ⋅ Q3)]ST ⟹ fa ∝ ∇2
3(Q3 ⋅ ∇3 ⋅ Q3)

Different angular symmetry from the usual active force ∝ ∇ ⋅ Q

Projected z-averaged active force  (∂2
z ∝ 1/h2) → Q ⋅ ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 

Not derivable from a stress  only possible if momentum is not conserved→



Active Nematic Fluids

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

Γv = − ∇Π − ζ1Δμ∇ ⋅ Q +ζ2ΔμQ ⋅ (∇ ⋅ Q)

What does this mean?

Different active force along and transverse to the ordering direction

Different active force for splay  and bend  distortionsn(∇ ⋅ n) n ⋅ ∇n

Nematic order in active fluids on a substrate or in a confined geometry 
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∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

Γv = − ∇Π − ζ1Δμ∇ ⋅ Q +ζ2ΔμQ ⋅ (∇ ⋅ Q)

What does this mean?

Different active force along and transverse to the ordering direction

Different active force for splay  and bend  distortionsn(∇ ⋅ n) n ⋅ ∇n

Active force in systems not conserving momentum:  (polarisation)Fa ∝ p
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Active Nematic Fluids

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

Γv = − ∇Π − ζ1Δμ∇ ⋅ Q +ζ2ΔμQ ⋅ (∇ ⋅ Q)

What does this mean?

Different active force along and transverse to the ordering direction

Different active force for splay  and bend  distortionsn(∇ ⋅ n) n ⋅ ∇n

Active force in systems not conserving momentum:  (polarisation)Fa ∝ p

A general polarisation in a nematic: p = an(∇ ⋅ n) + bn ⋅ ∇n

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

∂tQ = − γ
δF
δQ

+ Q ⋅ Ω − Ω ⋅ Q − λA

Γv = − ∇Π − ζ1Δμ∇ ⋅ Q +ζ2ΔμQ ⋅ (∇ ⋅ Q)

Q ∝ (cos 2θ sin 2θ
sin 2θ −cos 2θ)

x

Y

θ

Parametrisation
Ordered state: Along  
                       

̂x
θ0 = 0

Spatio-temporal fluctuations: 

 about this stateθ(r, t)

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Γv = − ∇Π − (ζ1−ζ2)Δμ∂xθ ̂y − (ζ1+ζ2)Δμ∂yθ ̂x
Active force for bend Active force for splay

∂tθ = γK ∇2θ +
1 − λ

2
∂xvy −

1 + λ
2

∂yvx
Elasticity Flow coupling

Eigenfrequency: ω = − iq2 [γK −
Δμ
2Γ

(ζ1 cos 2ϕ−ζ2)(1 − λ cos 2ϕ)]

Nematic order in active fluids on a substrate or in a confined geometry 

w
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Active Nematic Fluids

Γv = − ∇Π − (ζ1−ζ2)Δμ∂xθ ̂y − (ζ1+ζ2)Δμ∂yθ ̂x
Active force for bend Active force for splay

∂tθ = γK ∇2θ +
1 − λ

2
∂xvy −

1 + λ
2

∂yvx
Elasticity Flow coupling

Important:  dependent part does not change sign around Δμ ϕ = π /4

Depending on  and , may never change sign  always stableζ1/ζ2 λ →

Eigenfrequency: ω = − iq2 [γK −
Δμ
2Γ

(ζ1 cos 2ϕ−ζ2)(1 − λ cos 2ϕ)]

Nematic order in active fluids on a substrate or in a confined geometry 

w
av

ev
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ϕ̂x



Active Nematic Fluids

Stable even for  
in flow-tumbling systems

Δμ → ∞ Quasi-long-range ordered nematic

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Quasi-long-range ordered nematic at arbitrary activity with fa ∝ Q ⋅ ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Quasi-long-range ordered nematic at arbitrary activity with fa ∝ Q ⋅ ∇ ⋅ Q

Large scales:  dominates over fa ∝ Q ⋅ ∇ ⋅ Q ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 



Active Nematic Fluids

Nishiguchi et al. PRE 2018

Quasi-long-range ordered nematic at arbitrary activity with fa ∝ Q ⋅ ∇ ⋅ Q

Large scales:  dominates over fa ∝ Q ⋅ ∇ ⋅ Q ∇ ⋅ Q

Nematic order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Active polar order in bulk Stokesian fluid  orientation fluctuation  apolar→ ≡
Generically unstable  no order→

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Active polar order in bulk Stokesian fluid  orientation fluctuation  apolar→ ≡
Generically unstable  no order→
Confined fluid  Subdominant terms in the bulk equations become important!→

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Active polar order in bulk Stokesian fluid  orientation fluctuation  apolar→ ≡
Generically unstable  no order→
Confined fluid  Subdominant terms in the bulk equations become important!→

·p3 = − γ
δF
δp3

+ Ω ⋅ p3 − λp3 ⋅ A − λp ∇2
3v3

η∇2
3v3 = ∇3Π + ζΔμ∇3 ⋅ (pp) + ζpΔμ∇2

3p

Equivalent to active apolar order
Polar  
Terms

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Active polar order in bulk Stokesian fluid  orientation fluctuation  apolar→ ≡
Generically unstable  no order→
Confined fluid  Subdominant terms in the bulk equations become important!→

·p3 = − γ
δF
δp3

+ Ω ⋅ p3 − λp3 ⋅ A − λp ∇2
3v3

η∇2
3v3 = ∇3Π + ζΔμ∇3 ⋅ (pp) + ζpΔμ∇2

3p

Equivalent to active apolar order
Polar  
Terms

Polar passive  
Flow-alignment

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Active polar order in bulk Stokesian fluid  orientation fluctuation  apolar→ ≡
Generically unstable  no order→
Confined fluid  Subdominant terms in the bulk equations become important!→

·p3 = − γ
δF
δp3

+ Ω ⋅ p3 − λp3 ⋅ A − λp ∇2
3v3

η∇2
3v3 = ∇3Π + ζΔμ∇3 ⋅ (pp) + ζpΔμ∇2

3p

Equivalent to active apolar order
Polar  
Terms

Polar passive  
Flow-alignment

Active polar force 
Fore-aft asymmetry; motility

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

Thickness average using lubrication approximation

Maitra et al., PRL 2020 

Polar order in active fluids on a substrate or in a confined geometry 



Active Polar Fluids

X

YZ

h
No slip

·p = Λv−γ
δF
δp

Γv = − ∇Π+ υp −Λ
δF
δp;

Maitra et al., PRL 2020 

Steady state:  
.  

p0 = p0 ̂x
v0 = (wp0/Λ) ̂x

w ≡
Λυ

Γ + Λ2

Polar order in active fluids on a substrate or in a confined geometry 

Thickness average using lubrication approximation



Active Polar Fluids

X

YZ

h
No slip

·p = Λv−γ
δF
δp

Γv = − ∇Π+ υp −Λ
δF
δp;

Maitra et al., PRL 2020 

Long-range interaction due to incompressibility

Steady state:  
.  

p0 = p0 ̂x
v0 = (wp0/Λ) ̂x

w ≡
Λυ

Γ + Λ2

Polar order in active fluids on a substrate or in a confined geometry 

Thickness average using lubrication approximation



Active Polar Fluids

X

YZ

h
No slip

·p = Λv−γ
δF
δp

Γv = − ∇Π+ υp −Λ
δF
δp;

Maitra et al., PRL 2020 

Long-range interaction due to incompressibility

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2) + λaqx

Steady state:  
.  

p0 = p0 ̂x
v0 = (wp0/Λ) ̂x

w ≡
Λυ

Γ + Λ2

Polar order in active fluids on a substrate or in a confined geometry 

Thickness average using lubrication approximation



Active Polar Fluids

X

YZ

h
No slip

·p = Λv−γ
δF
δp

Γv = − ∇Π+ υp −Λ
δF
δp;

Maitra et al., PRL 2020 

Long-range interaction due to incompressibility

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2) + λaqx

Steady state:  
.  

p0 = p0 ̂x
v0 = (wp0/Λ) ̂x

w ≡
Λυ

Γ + Λ2

Polar order in active fluids on a substrate or in a confined geometry 

Thickness average using lubrication approximation

Long-range order



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2)

Polar order in active fluids on a substrate or in a confined geometry 

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994) 
(Advection irrelevant) 
 



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2)

Polar order in active fluids on a substrate or in a confined geometry 

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994) 
(Advection irrelevant) 
 Exact static exponents (Chen et al. Nat. Commun. 2016; Kashuba PRL, 1994)

Dynamical exponent from dynamical RG (Chen, Lee, Maitra, Toner, arXiv 2023)



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2)

Polar order in active fluids on a substrate or in a confined geometry 

Exact mapping to equilibrium dipolar magnet (Kashuba, PRL 1994) 
(Advection irrelevant) 
 Exact static exponents (Chen et al. Nat. Commun. 2016; Kashuba PRL, 1994)

Dynamical exponent from dynamical RG (Chen, Lee, Maitra, Toner, arXiv 2023)

Surprising variant of Anderson mechanism



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

LRO even on disordered substrate (Maitra, PRE 2020; Chen, Lee, Maitra, Toner, PRL 2022)

Exponents on disordered substrates via RG (Chen, Lee, Maitra, Toner, PRE 2022)

Polar order in active fluids on a substrate or in a confined geometry 

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2)+ λaqx



Active Polar Fluids

X

YZ

h
No slip

Maitra et al., PRL 2020 

Self-advection important. LRO in disordered media not possible in passive systems

LRO even on disordered substrate (Maitra, PRE 2020; Chen, Lee, Maitra, Toner, PRL 2022)

Exponents on disordered substrates via RG (Chen, Lee, Maitra, Toner, PRE 2022)

Polar order in active fluids on a substrate or in a confined geometry 

Angular fluctuations not hydrodynamic! ω = − i (w
q2

y

q2
+γKq2)+ λaqx



Active Liquid Crystalline Fluids

Momentum conservation + Number/ mass conservation

How to have uniaxial suspensions in Stokesian active fluids?

Momentum conservation 
Or 

Mass/ number conservation 

 Nematic phase doesn’t exist 
 Polar phase doesn’t exist in the Stokesian regime * 

→
→

* With inertia: Polar flock saved by Toner-Tu waves See Chatterjee et al. PRX 2021→



Active Uniaxial Surface Order

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Maitra, Nat. Phys. 2023 

Uniaxial active ordering at fluid-fluid or fluid-air interfaces
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Particle exchange between bulk and interface

Fluid 1

Fluid 2

Momentum conserved systems

Maitra, Nat. Phys. 2023 

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Interface provides a degenerate set of planar easy axes

Ordered wetting layer

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Maitra, Nat. Phys. 2023 

Momentum conserved systems

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Fluid flows in z direction In the fluid, 
; 

At the interface, 
∇3 ⋅ V = 0

∂zVz ≠ 0 ⟹ ∇ ⋅ vs ≠ 0

Maitra, Nat. Phys. 2023 

Interface provides a degenerate set of planar easy axes

Ordered wetting layer

Momentum conserved systems

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Fluid flows in z direction In the fluid, 
; 

At the interface, 
 

2d boundary flow not 
incompressible.

∇3 ⋅ V = 0

∂zVz ≠ 0 ⟹ ∇ ⋅ vs ≠ 0

Maitra, Nat. Phys. 2023 

Interface provides a degenerate set of planar easy axes

Ordered wetting layer

Momentum conserved systems

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Interfacial order parameter  and interfacial active surface stress Q σs ∝ Q

Fluid flows in z direction In the fluid, 
; 

At the interface, 
 

2d boundary flow not 
incompressible.

∇3 ⋅ V = 0

∂zVz ≠ 0 ⟹ ∇ ⋅ vs ≠ 0

Maitra, Nat. Phys. 2023 

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Particle exchange between bulk and interface

Fluid 1

Fluid 2

Interfacial order parameter  and interfacial active surface stress Q σs ∝ Q

Fluid flows in z direction In the fluid, 
; 

At the interface, 
 

2d boundary flow not 
incompressible.

∇3 ⋅ V = 0

∂zVz ≠ 0 ⟹ ∇ ⋅ vs ≠ 0

Interfacial velocity vs = M ⋅ Fs = M ⋅ (∇ ⋅ σs)

M =
1

4η |q |3 (
q2

x + 2q2
y −qxqy

−qxqy 2q2
x + q2

y ) η ≡ (η1 + η2)/2

Maitra, Nat. Phys. 2023 

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Uniaxial active ordering at fluid-fluid or fluid-air interfaces
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Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1) Because no conservation law 

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1) Dilation or contraction of 2d flow 

iq⊥ ⋅ vs =
ζΔμθ

4η
|q |sin 2ϕ

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
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Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪
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 at sin2 2ϕ ≠ 0 ϕ = π /4

Stable at  for  and Δμ → ∞ ζλ > 0 |λ | > 1

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

 at sin2 2ϕ ≠ 0 ϕ = π /4

2d LRO! ⟨ |θ |2 ⟩ ∼ 1/ |q | →

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Dilation or contraction of 2d flow 

iq⊥ ⋅ vs =
ζΔμθ

4η
|q |sin 2ϕ

Because no conservation law 

Lack of number/ mass conservation  stabilising→

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

 at sin2 2ϕ ≠ 0 ϕ = π /4

2d LRO! ⟨ |θ |2 ⟩ ∼ 1/ |q | →

No relevant nonlinearity  Linear theory is exact→

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Dilation or contraction of 2d flow 

iq⊥ ⋅ vs =
ζΔμθ

4η
|q |sin 2ϕ

Because no conservation law 

Lack of number/ mass conservation  stabilising→

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

 at sin2 2ϕ ≠ 0 ϕ = π /4

2d LRO! ⟨ |θ |2 ⟩ ∼ 1/ |q | →Interfacial order in system without bulk order

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Dilation or contraction of 2d flow 

iq⊥ ⋅ vs =
ζΔμθ

4η
|q |sin 2ϕ

Because no conservation law 

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order
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Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

 at sin2 2ϕ ≠ 0 ϕ = π /4

2d LRO! ⟨ |θ |2 ⟩ ∼ 1/ |q | →Interfacial order in system without bulk order

No extraordinary transition from surface to bulk order

The ordered wetting layer never acquires macroscopic thickness
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Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)
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Simha-Ramaswamy instability in the bulk; screening of fluctuations at the surface
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Active Uniaxial Surface Order

Fs = − iζΔμ (qyθ ̂x + qxθ ̂y)
Interfacial velocity vs = M ⋅ Fs; M ∼ 𝒪 (q−1)

 at sin2 2ϕ ≠ 0 ϕ = π /4

ω ∼ |q | → ω =
iζΔμ |q |

4η [cos(2ϕ)[1 − λ cos(2ϕ)] −
λ
2

sin2(2ϕ)]
∂tθ = i ( 1 − λ

2
qxvs

y −
1 + λ

2
qyvs

x) + 𝒪(q2)

Dilation or contraction of 2d flow 

iq⊥ ⋅ vs =
ζΔμθ

4η
|q |sin 2ϕ

Because no conservation law 

Simha-Ramaswamy instability in the bulk; screening of fluctuations at the surface

Gravitational Jeans-like bulk instability, Coulomb-like screening at the surface

The active stress that destroys bulk order, anomalously stabilises surface order
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Active Uniaxial Surface Order

Apolar order when active units are confined to interface

Generically unstable  apolar state doesn’t exist→
Maitra, Nat. Phys. 2023 

2d Number conservation
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Active Uniaxial Surface Order

Apolar order when active units are confined to interface

Generically unstable  apolar state doesn’t exist→
Different from Simha-Ramaswamy instability of incompressible active nematic fluids

Maitra, Nat. Phys. 2023 

2d Number conservation
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Active Uniaxial Surface Order

Apolar order when active units are confined to interface

Generically unstable  apolar state doesn’t exist→
However, instability different from Simha-Ramaswamy instability

\
Instability lengthscale independent 
of activity at large activity.

Maitra, Nat. Phys. 2023 

Inverse compressibilityAr →
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Polar order when active units are confined to interface

2d Number conservation

Maitra, Nat. Phys. 2023 
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Active Uniaxial Surface Order

Polar order when active units are confined to interface

2d Number conservation

Maitra, Nat. Phys. 2023 

Stable! Escapes the instability due to Toner-Tu waves.

Uniaxial active ordering at fluid-fluid or fluid-air interfaces



Active Uniaxial Surface Order

Polar order when active units are confined to interface

Stable! Escapes the instability by motility.
When motility is high  polar LRO→

1/motility ℛ1 →
measure of compressibility ℛ2 →

Maitra, Nat. Phys. 2023 
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Active Uniaxial Surface Order

Polar order when active units are confined to interface

Linear theory is exact: no relevant nonlinearity.

2d Number conservation

Maitra, Nat. Phys. 2023 

Stable! Escapes the instability due to Toner-Tu waves.
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Active Uniaxial Surface Order

Instability in this geometry 
not generic. Depends on 
experimental details.

Martinez-Prat et al., PRX 2021 

Natural in experiments
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Active Uniaxial Surface Order

Instability in this geometry 
not generic. Depends on 
experimental details.

Martinez-Prat et al., PRX 2021 

Natural in bacterial fluid. 
Interfacial order possible.

Possibility of protocortex 
in protocells (liquid-
liquid phase-separation)

Natural in experiments
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QLRO nematic phase at arbitrary activity in fluids on substrates 

LRO polar phase in fluids on substrates  (almost) massive Goldstone mode→LRO polar phase in fluids on substrates  (almost) massive Goldstone mode→

Active Liquid Crystalline Fluids

Simha-Ramaswamy instability  No order in Stokesian bulk fluids→
But does not preclude order in fluids even at infinite activity

LRO polar phase at arbitrary activity in fluids on substrates  Fast relaxing angle→
Interfacial LRO polar and apolar order in bulk, Stokesian fluids

Fluid flows that destabilise bulk order, anomalously stabilise interfacial order

Apolar order impossible when particles live at interface, but motile polar LRO

Unlike in passive systems, existence of order depends on details of the medium

Simha-Ramaswamy instability doesn’t preclude ordering 
at any activity in most experimental active fluids

Summary
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