Outliers in weakly confined Coulomb-type systems

ioint work with

Topics in High Dimensional Probability ICTS - TIFR, Bengaluru - 2 January 2023 Alon Nishry (Tel Aviv University)

R. Butez, D. García-Zelada, and A. Wennman

General picture

General picture

Coulomb gas (or Jellium)

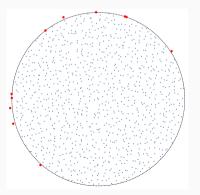
Outliers process

Zeros of random polynomials

Weighted Bergman kernels

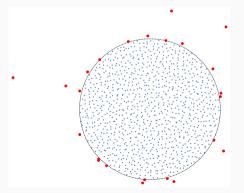
Outliers in planar particle systems

- Particle system (≡point process) in the plane.
- Number of particles goes to infinity.
- Most 'stay' on the droplet, some are 'outliers'



Outliers in planar particle systems

- Particle system (≡point process) in the plane.
- Number of particles goes to infinity.
- Most 'stay' on the droplet, some are 'outliers'



Plan of the talk

- Describe two models of weakly confined particle systems
 - Determinantal Coulomb gas with 'weak' external field
 - Zeros of random linear combinations of orthogonal polynomials
- Limiting point process of the outliers
 - Bergman process conformal invariance
 - More complicated for domains which are multiply-connected
- Some ideas from the proof

Coulomb gas (or Jellium)

General picture

Coulomb gas (or Jellium)

Outliers process

Zeros of random polynomials

Weighted Bergman kernels

Planar Coulomb gas (or Jellium)

- System of N particles with charge -1 in a background 'electric' field $\kappa_N V$ of positive charge.
- (2D Coulombic) repulsion between electrons at z_1, z_2 :

$$-\log|z_1-z_2|$$

• Force of electric field at z:

$$\kappa_N V(z)$$

• Energy/Hamiltonian for N particles at z_1, \ldots, z_N :

$$H_N(z_1,\ldots,z_N) = \sum_{j<\ell} -\log|z_j-z_\ell| + \kappa_N \sum_{\ell} V(z_\ell)$$

Planar Coulomb gas (or Jellium) - cont.

Definition

Coulomb gas with N particles, with field V at (inverse) temperature $\beta > 0$ is a random vector in \mathbb{C}^N whose density is proportional to

$$\exp\left(-\beta H_N\left(z_1,\ldots,z_N\right)\right)$$

with respect to area measure $d\lambda_{\mathbb{C}^N}$.

• That is, density is

$$\frac{1}{Z_N}\prod_{j<\ell}|z_j-z_\ell|^\beta e^{-\beta\kappa_N\sum_\ell V(z_\ell)}\mathrm{d}\lambda(z_1)\ldots\mathrm{d}\lambda(z_N),$$

where $Z_N = Z_N(\beta, V, \kappa_N)$ is a normalizing constant.

The 'Jellium'

• A canonical example is the Ginibre ensemble with

$$\kappa_N = N, \qquad V(z) = |z|^2, \qquad \beta = 2$$

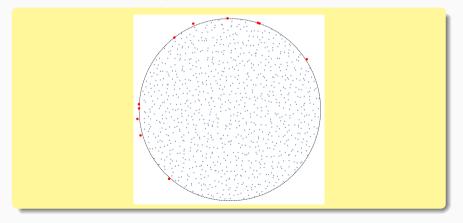
corresponding to eigenvalues of random matrices with independent complex Gaussian coefficients.

Here we have 'strong' confinement

9

The 'Jellium'

• A canonical example is the Ginibre ensemble with



The 'Jellium'

• A canonical example is the Ginibre ensemble with

$$\kappa_N = N, \qquad V(z) = |z|^2, \qquad \beta = 2$$

corresponding to eigenvalues of random matrices with independent complex Gaussian coefficients.

- Here we have 'strong' confinement
- However, we will choose a 'weak' field V forcing us to take $\kappa_N > N$ (small charge imbalance) to make the system mathematically well-defined.

9

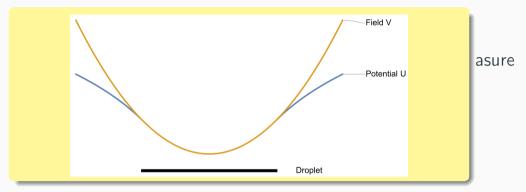
The Jellium - empirical measure and the droplet

• Convergence to the limiting distribution:

Empirical measure
$$\frac{1}{N}\sum_{\ell}\delta_{z_{\ell}}\xrightarrow[N\to\infty]{} \nu$$
 limiting measure

- E.g. weak convergence in probability, under mild conditions
- ullet Support of the limiting measure u is called the droplet
 - A nice compact set under some mild conditions
 - On droplet $V-U^{\nu}\equiv {\sf const.}$, where $U^{\nu}-{\sf log.}$ potential

The Jellium - empirical measure and the droplet



• On droplet $V-U^{\nu}\equiv {\sf const.}$, where $U^{\nu}-\log$. potential

The Jellium - empirical measure and the droplet

- ullet Support of the limiting measure u is called the droplet
 - A nice compact set under some mild conditions
 - On droplet $V-U^{\nu}\equiv {\sf const.}$, where $U^{\nu}-{\sf log.}$ potential

Roughly speaking, weak confinement arises when the

effective field
$$V-U^{\nu}$$

does not form a 'well' away from the droplet.

The Jellium in our model

- Determinantal $\equiv \beta = 2$
- To obtain weak confinement, our field

$$V\left(z
ight) = U^{\mu}\left(z
ight) = \int \log\left|z-w
ight| \mathrm{d}\mu\left(w
ight)$$

is the $\underline{\mathsf{logarithmic}}$ potential of a $\underline{\mathsf{probability}}$ measure $\mu.$

- In this case the limiting measure ν is equal to μ .
- In addition, κ_N is a sequence such that

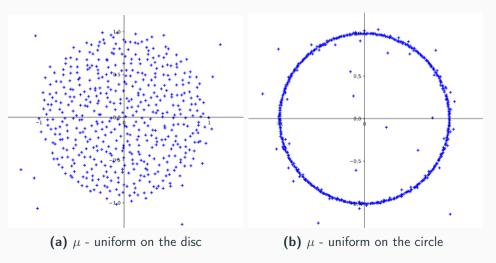
$$N < \kappa_N \le N + 1$$
 (e.g. $\kappa_N = N + \alpha$)

11

• Larger κ_N : different limit process (García-Zelada '18) or strong confinement (Ameur '21, general β)

The Jellium - illustration

Figure 1: Jellium at $\beta=2$



Outliers process

General picture

Coulomb gas (or Jellium)

Outliers process

Zeros of random polynomials

Weighted Bergman kernels

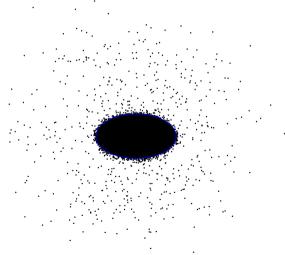
Questions about outliers

Weakly confined system with N particles:

- 1. Are there 'many' particles outside the droplet?
- 2. How many are there, depending on N?
- 3. Can we describe the outliers as a point process?
- 4. If we can, how does it depend on the measure μ ?

Superposition of 100 simulations with N = 200

Figure 2: Probability measure: uniform on ellipse



Determinantal point processes (DPP)

• A simple point process \mathcal{X} is determinantal with kernel K with respect to background measure m, if the density of the ℓ -th correlation function w.r.t. m is of the form

$$ho_{\ell}\left(z_{1},\ldots,z_{\ell}
ight)=\det\left(K\left(z_{i},z_{j}
ight)_{i,j=1}^{\ell}
ight)$$

- The kernel K and the measure m determine the distribution.
- The <u>distribution</u> of the number of points in a given set can be expressed as a sum of <u>independent</u> Bernoulli (0/1) random variables.

Determinantal point processes (DPP)

• A simple point process \mathcal{X} is determinantal with kernel K with respect to background measure m, if the density of the ℓ -th correlation function w.r.t. m is of the form

$$ho_{\ell}\left(z_{1},\ldots,z_{\ell}
ight)=\det\left(K\left(z_{i},z_{j}
ight)_{i,j=1}^{\ell}
ight)$$

- The kernel K and the measure m determine the distribution.
- The <u>distribution</u> of the number of points in a given set can be expressed as a sum of <u>independent</u> Bernoulli (0/1) random variables.
 - However, the parameters of the random variables are difficult to compute except in the case of a radial field/set.

Determinantal point processes - convergence

- Convergence of point processes: weak convergence of Radon measures or the distribution of the number of points in compact sets.
- Generally speaking:

Convergence of kernels \implies Convergence of DPPs

- $\{\mathcal{X}_N\}$ is a sequences of DPPs with nice kernels $\{K_N\}$ with respect to the same background measure m.
- If the kernels K_N converge uniformly on compact sets to K_∞ , then there exists a DPP \mathcal{X}_∞ with that kernel such that

$$\mathcal{X}_N \xrightarrow[N \to \infty]{} \mathcal{X}_\infty$$
 in distribution.

Determinantal Jellium ($\beta = 2$)

ullet For N particles, and field $\kappa_N V$, the kernel has the following form

$$K_{N}(z,w) = \sum_{j=0}^{N-1} P_{k,N}(z) \overline{P_{k,N}(w)} e^{-\kappa_{N}(V(z)+V(w))}$$

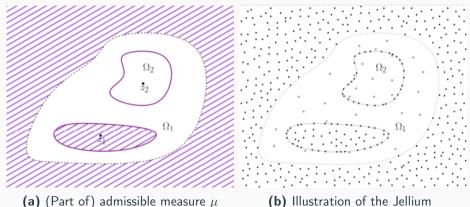
where $P_{k,N}$ are the <u>orthogonal polynomials</u> (of degree k) with respect to the inner product in the space $L^2(e^{-\kappa_N V})$.

- The kernel is <u>not unique</u>, e.g. one can multiply by a phase e^{iV} .
- We will denote the points of the Jellium by \mathcal{X}_N .

Nice measures

• Recall that we consider fields $V = U^{\mu}$ (μ prob. measure)

Figure 3: Admissible measures and the Jellium



Limiting process of outliers - simpler case

• Ω – A simply connected component of $\widehat{\mathbb{C}} \setminus \text{supp}(\mu)$.

Theorem

 μ – nice probability measure and $\kappa_N = N + 1$, then

$$\mathcal{X}_N \cap \Omega \xrightarrow[N \to \infty]{} \mathcal{B}_{\Omega}$$
 in distribution.

- \mathcal{B}_{Ω} the (unweighted) Bergman point process on Ω .
 - DPP associated with the Bergman kernel of Ω (also denoted by \mathcal{B}_{Ω}).
- Radial case with <u>no</u> regularity assumptions was proved by Butez and García-Zelada.

(unweighted) Bergman process

- Bergman kernel is the reproducing kernel for $A^2(\Omega)$ Hilbert space of $L^2(\Omega)$ analytic functions.
- In general, if $\{\phi_\ell\}$ is any orthonormal basis for $A^2(\Omega)$ then

$$\mathcal{B}_{\Omega}(z,w) = \sum_{\ell} \phi_{\ell}(z) \overline{\phi_{\ell}(w)}, \qquad z,w \in \Omega$$

ullet For the unit disc $\mathbb D$ the kernel is explicit (z^ℓ are orthogonal)

$$\mathcal{B}_{\mathbb{D}}\left(z,w
ight)=rac{1}{\pi}\left(1-z\overline{w}
ight)^{-2}$$

• If $\varphi:\Omega\to\mathbb{D}$ is a conformal map, then

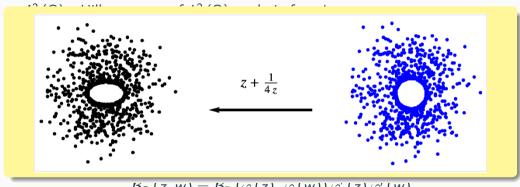
$$\mathcal{B}_{\Omega}\left(z,w\right)=\mathcal{B}_{\mathbb{D}}\left(\varphi\left(z\right),\varphi\left(w\right)\right)\varphi'\left(z\right)\overline{\varphi'\left(w\right)}$$

This implies the conformal invariance of the process

$$\varphi(\mathcal{B}_{\Omega}) = \mathcal{B}_{\mathbb{D}}$$
 in distribution.

(unweighted) Bergman process

• Bergman kernel is the reproducing kernel for



$$\mathcal{B}_{\Omega}(z, w) = \mathcal{B}_{\mathbb{D}}(\varphi(z), \varphi(w))\varphi'(z)\varphi'(w)$$

• This implies the conformal invariance of the process

$$\varphi(\mathcal{B}_{\Omega}) = \mathcal{B}_{\mathbb{D}}$$
 in distribution.

(unweighted) Bergman process

- Bergman kernel is the reproducing kernel for $A^2(\Omega)$ Hilbert space of $L^2(\Omega)$ analytic functions.
- In general, if $\{\phi_\ell\}$ is any orthonormal basis for $A^2(\Omega)$ then

$$\mathcal{B}_{\Omega}(z,w) = \sum_{\ell} \phi_{\ell}(z) \overline{\phi_{\ell}(w)}, \qquad z,w \in \Omega$$

ullet For the unit disc $\mathbb D$ the kernel is explicit (z^ℓ are orthogonal)

$$\mathcal{B}_{\mathbb{D}}\left(z,w
ight)=rac{1}{\pi}\left(1-z\overline{w}
ight)^{-2}$$

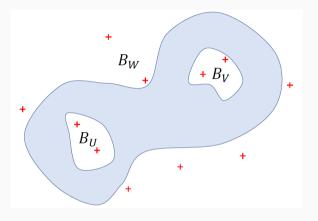
• If $\varphi:\Omega\to\mathbb{D}$ is a conformal map, then

$$\mathcal{B}_{\Omega}\left(z,w\right)=\mathcal{B}_{\mathbb{D}}\left(\varphi\left(z\right),\varphi\left(w\right)\right)\varphi'\left(z\right)\overline{\varphi'\left(w\right)}$$

This implies the conformal invariance of the process

$$\varphi(\mathcal{B}_{\Omega}) = \mathcal{B}_{\mathbb{D}}$$
 in distribution.

(unweighted) Bergman process - cont.



• The process \mathcal{B}_{Ω} also appears in zeros of Gaussian analytic functions (Peres and Virág '05)

Independence of limiting processes

Theorem

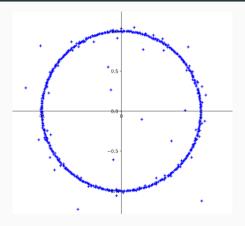
 μ – an admissible probability measure, $\Omega_1 \neq \Omega_2$ two simply connected components of $\mathbb{C} \setminus \sup (\mu)$ and \mathcal{X}_N^1 , \mathcal{X}_N^2 the associated outlier processes. Then

$$(\mathcal{X}_N^1,\mathcal{X}_N^2) \xrightarrow[N o \infty]{} (\mathcal{B}_{\Omega_1},\mathcal{B}_{\Omega_2})$$
 in distribution

where $\mathcal{B}_{\Omega_1}, \mathcal{B}_{\Omega_2}$ are independent.

- The result holds also for multiply-connected Ω_1 , Ω_2 .
- This is the 'screening' phenomenon of Coulomb gas.

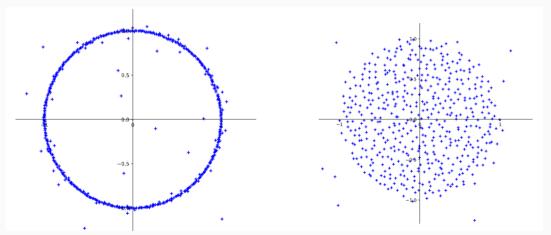
Example: Bergman process in the unit disk



• The outliers inside and outside the unit disk converge to independent Bergman point processes.

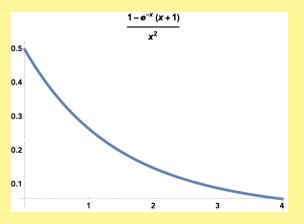
Some previous and related results

Figure 4: Jancovici '83



Some previous and related results

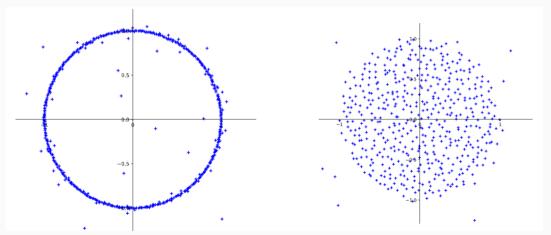
Jancovici was interested in profile of the boundary, for the circle he found:



Similar results near hard wall (Shirai '15, Seo '22)

Some previous and related results

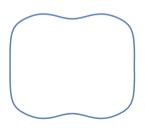
Figure 4: Jancovici '83



Some previous and related results - cont.

- Sinclair and Yattselev '12:
 - Equilibrium measure on a nice Jordan curve
 - Limiting Bergman outlier process
 - Limiting process near boundary

Figure 5: Sinclair and Yattselev '12 (classical) Equilibrium measure



Expected number of outliers

- 'Most' of the points converge to the limiting measure μ , so the number of outliers in \mathcal{X}_N is o(N).
- Under some conditions we can estimate the expected number of outliers.

Theorem

 μ – very nice probability measure, Ω – connected component of $\mathbb{C}\backslash \mathrm{supp}\,(\mu)$.

Then

$$c\sqrt{N} \leq \mathbb{E}\left[\mathcal{X}_N \cap \Omega\right] \leq C\sqrt{N}\log N$$

with some numerical constants c, C > 0.

• A similar result also holds for strongly confining systems, but in that case <u>all</u> the particles are close to the droplet as $N \to \infty$ with high probability.

Zeros of random polynomials

General picture

Coulomb gas (or Jellium)

Outliers process

Zeros of random polynomials

Weighted Bergman kernels

Model of random polynomials

- We consider a model of random polynomials introduced by Zeitouni and Zelditch.
- ullet μ is again a probability measure. We define an inner product

$$\langle f, g \rangle_{N} = \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-2N \cdot U^{\mu}(z)} d\mu(z)$$

• Let $\{Q_{\ell,N}\}_{\ell=0}^N$ be the <u>orthonormal polynomials</u> of degrees $0,\ldots,N$, and define

$$P_{N}(z) = \sum_{\ell} \xi_{\ell} Q_{\ell,N}(z)$$

• $\{\xi_{\ell}\}$ i.i.d. standard complex Gaussians.

Model of random polynomials

- We consider a model of random polynomials introduced by Zeitouni and Zelditch.
- ullet μ is again a probability measure. We define an inner product

$$\langle f, g \rangle_{N} = \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-2N \cdot U^{\mu}(z)} d\mu(z)$$

E.g. with the choice μ - uniform probability measure on circle $\{|z|=1\}$, we get the Kac polynomials:

$$P_N(z) = \sum_{\ell=0}^N \xi_\ell z^\ell$$

• $\{\xi_{\ell}\}$ i.i.d. standard complex Gaussians.

Model of random polynomials

- We consider a model of random polynomials introduced by Zeitouni and Zelditch.
- ullet μ is again a probability measure. We define an inner product

$$\langle f, g \rangle_{N} = \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-2N \cdot U^{\mu}(z)} d\mu(z)$$

• Let $\{Q_{\ell,N}\}_{\ell=0}^N$ be the <u>orthonormal polynomials</u> of degrees $0,\ldots,N$, and define

$$P_{N}(z) = \sum_{\ell} \xi_{\ell} Q_{\ell,N}(z)$$

• $\{\xi_{\ell}\}$ i.i.d. standard complex Gaussians.

Model of random polynomials - cont.

 \bullet μ – probability measure. We define an inner product

$$\langle f, g \rangle_{N} = \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-2N \cdot U^{\mu}(z)} d\mu(z)$$

• Let $\{Q_{\ell,N}\}_{\ell=0}^N$ be the <u>orthonormal polynomials</u> of degrees $0,\ldots,N$, and define

$$P_{N}\left(z\right)=\sum_{\ell}\xi_{\ell}Q_{\ell,N}\left(z\right)$$
 $\left\{ \xi_{\ell}
ight\} \text{ i.i.d. standard complex Gaussians}$

- The distribution of P_N depends only on the inner product.
- Denote by Ψ_N the zero process of P_N , it is known that it converges after normalization to the measure μ .

Outliers of random polynomials

• Ψ_N – zeros of the random polynomial

Theorem

 μ – probability measure of the form

$$d\mu = \rho d\sigma_{\Gamma}$$

where Γ is a simple closed analytic curve, σ_{Γ} is the arc length measure, and $\rho > 0$ is a real-analytic density.

 Ω_1, Ω_2 – the two components of $\mathbb{C}\backslash\Gamma$, then

$$(\Psi_N \cap \Omega_1, \Psi_N \cap \Omega_2) \xrightarrow[N \to \infty]{} (\mathcal{B}_{\Omega_1}, \mathcal{B}_{\Omega_2})$$
 in distribution

where the Bergman point processes \mathcal{B}_{Ω_1} , \mathcal{B}_{Ω_2} are independent.

Outliers of random polynomials - cont.

- We have a result under a restrictive condition.
- Comparing with results in the radial case by Butez and García-Zelada it is likely that a similar result holds for more general measures.
- Note that Ψ_N is <u>not</u> a determinantal point process.

Weighted Bergman kernels

General picture

Coulomb gas (or Jellium)

Outliers process

Zeros of random polynomials

Weighted Bergman kernels

Theorem

 μ – nice probability measure, Ω – connected component of $\widehat{\mathbb{C}} \setminus \text{supp}(\mu)$ with ℓ holes. Fix <u>arbitrary</u> points w_1, \ldots, w_ℓ in each of the holes, and let q_1, \ldots, q_ℓ be the μ -masses of the closed holes.

Theorem

 μ – nice probability measure, Ω – connected component of $\widehat{\mathbb{C}} \setminus \operatorname{supp}(\mu)$ with ℓ holes. Fix <u>arbitrary</u> points w_1, \ldots, w_ℓ in each of the holes, and let q_1, \ldots, q_ℓ be the μ -masses of the closed holes. Assume that along a subsequence $\mathcal{A} \subset \mathbb{N}$,

$$\left(e^{2\pi i\kappa_N q_1},\ldots,e^{2\pi i\kappa_N q_\ell}\right)\xrightarrow[N\in\mathcal{A},\,N\to\infty]{}\left(e^{2\pi iQ_1},\ldots,e^{2\pi iQ_\ell}\right)$$

for some
$$\mathbf{Q} = (\mathit{Q}_1, \ldots, \mathit{Q}_\ell) \in (\mathbb{R} \backslash \mathbb{Z})^\ell$$

Theorem

 μ – nice probability measure, Ω – connected component of $\widehat{\mathbb{C}} \setminus \operatorname{supp}(\mu)$ with ℓ holes. Fix <u>arbitrary</u> points w_1, \ldots, w_ℓ in each of the holes, and let q_1, \ldots, q_ℓ be the μ -masses of the closed holes. Assume that along a subsequence $\mathcal{A} \subset \mathbb{N}$,

$$\left(e^{2\pi i\kappa_N q_1},\ldots,e^{2\pi i\kappa_N q_\ell}\right)\xrightarrow[N\in\mathcal{A},N o\infty]{}\left(e^{2\pi iQ_1},\ldots,e^{2\pi iQ_\ell}\right)$$

for some
$$\mathbf{Q} = (Q_1, \dots, Q_\ell) \in (\mathbb{R} \backslash \mathbb{Z})^\ell$$
, then $\mathcal{X}_N \cap \Omega \xrightarrow[N \in \mathcal{A}, N \to \infty]{} \mathcal{B}_{\Omega, \mathbf{Q}}$ in distribution.

Theorem

 μ – nice probability measure, Ω – connected component of $\widehat{\mathbb{C}} \setminus \operatorname{supp}(\mu)$ with ℓ holes. Fix <u>arbitrary</u> points w_1, \ldots, w_ℓ in each of the holes, and let q_1, \ldots, q_ℓ be the μ -masses of the closed holes. Assume that along a subsequence $\mathcal{A} \subset \mathbb{N}$,

$$\left(e^{2\pi i\kappa_N q_1},\ldots,e^{2\pi i\kappa_N q_\ell}\right) \xrightarrow[N\in\mathcal{A},N o\infty]{} \left(e^{2\pi iQ_1},\ldots,e^{2\pi iQ_\ell}\right)$$

for some
$$\mathbf{Q}=(Q_1,\ldots,Q_\ell)\in (\mathbb{R}\backslash\mathbb{Z})^\ell$$
, then $\mathcal{X}_N\cap\Omega \xrightarrow[N\in\mathcal{A},N\to\infty]{} \mathcal{B}_{\Omega,\mathbf{Q}}$ in distribution.

Here $\mathcal{B}_{\Omega,\mathbf{Q}}$ is the Bergman point process on Ω with <u>weight</u>

$$\omega_{\mathbf{Q}}(z) = \prod_{i=1}^{\ell} |z - w_j|^{-2Q_j}$$

Multiply-connected domains

- In general, the process of outliers <u>does not</u> converge on multiply-connected domains, but we can identify the subsequential limits.
- Weighted Bergman space $A^2(\mathcal{D}, \rho) \mathcal{D} \subset \mathbb{C}$ open set, $\rho > 0$ continuous weight function consists of all analytic functions in $L^2(\mathcal{D}, \rho)$.
- It is a reproducing kernel Hilbert space. The kernel can be written as

$$\mathcal{K}_{\mathcal{D},
ho}\left(z,w
ight)=\sum_{\ell}arphi_{\ell}\left(z
ight)\overline{arphi_{\ell}\left(w
ight)}\qquad\left\{ arphi_{\ell}
ight\} \ ext{an orthonormal basis}$$

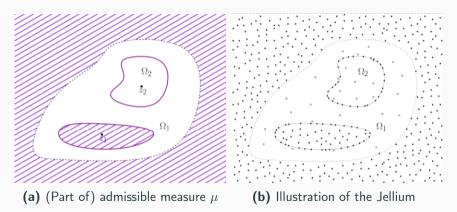
• The correlation kernel is given by

$$\mathcal{K}_{\mathcal{D},\rho}(z,w) = \mathcal{K}_{\mathcal{D},\rho}(z,w) \sqrt{\rho(z)\rho(w)}$$

• $\mathcal{B}_{\Omega,\mathbf{Q}}$ is the DPP associated with the kernel $\mathcal{K}_{\Omega,\omega_{\mathbf{Q}}}$.

Multiply-connected domains - illustration

Figure 6: Admissible measures and the Jellium



- Ω_2 is simply connected.
- Ω_1 is 2-connected, we fix a point in each hole.

Kernel convergence

Kernel convergence

Zeros of random polynomials

Convergence of the kernels - overview

- Want to show <u>local uniform</u> convergence of the kernels $\mathcal{K}_N(z, w)$ to $\mathcal{B}_{\Omega}(z, w)$.
- In one direction we have the crucial inequality

$$\mathcal{K}_{N}(z,z) \leq \mathcal{B}_{\Omega,\mathbf{Q}}(z,z) \qquad \forall z \in \Omega$$

- Together with analyticity of the kernels this gives precompactness of the family $\{\mathcal{K}_N\}$ and we have to identify the possible limits.
- For a lower bound we construct special orthonormal polynomials that approximate a suitable orthonormal basis of the Bergman space $A^2(\Omega, \omega_{\mathbf{Q}})$.

More on the Bergman point process

- ullet Consider an open set $\mathcal{D}\subset\mathbb{C}$ and a weight function $ho=e^{-2V}$.
- ullet The Bergman point process $\mathcal{B}_{\mathcal{D},V}$ is the DPP associated with the kernel

$$\mathcal{K}_{\mathcal{D},e^{-2V}}(z,w) = \mathcal{K}_{\mathcal{D},e^{-2V}}(z,w)e^{-V(z)-V(w)}$$

• If V is harmonic on $\mathcal D$ and $f \neq 0$ is analytic on $\mathcal D$, then

$$\mathcal{B}_{\mathcal{D},V} = \mathcal{B}_{\mathcal{D},V-\mathsf{log}|f|}$$
 in distribution.

- This is also true in the other direction.
- We show that weights $\omega_{\mathbf{Q}}(z) = \prod_{j=1}^{\ell} |z w_j|^{-2Q_j}$ correspond to different processes (for different \mathbf{Q} values in $(\mathbb{R}\backslash\mathbb{Z})^{\ell}$).

Upper bound for the kernels

- Consider the unweighted case $\mathbf{Q} = \mathbf{0}$, Ω simply connected.
- Can modify the kernel K_N to make it analytic in z and \overline{w} .
 - This is also true for \mathcal{B}_{Ω} .
 - Here we use the fact U^{μ} is harmonic on Ω .
- Reproducing kernel property together with Montel's theorem (in several complex variables) show that the bound

$$\mathcal{K}_{N}(z,z) \leq \mathcal{B}_{\Omega}(z,z) \qquad z \in \Omega$$

gives that $\{\mathcal{K}_N\}$ is precompact.

• Upper bound is proved by comparing the extremal characterization of the kernel.

Complications of the multiply-connected case

- Want to modify the kernel K_N to make it analytic in z and \overline{w} .
- The potential U^{μ} is still harmonic on Ω .
- ullet The logarithmic conjugation theorem tells us that there is an analytic function V_0 in Ω such that

$$U^{\mu}(z) = \mathbf{q} \cdot \operatorname{Log}(z) + \operatorname{Re} V_0(z)$$

where

$$\operatorname{Log}(\cdot) = (\log |\cdot - w_1|, \ldots, \log |\cdot - w_\ell|)$$

• This leads to comparisons with the weighted kernels $\mathcal{B}_{\Omega,\{\kappa_N\mathbf{q}\}}$.

Kernel convergence

- Consider unweighted case $\mathbf{Q} = \mathbf{0}$, Ω simply connected.
- Idea: find suitable ONB $\{\psi_\ell\}$ for $A^2\left(\Omega\right)$ and orthonormal set of polynomials $\{P_{\ell,N}\}$ in $L^2\left(\mathbb{C},e^{-2\kappa_N U^\mu}\right)$ of degrees $\leq N-1$ such that

$$|P_{\ell,N}|^2 e^{2\kappa_N U^{\mu}} \xrightarrow[N \to \infty]{} |\psi_{\ell}|, \qquad \ell \leq \ell_0$$

Then

$$\sum_{\ell=0}^{\ell_0} |\psi_{\ell}(z)|^2 \leq \liminf_{N\to\infty} \sum_{\ell=0}^{N-1} |P_{\ell,N}(z)|^2 e^{2\kappa_N U^{\mu}(z)} = \liminf_{N\to\infty} \mathcal{K}_N(z,z)$$

• Polynomials are <u>not</u> necessarily the OP w.r.t. weight function.

Construction of the polynomials

- ullet We use a method based on $\overline{\partial}$ Hörmander estimates, developed by Hedenmalm and Wennman. In the following steps:
- 1. Take a suitable ONB $\{\psi_\ell\}$ for $A^2(\Omega)$ (more complicated in weighted case).
- 2. In a domain $\Omega' \supset \Omega$, define

$$F_{\ell,N}(z) = \chi(z) \psi_{\ell}(z) e^{\kappa_N V_0(z)},$$

where χ is a cutoff function, equal to 1 on Ω , 0 outside Ω' .

- 3. $F_{\ell,N}$ are almost orthogonal in $L^2\left(e^{-2\kappa_N U^{\mu}}\right)$, but not polynomials, in fact not even analytic.
- 4. Use $\overline{\partial}$ method to construct analytic $G_{\ell,N}$ close to $F_{\ell,N}$ in L^2 norm, conclude that it is a polynomial (Liouville's theorem).

$\overline{\partial}$ Hörmander estimates

• We use the following version of the Hörmander estimate:

Theorem

Let ϕ be a nice subharmonic function on \mathbb{C} , and $\mathcal{D} \subset \mathbb{C}$ is a compact set where ϕ is strictly subharmonic. For any bounded f supported on \mathcal{D} , there is a solution $g:\mathbb{C} \to \mathbb{C}$ to the equation

$$\overline{\partial}g = f$$

that satisfies

$$\int_{\mathbb{C}} |g|^2 e^{-\phi} \le 2 \int_{\mathcal{D}} |f|^2 \frac{e^{-\phi}}{\Delta \phi}$$

- We apply this theorem with $\phi = 2\kappa_N U^{\mu}$ and $f = \overline{\partial} F_{\ell,N}$.
- ullet The use of this method requires some strong regularity assumptions on the measure $\mu.$

Zeros of random polynomials

Kernel convergence

Zeros of random polynomials

Covariance kernel

- Zeros of random polynomials not a DPP use another approach.
- Work directly with the <u>covariance kernel</u> of the polynomial, show that it converges to the correct limit (Szegő kernel).
- ullet Since $P_{N}\left(z
 ight)=\sum_{\ell}\xi_{\ell}Q_{\ell,N}\left(z
 ight)$, the covariance kernel is given by

$$C_{N}(z, w) = \mathbb{E}\left[P_{N}(z)\overline{P_{N}(w)}\right] = \sum_{\ell} Q_{\ell,N}(z)\overline{Q_{\ell,N}(w)}$$

- May multiply it by any <u>non-vanishing</u> function this <u>does not</u> change the zero set of the Gaussian process.
- To prove convergence we consider the normalized kernel

$$\widehat{C}_{N}(z,w) = C_{N}(z,w) e^{-N(V_{0}(z)+\overline{V_{0}(w)})}$$

Szegő kernel

- Peres and Virág if covariance kernel of Gaussian analytic function is given by Szegő kernel, then zero process of that function is the Bergman point process.
- \bullet E.g., for the unit disk $\mathbb D$ the Szegő kernel is

$$\frac{1}{2\pi} (1 - z\overline{w})^{-1}$$
 $\{z^{\ell}\}$ ONB for Hardy space $H^2(\mathbb{D})$

- Our case: consider Szegő kernels corresponding to <u>weighted</u> Hardy spaces.
- ullet This is essentially why we can prove our results only in the case the measure μ is supported on a curve.

Summary - The end

- Weakly confined particle systems
 - with many outliers far from the droplet
- Limiting point process of the outliers exists
 - Universal determinantal Bergman point process
 - Conformal invariant

Summary - The end

- Weakly confined particle systems
 - with many outliers far from the droplet
- Limiting point process of the outliers exists
 - Universal determinantal Bergman point process
 - Conformal invariant

Thank you for listening!