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Motivation
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Chiral symmetry breaking

Chiral phase transition is characterized by:
» formation of the chiral condensate, (gq)
P> symmetry breaking pattern
5U(2)L X 5U(2)R X U(].) — 5U(2)V X U(l)
This symmetry is exact in the chiral limit, mg — 0, with massless
Goldstone modes (pions)
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Chiral symmetry breaking

In QCD, mq # 0, chiral symmetry is not exact (m, # 0)
Nonetheless, can we see any signatures of this?

> Lattice points to yes! Evidence points to transition in O(4)
universality class

» Future experiments: near T., some soft pions can escape
= window to chiral dynamics?
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O(4) scaling as seen on the lattice
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Experimental status: What about the soft pions?
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Soft pions are harder to fit to
hydrodynamic models.

Adding more primary resonances
only improves the situation
marginally
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Upgrade to ITS detector at ALICE

Inner Tracking System allows to see more low pt particles,
especially pions.

Standard observables: multiplicity ratio of charged to neutral pions
or correlation functions between charged pions.
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Hydrodynamics in the chiral limit

equilibrated hydro modes, kK < m;,
superfluid modes, k ~ m;

At long distances, effective theory of QCD is hydrodynamics

At finite quark mass, theory should be superfluid-like for L ~ m-1!
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Hydrodynamics in the chiral limit

equilibrated hydro modes, kK < m;
superfluid modes, k ~ m;

Question: How do these modes contribute to hydrodynamic
variables and transport?
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Hydrodynamics in the chiral limit

equilibrated hydro modes, k < m;
superfluid modes, k ~ m;

Hydrodynamic variables get correction due to pion mass, e.g.

71 = Thydro ~+ Nsuperfluid
10/50



Set-up
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Superfluid hydrodynamics?

Ingredients in the model:
» (Approximately) conserved quantities THY  JE
» Chiral condensate ¥ = cU = ¢4 7a
> Temperature, T, velocity, u*, chemical potentials, u;, ug

» Mass for the Goldstone boson

Son arXiv:hep-ph/9912267 12/50



O(4) free energy?

Free energy near T :

F = Freg(T) 4+ Fs(t, h)
——

singular part

Near T.: Regular part finite, singular part captures critical behavior

2Rajagopal, Wilczek arXiv:9210253 13/50



O(4) free energy?

Free energy near T :

F = Freg(T)+ Fs(t, h)
——

singular part

Fs - /d3X <1X0(,U/aﬁ)2 + v¢a : V(ﬁa + V(¢a¢o¢)>

3Rajagopal, Wilczek arXiv:9210253
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O(4) free energy*

Free energy near T, :

F = Freg(T) + Fs(t,h)
——

singular part

Fom [ (ol + Vo T+ Vigas)

where
> Lap is the O(4) chemical potential (e.g. poi = pa)
» 0o = (0,—77) € O(4), which relates to ¥ = 7,0,
> V(dada) = my(t)d* + A¢* — Ho

where mg(t)? depends on reduced temperature: t = T=I<

Tc

*Rajagopal, Wilczek arXiv:9210253 15/50



Mean field approximation

Work in the mean field by minimizing potential

dv

I
O—d—¢—mo(t)a+—a —H.

3!

Scaling solution is
G = h'3f5(z)

with
7 — th~1/(B%)

Reduced magnetic field: h= H/A
In mean field, 3 =1/2 and § = 3 = z = th=2/3.
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O(4) scaling function

I mean field
2'01.._. -------- lattice
1.5}
N
< 40!
0.5+
00— 0 2 4

Characterize solutions via fg(z) = 3h~/3 where z = th=%/3
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O(4) scaling function

mean field
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Interpolates between broken (T < T, i.e. z < 0) and unbroken
phase (T > T.i.e. z>0) 50
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O(4) scaling function
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Mean field approximation

Now expand fields around mean field
Y =0+ d0+ioce?r?

72 are the Pauli matrices.
Evaluate free energy to quadratic order:

1 1
SFIT.01 = SFAT) + 6 [ & o + 5 (Voo Vo + m2oo?) +

1
5x0v3(T) (Ve - Voo + m*p77)

20/50



Mean field approximation

Now expand fields around mean field
Y =0+ 0+ icpit?

79 are the Pauli matrices.
Evaluate free energy to quadratic order:

1 1
BFIT. ¢l = BF(T) + B/d3x ZX°“2 + 5 (Vo - Voo + m250?) +

1
EXOV( T) (V¢? - Vo + m*p?p?)

Note: regular piece gets contribution from mean field

Fo(T) = Freg(T)+V <1mO(T) 2(T) + %5(T)4 — H&(T))
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Mean field approximation
Evaluate free energy to quadratic order:

1 1
BFIT, ¢l = BF,(T) + 5/d3x ZX°”2 + 5 (Vo - Voo + m250?) +
1

Sx0v3(T) (Ve - V™ + m*p™%)

Physical quantities of interest:
» Pion screening mass

» Sigma screening mass

w2 = (2 + 32(2))

» Pion velocity squared
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Comparison to lattice
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Equations of motion

» Partial current conservation:

- H
Oty = —ig (T - ¥

» Dissipative Josephson constraint:
—iUBU' = g + pd=
» Diffusion equation for condensate:

oF

3t0 = Dma %

+¢
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Linearized equations of motion

> Coupled EOM are the ideal PCAC (9,J5 = —i¥ (L —xf)) and
Josephson constraint get dissipative corrections and noise®:

Ji= f@igo — UAaiuA + ff/
—0rp = pa + (O (=0, (FP0"p) + FPmPp) + &
Linearized axial current:
i = haut + F20" g,
e N——
normal super

» Diffusion equation for condensate: 0io = Dmog—g +¢£

®Son/Stephanov arXiv:0204226
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Equations of motion

Linearized equations of motion involving ¢ and p are

<—iw + (K2 4 m?) wi > (ww) _ <€1)
—Wk —iw+ Dok?) \ pa )~ \&)’

where the noises have vanishing mean and non-zero variance:

(k) (—K)) = QXTr(k? -y

(k)& (—k)) = QXTDOkz.
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Equations of motion

Linearized equations of motion involving ¢ and p are

—iw+ g1 wk > <wkﬁﬂ) _ (§1>
—wk  —iw+g) \ pa &)’
where the noises have vanishing mean and non-zero variance:

(E1(k)éi(—k)) = 76’1,

(E(K)ea(—K) = "‘Xng.
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Computing correlator

We find
Gsym = E !
X (—w? + w2+ g182)? + (wlg)?
< <g1(w2 + g22) + g2wc27 _iwqqu >
iwqwl g g (w? +g2) + glwg

Useful shorthands (to keep structure apparent):

W2 = v3(q? + m?)
g =T(¢*+m’)

g = Do,

Mg =T(q° + m*) + Dog’
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The correlators

In other words,
GPe GoH
Gsym = (Guso Guu)

2TT
W2+ [2(k2 + m2)?2

and

Goo (w, k) =

sym
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In depth

Let's plot one of the propagators

2T g2(w? 4 g?) + g1w?

X (—w? + w2+ g182)? + (wlg)?

oA
sym

where

u;z =v3(g* + m?)

g1 = F(q +m )
- D0q27
Fq=T(q° +m’) + Dog®
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Spectral density for axial charge density-density correlator
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For z>> 0, paa/w x Dk?/(w? + (Dk?)?), diffusion of quarks.
For z < 0, pair of peaks interpret as propagating pions
= Transition from QGP to pion propagation from EOM! 31/50



Hydrodynamic loops



Computing transport coefficients

Find transport coefficients via Kubo formula:

» The shear viscosity is

2Ty = /d“x(;{TXY(t,x), 79(0,0)})

P The isovector conductivity is

271 = [ dx (HJ0a(x), 5,(0.001)

» The bulk viscosity is

2Tg:/d4x<;{obulk(t,x),obulk(o,om.
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Modification of shear viscosity

GrY

sSym

T T
Ge¥

sym

2Ty = /d4x<;{TX«V(t, x), T(0,0)},)
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Modification of shear viscosity

The stress tensor is
T = u'u”(es + ps) + 8" px
- %(D”ZD”ZT + DVYDFYT) — u“u”%ﬁ(u -DXu- DY),
In linearized regime, relevant components for shear viscosity:

TY = 900060  + 320%p.0" ¢,

condensate contribution  pion contribution
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Modification of shear viscosity

The stress tensor is
T = u'u”(ex + px) + 8" px
+ %(D“ZD”ZT + DVEDHYT) — u“u”%ﬁ(u . DXu- DXY),
In linearized regime, relevant components for shear viscosity:

T = 960000 4 520%0a0" ¢,
S— N————
condensate contribution  pion contribution
Break up computation into two pieces:
= XY oY
An =132+ 155

- o0
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Modification of shear viscosity

Break up computation into two pieces:
An= 170+ 12
Sigma correlator:

27T

sym

oo T oo
G (w, k) = 2;|mGR (w7 k) = w2 + |'2(k2 + mg)2

which leads to

d3k dw
Y —9 K kY Go° 2
oo / (271')3 (271')( Gsym)
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Modification of shear viscosity

Break up computation into two pieces:
An =17+ 13,
Sigma correlator:

27T

sym

;
90 (15 k) = 2 Im G2 (w. k) =
Coym(w, k) =2 ~ImGR" (w, k) W2 + T2(K2 + m2)2

which leads to

py . 2T° /’\ Kkodk
77 (30m2T) Jo (K24 m?2)3
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Modification of shear viscosity

Break up computation into two pieces:
An =17+ 13
Sigma correlator:

2TT
w2 + r2(k2 + mg_)2

sym

-
GOl (w, k) =2—ImGR° (w, k) =
w

which leads to

py 212 /A k®dk
77 (30m2T) Jo (K2 + m2)3

_2T*  2T%m,
-~ 30m2r 327l
—— N —

divergent finite piece
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Modification of shear viscosity - pion contribution
Break up computation into two pieces:

= [XY Y
An =13+ 12
(p correlator:

oo _ 2T &iw’+83)+ 8w

VX0 (—w? w3+ g182)? + (wlg)?

with short-hand notation:
g =T(q* +m?)
g = Doq?
My =T(q° + m?) + Dog?.
Integral to evaluate
d*k dw
2, =2 [ 5 (KK G
=2 Gy 658)
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Modification of shear viscosity - pion contribution

2T?%ds . 2T°mdy

_ 2 2
5 = 30m2r N Tgppr (LT (L= ()
——
divergent finite
where r? = %Do and 1?2 = #jDo
and
F(r.u) 327 /°° dk k© m?k?
r = — —
T 3002 o m(k2+m?)3 (k2 + r2m2)(k? + u*m?)’

 8u* 42413 + 4817 + 45u + 15
N 15(u + 1)3 (u? — r?)

+ (r < u).
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Modification of shear

Combining the previous ingredients, we find

T
n= nghys — ﬁ(md/\ + my + mdAu2(1 — r2)f(r, u)),
where the physical part captures the cut-off dependent piece

TA
phys __
ns "> =nx(A) + daa 3021
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Change in shear viscosity
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Change in conductivity

Similar procedure for conductivity. Need to evaluate:

2To) = / d4x—< (ot %), J5,(0,0)}) .

Operator of interest is current

2
>\;,a = 05 fabcPp0™ Pc

We compute

Pk dw 1
h X 2
—_ TA/(%)3 2 i (K650

Ao
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Change in conductivity

0.8
~

o)
~—
3 -------- 7 kinetics \

~

S [ N\,

4 05j Anoo N\ - — 7

— Ay
OO T S
-10 -5 0 5 10

45/50



Change in bulk viscosity

Bulk viscosity is similar, but more complicated.
The bulk viscosity is

2T¢ :/d4x<;{Obulk(t,x),obulk(o,O)D.

The relevant operator is

L

T
3 1

20
Opuk = ¢ Tg +
The full stress tensor is

T = utu”(ex + px) + 8" ps
1

1
+ Z(DMzDVzT + DVIDHYT) — u'u” > a(u - DYu- DY),
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Change in bulk viscosity

Bulk viscosity is similar, but more complicated.
The bulk viscosity is

2T¢ :/d“x(é {Obun(t, x), Obui(0,0)}) .

The relevant operator is

1 .
Opuic = 2 T% + 3 T

L o - 0

op

47/50



Change in bulk viscosity
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Summary of change in scaling
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Greatest effect on bulk viscosity!
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Greatest effect on bulk viscosity!
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