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Motivation
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Chiral symmetry breaking

Chiral phase transition is characterized by:

I formation of the chiral condensate, 〈q̄q〉
I symmetry breaking pattern

SU(2)L × SU(2)R × U(1)→ SU(2)V × U(1)

This symmetry is exact in the chiral limit, mq → 0, with massless
Goldstone modes (pions)
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Chiral symmetry breaking

In QCD, mq 6= 0, chiral symmetry is not exact (mπ 6= 0)
Nonetheless, can we see any signatures of this?

I Lattice points to yes! Evidence points to transition in O(4)
universality class

I Future experiments: near Tc , some soft pions can escape
⇒ window to chiral dynamics?
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O(4) scaling as seen on the lattice

Chiral susceptibility: χM ∝ ∂〈ψ̄ψ〉
∂ml

∼ m
1/δ−1
l fχ(z), z ≡ tm

−1/βδ
l

Plot from HotQCD collaboration: arXiv:1903.04801
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Experimental status: What about the soft pions?

Plot from: D. Devetak et al,
arXiv:1909.10485

Soft pions are harder to fit to
hydrodynamic models.
Adding more primary resonances
only improves the situation
marginally



7/50

Upgrade to ITS detector at ALICE

Inner Tracking System allows to see more low pT particles,
especially pions.
Standard observables: multiplicity ratio of charged to neutral pions
or correlation functions between charged pions.

Upgrade by end of 2021 (???)
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Hydrodynamics in the chiral limit

equilibrated hydro modes, k � mπ

superfluid modes, k ∼ mπ

At long distances, effective theory of QCD is hydrodynamics
At finite quark mass, theory should be superfluid-like for L ∼ m−1

π



9/50

Hydrodynamics in the chiral limit

equilibrated hydro modes, k � mπ

superfluid modes, k ∼ mπ

Question: How do these modes contribute to hydrodynamic
variables and transport?
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Hydrodynamics in the chiral limit

equilibrated hydro modes, k � mπ

superfluid modes, k ∼ mπ

Hydrodynamic variables get correction due to pion mass, e.g.

η = ηhydro + ηsuperfluid
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Set-up
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Superfluid hydrodynamics1

Ingredients in the model:

I (Approximately) conserved quantities Tµν , Ĵµa

I Chiral condensate Σ = σU = φατα

I Temperature, T , velocity, uµ, chemical potentials, µL, µR

I Mass for the Goldstone boson

1Son arXiv:hep-ph/9912267
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O(4) free energy2

Free energy near Tc :

F = Freg (T ) + Fs(t, h)︸ ︷︷ ︸
singular part

Near Tc : Regular part finite, singular part captures critical behavior

2Rajagopal, Wilczek arXiv:9210253
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O(4) free energy3

Free energy near Tc :

F = Freg (T ) + Fs(t, h)︸ ︷︷ ︸
singular part

Fs =

∫
d3x

(
1

4
χ0(µαβ)2 +∇φα · ∇φα + V (φαφα)

)

3Rajagopal, Wilczek arXiv:9210253
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O(4) free energy4

Free energy near Tc :

F = Freg (T ) + Fs(t, h)︸ ︷︷ ︸
singular part

Fs =

∫
d3x

(
1

4
χ0(µαβ)2 +∇φα · ∇φα + V (φαφα)

)
where

I µαβ is the O(4) chemical potential (e.g. µ0i = µA)

I φα = (σ,−πa) ∈ O(4), which relates to Σ = ταφα

I V (φαφα) = m2
0(t)φ2 + λφ4 − Hφ

where m0(t)2 depends on reduced temperature: t = T−Tc
Tc

4Rajagopal, Wilczek arXiv:9210253



16/50

Mean field approximation

Work in the mean field by minimizing potential

0 =
dV

dφ
= m2

0(t) σ̄ +
λ

3!
σ̄3 − H.

Scaling solution is
σ̄ = h1/3fG (z)

with
z = th−1/(βδ)

Reduced magnetic field: h = H/λ
In mean field, β = 1/2 and δ = 3⇒ z = th−2/3.



17/50

O(4) scaling function
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Characterize solutions via fG (z) = σ̄h−1/3 where z = th−2/3
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O(4) scaling function
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Interpolates between broken (T < Tc i.e. z < 0) and unbroken
phase (T > Tc i.e. z > 0)
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O(4) scaling function
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Comparison to lattice from Engels & Vogt arXiv:0911.1939

Engels & Karsch arXiv:1105.0584
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Mean field approximation

Now expand fields around mean field

Σ = σ̄ + δσ + i σ̄ϕaτ a

τ a are the Pauli matrices.
Evaluate free energy to quadratic order:

βF [T , φ] = βFσ(T ) + β

∫
d3x

1

4
χ0µ

2 +
1

2

(
∇δσ · ∇δσ + m2

σδσ
2
)

+

1

2
χ0v

2(T )
(
∇ϕa · ∇ϕa + m2ϕaϕa

)
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Mean field approximation

Now expand fields around mean field

Σ = σ̄ + δσ + i σ̄ϕaτ a

τ a are the Pauli matrices.
Evaluate free energy to quadratic order:

βF [T , φ] = βFσ(T ) + β

∫
d3x

1

4
χ0µ

2 +
1

2

(
∇δσ · ∇δσ + m2

σδσ
2
)

+

1

2
χ0v

2(T )
(
∇ϕa · ∇ϕa + m2ϕaϕa

)
Note: regular piece gets contribution from mean field

Fσ(T ) = Freg (T ) + V
(

1

2
m2

0(T )σ̄2(T ) +
λ

4
σ̄(T )4 − Hσ̄(T )

)
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Mean field approximation
Evaluate free energy to quadratic order:

βF [T , φ] = βFσ(T ) + β

∫
d3x

1

4
χ0µ

2 +
1

2

(
∇δσ · ∇δσ + m2

σδσ
2
)

+

1

2
χ0v

2(T )
(
∇ϕa · ∇ϕa + m2ϕaϕa

)
Physical quantities of interest:

I Pion screening mass

m2 =
H

σ̄(T )
=

m2
c

fG (z)

I Sigma screening mass

m2
σ =m2

c

(
z + 3f 2

G (z)
)

I Pion velocity squared

v2(T ) =
σ̄2(T )

χ0
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Comparison to lattice
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From Engels & Vogt 0911.1939 and Engels & Karsch 1105.0584
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Equations of motion

I Partial current conservation:

∂µĴ
µ
a = −i H

8
(Σ− Σ†)

I Dissipative Josephson constraint:

−iU∂tU
† = µA + µdiss

A

I Diffusion equation for condensate:

∂tσ = Dmσ

∂F

∂σ
+ ξ
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Linearized equations of motion

I Coupled EOM are the ideal PCAC (∂µĴ
µ
a = −i H

8 (Σ−Σ†)) and
Josephson constraint get dissipative corrections and noise5:

Ĵ i = f ∂ iϕ− σA∂
iµA + ξi

J

−∂tϕ = µA + ζ(2)(−∂µ(f 2∂µϕ) + f 2m2ϕ) + ξs

Linearized axial current:

Ĵµa = n̂au
µ︸︷︷︸

normal

+ f 2∂µϕa︸ ︷︷ ︸
super

I Diffusion equation for condensate: ∂tσ = Dmσ
∂F
∂σ + ξ

5Son/Stephanov arXiv:0204226
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Equations of motion

Linearized equations of motion involving ϕ and µ are(
−iω + Γ(k2 + m2) ωk

−ωk −iω + D0k
2

)(
ωkϕ
µA

)
=

(
ξ1

ξ2

)
,

where the noises have vanishing mean and non-zero variance:

〈ξ1(k)ξ1(−k)〉 =
2T

χ
Γ(k2 + m2),

〈ξ2(k)ξ2(−k)〉 =
2T

χ
D0k

2.
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Equations of motion

Linearized equations of motion involving ϕ and µ are(
−iω + g1 ωk

−ωk −iω + g2

)(
ωkϕ
µA

)
=

(
ξ1

ξ2

)
,

where the noises have vanishing mean and non-zero variance:

〈ξ1(k)ξ1(−k)〉 =
2T

χ
g1,

〈ξ2(k)ξ2(−k)〉 =
2T

χ
g2.
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Computing correlator

We find

Gsym =
2T

χ

1

(−ω2 + ω2
q + g1g2)2 + (ωΓq)2

×
(
g1(ω2 + g2

2 ) + g2ω
2
q −iωqωΓq

iωqωΓq g2(ω2 + g2
1 ) + g1ω

2
q

)
Useful shorthands (to keep structure apparent):

ω2
q = v2(q2 + m2)

g1 = Γ(q2 + m2)

g2 = D0q
2,

Γq = Γ(q2 + m2) + D0q
2
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The correlators

In other words,

Gsym =

(
Gϕϕ Gϕµ

Gµϕ Gµµ

)
and

Gσσ
sym(ω, k) =

2TΓ

ω2 + Γ2(k2 + m2
σ)2
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In depth

Let’s plot one of the propagators

Gµµ
sym =

2T

χ

g2(ω2 + g2
1 ) + g1ω

2
q

(−ω2 + ω2
q + g1g2)2 + (ωΓq)2

where

ω2
q = v2(q2 + m2)

g1 = Γ(q2 + m2)

g2 = D0q
2,

Γq = Γ(q2 + m2) + D0q
2
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Spectral density for axial charge density-density correlator
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For z � 0, ρAA/ω ∝ Dk2/(ω2 + (Dk2)2), diffusion of quarks.
For z � 0, pair of peaks interpret as propagating pions
⇒ Transition from QGP to pion propagation from EOM!
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Hydrodynamic loops
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Computing transport coefficients

Find transport coefficients via Kubo formula:

I The shear viscosity is

2Tη =

∫
d4x

〈
1
2{T

xy (t, x),T xy (0, 0)}
〉

I The isovector conductivity is

2TσI =

∫
d4x

1

dA

〈
1
2{J

x
V ,a(t, x), Jx

V ,a(0, 0)}
〉
,

I The bulk viscosity is

2T ζ =

∫
d4x

〈
1
2 {Obulk(t, x),Obulk(0, 0)}

〉
.
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Modification of shear viscosity

2Tη =

∫
d4x

〈
1
2{T

xy (t, x),T xy (0, 0)},
〉
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Modification of shear viscosity

The stress tensor is

Tµν = uµuν(eΣ + pΣ) + gµνpΣ

+
1

4
(DµΣDνΣ† + DνΣDµΣ†)− uµuν

1

2
û(u · DΣu · DΣ†),

In linearized regime, relevant components for shear viscosity:

T xy = ∂xδσ∂yδσ︸ ︷︷ ︸
condensate contribution

+ σ̄2∂xϕa∂
yϕa︸ ︷︷ ︸

pion contribution
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Modification of shear viscosity

The stress tensor is

Tµν = uµuν(eΣ + pΣ) + gµνpΣ

+
1

4
(DµΣDνΣ† + DνΣDµΣ†)− uµuν

1

2
û(u · DΣu · DΣ†),

In linearized regime, relevant components for shear viscosity:

T xy = ∂xδσ∂yδσ︸ ︷︷ ︸
condensate contribution

+ σ̄2∂xϕa∂
yϕa︸ ︷︷ ︸

pion contribution

Break up computation into two pieces:

∆η ≡ I xy
σσ + I xy

ϕϕ
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Modification of shear viscosity

Break up computation into two pieces:

∆η ≡ I xy
σσ + I xy

ϕϕ

Sigma correlator:

Gσσ
sym(ω, k) = 2

T

ω
ImGσσ

R (ω, k) =
2TΓ

ω2 + Γ2(k2 + m2
σ)2

which leads to

I xy
σσ = 2

∫
d3k

(2π)3

dω

(2π)
(kxkyGσσ

sym)2
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Modification of shear viscosity

Break up computation into two pieces:

∆η ≡ I xy
σσ + I xy

ϕϕ

Sigma correlator:

Gσσ
sym(ω, k) = 2

T

ω
ImGσσ

R (ω, k) =
2TΓ

ω2 + Γ2(k2 + m2
σ)2

which leads to

I xy
σσ =

2T 2

(30π2Γ)

∫ Λ

0

k6dk

(k2 + m2
σ)3



39/50

Modification of shear viscosity

Break up computation into two pieces:

∆η ≡ I xy
σσ + I xy

ϕϕ

Sigma correlator:

Gσσ
sym(ω, k) = 2

T

ω
ImGσσ

R (ω, k) =
2TΓ

ω2 + Γ2(k2 + m2
σ)2

which leads to

I xy
σσ =

2T 2

(30π2Γ)

∫ Λ

0

k6dk

(k2 + m2
σ)3

=
2T 2

30π2Γ
Λ︸ ︷︷ ︸

divergent

− 2T 2mσ

32πΓ︸ ︷︷ ︸
finite piece

+ . . .
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Modification of shear viscosity - pion contribution
Break up computation into two pieces:

∆η ≡ I xy
σσ + I xy

ϕϕ

ϕ correlator:

Gϕϕ
sym =

2T

χ0

g1(ω2 + g2
2 ) + g2ω

2
q

(−ω2 + ω2
q + g1g2)2 + (ωΓq)2

with short-hand notation:

g1 ≡ Γ(q2 + m2)

g2 ≡ D0q
2

Γq ≡ Γ(q2 + m2) + D0q
2.

Integral to evaluate

I xy
ϕϕ = 2

∫
d3k

(2π)3

dω

(2π)
(kxkyGϕϕ

sym)2
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Modification of shear viscosity - pion contribution

I xy
ϕϕ =

2T 2dA

30π2Γ
Λ︸ ︷︷ ︸

divergent

− 2T 2mdA

32πΓ

(
1 + u2(1− r2)f (r , u)

)
︸ ︷︷ ︸

finite

where r2 = Γ
Γ+D0

and u2 = v2

Γm2D0

and

f (r , u) =
32π

30π2

∫ ∞
0

dk

m

k6

(k2 + m2)3

m2k2

(k2 + r2m2)(k2 + u2m2)
,

=
8u4 + 24u3 + 48u2 + 45u + 15

15(u + 1)3 (u2 − r2)
+ (r ↔ u).
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Modification of shear

Combining the previous ingredients, we find

η = ηphys
Σ − T

32πΓ
(mdA + mσ + mdAu

2(1− r2)f (r , u)),

where the physical part captures the cut-off dependent piece

ηphys
Σ = ηΣ(Λ) + δαα

TΛ

30π2Γ
.
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Change in shear viscosity
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Tc

h2/3
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Change in conductivity

Similar procedure for conductivity. Need to evaluate:

2TσI =

∫
d4x

1

dA

〈
1
2{J

x
V ,a(t, x), Jx

V ,a(0, 0)}
〉
,

Operator of interest is current

Jx
V ,a = σ2

0fabcϕb∂
xϕc

We compute

σI = σphys
I + TA

∫
d3k

(2π)3

dω

2π

1

ω4
k

(kxGϕϕ
sym)2︸ ︷︷ ︸

∆σI
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Change in conductivity
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Change in bulk viscosity

Bulk viscosity is similar, but more complicated.
The bulk viscosity is

2T ζ =

∫
d4x

〈
1
2 {Obulk(t, x),Obulk(0, 0)}

〉
.

The relevant operator is

Obulk = c2
s T

0
0 +

1

3
T i

i .

The full stress tensor is

Tµν = uµuν(eΣ + pΣ) + gµνpΣ

+
1

4
(DµΣDνΣ† + DνΣDµΣ†)− uµuν

1

2
û(u · DΣu · DΣ†),
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Change in bulk viscosity

Bulk viscosity is similar, but more complicated.
The bulk viscosity is

2T ζ =

∫
d4x

〈
1
2 {Obulk(t, x),Obulk(0, 0)}

〉
.

The relevant operator is

Obulk = c2
s T

0
0 +

1

3
T i

i

= pΣ +
1

3 · 4
(∂ i Σ∂i Σ

† + ∂ i Σ†∂i Σ)− c2
s

(
χAµ

2
A −

∂(βpΣ)

∂β

)
,
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Change in bulk viscosity
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Summary of change in scaling
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Greatest effect on bulk viscosity!
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Greatest effect on bulk viscosity!
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