Uniform Stability of High-Rank Lattices

Alex Lubotzky Weizmann Institute and Hebrew University

Joint work with: Lev Glebsky, Nicolas Monod and Bharat Rangarajan

- G (semi) simple Lie group over a local field K.
- Γ ≤ G a lattice (discrete subgroup of finite covolume; uniform (=cocompact) or non-uniform).
- $rk(G) = rank_K(G)$
- "usually" a difference between rk = 1 and rk ≥ 2 (= high rank),
 e.g., local rigidity, strong rigidity, super-rigidity, congruence subgroup problem.

$$SL_2(\mathbb{Z})$$
 versus $SL_n(\mathbb{Z}), \geq 3$

This talk is about Ulam Stability which is another such property.

A typical rigidity result: There is a clear, easy to understand, family of representations of Γ . The theorem says that if something is "similar" it is already in the family.

Ulam stability is such a statement for "almost representations"

More formally:

Let Γ be a group and $\mathfrak{g} = (G_n, d_n)$ -family of groups with $d_n =$ bi invariant metric.

 $\begin{array}{ll} \mbox{Def:} & \Gamma \mbox{ is uniform/Ulam stable w.r.t. } \mathfrak{g}, \mbox{ if } \forall \varepsilon > 0, \exists \delta > 0, \mbox{ such that} \\ \forall n, \ \forall \mbox{map } \varphi: \Gamma \to G_n \mbox{ with} \end{array}$

$$d_n(\varphi(gh),\varphi(g)\varphi(h)) \le \delta, \ \forall g,h \in \Gamma$$
(*)

 \exists a homomorphism $\psi: \Gamma \to G_n$

s.t.

$$d_n(\varphi(g), \psi(g)) \le \varepsilon, \ \forall g \in \Gamma \tag{(**)}$$

i.e., every "almost representation" is just a small deformation of a true representation.

Warning: Do not confuse with (ordinary) stability which is equivalent to: If $\varphi_n : \Gamma \to G_n$ s.t. $\forall g, h \in \Gamma$ $d_n(\varphi_n(gh), \varphi_n(g)\varphi_n(h)) \xrightarrow[n \to \infty]{} 0$ then $\exists \psi_n : \Gamma \to G_n$ homomorphisms with

$$d_n(\varphi_n(g), \ \psi_n(g)) \xrightarrow[n \to \infty]{} 0 \quad \forall g \in \Gamma$$

Uniform Stability is equivalent to

$$\text{If } \varphi_n: \Gamma \to G_n \text{ s.t. } \sup_{g,h \in \Gamma} d_n(\varphi_n(g,h),\varphi_n(g)\varphi_n(h)) \underset{n \to \infty}{\to} 0$$

then $\exists \psi_n : \Gamma \to G_n$ homomorphisms with

$$\sup_{g} d_n(\varphi_n(g), \psi_n(g)) \xrightarrow[n \to \infty]{} 0$$

Today we will work only with $G_n = U(n)$ and d_n - metric induced by a submultiplicative norm $\|\cdot\|$ on $M_n(\mathbb{C})$, i.e. $\|AB\| \le \|A\| \|B\|$ and $d_n(A, B) = \|A - B\|$.

Ex: (a) the operator norm $\|\cdot\|_{\infty} = \|\cdot\|_{op}$

(b) The Frobenius norm
$$= L^2$$
-norm

(c) The *p*-Schatten norm $(1 \le p < \infty)$ $||A||_p = (tr|A|^p)^{1/p}$ when $|A| = \sqrt{A * A}$ (So (b) is the case p = 2 of (c))

Non-example: The Hilbert-Schmidt norm

$$||A||_{HS} = (tr\frac{1}{n}|A|^2)^{1/2} = \frac{1}{\sqrt{n}}||A||_2$$

Theorem (Glebsky-Lubotzky-Monod-Rangarajan)

 $\mathfrak{g} = (U(n), d_n), d_n$ -submultiplicative, Γ - a lattice, G- a high rank simple Lie group over a local field K. Then Γ is Ulam-stable provided G satisfies condition $G(Q_1, Q_2)$.

Remark: $G(Q_1, Q_2)$ to be defined later, is satisfied by "most" simple groups. E.g., always if K is non-archimedian, or for $SL_d(\mathbb{R})$ if $d \ge 4$ and $SL_d(\mathbb{C})$, $d \ge 3$. As of now: we do not know for $G = SL_3(\mathbb{R})$. Theorem (Kazhdan 1982)

Amenable groups are **strongly** Ulam stable w.r.t. the operator norm.

Strongly means even w.r.t. infinite dimensional Hilbert space.

Theorem (Burger-Ozawa-Thom 2013)

If Γ any discrete group containing a free non-abelian subgroup, then Γ is not strongly Ulam stable.

Pf. Free groups are **not** Ulam stable and induce the "almost rep". \Box

Open problem: Does "strong Ulam stability" characterize amenability?

Theorem (Burger-Ozawa-Thom 2013)

If $H^2_b(\Gamma,\mathbb{R}) \to H^2(\Gamma,\mathbb{R})$ is not injective, then Γ does not have Ulam-Stability.

Cor: Lattices in rank one groups are not Ulam stable.

Theorem (Burger-Ozawa-Thom 2013)

 $SL_d(\mathbb{Z})$ (or more generally $SL_d(\mathcal{O}_S)$) are Ulam stable for $d \geq 3$.

Remark: The proof used "bounded generation" of these groups.

According to a recent result of **Corvaja, Rapinchuk, Ren** and **Zannier**, cocompact lattices are never boundedly generated.

Recall: (i) $H_b^n(\Gamma, V) = 0 \ \forall n \text{ when } \Gamma \text{ is amenable.}$

(ii) $H_b^n(\Gamma, V) = 0 \ \forall n \text{ when } \Gamma \text{ is high-rank lattice and } V^{\Gamma} = \{0\}.$

- **Burger-Monod** for n = 2
- **Burger-Shalom** for n = 2, more general V, different pf
- Monod all n.

This led Monod already in his ICM talk (2000) to ask:

Is there a connection between Ulam stability and bounded cohomology?

Answer: Yes, but . . .

There has been quite a lot of progress on ordinary stability in recent years. A major technical tool to prove stability is the following $(\mathfrak{u} = \mathsf{ultrafilter} \text{ on } \mathbb{N})$:

Theorem (de Chiffre, Glebsky, Lubotzky, Thom)

Let $\mathcal{L}_n = Lie(U(n))$ with the norms as before and $\mathcal{L} = \prod_{\mathfrak{u}} \mathcal{L}_n$ the topological ultra product of \mathcal{L}_n . The "almost homomorphisms" φ_n (in the standard sense) define an action of Γ on \mathcal{L} . If $H^2(\Gamma, \mathcal{L}) = 0$ then $\{\varphi_n\}$ are close to homo's ψ_n . In particular, if we work for example with the Frobenius norm and $H^2(\Gamma, V) = 0$ for every Hilbert space, then Γ is Frobenius stable.

What does H^2 have to do with stability? The maps $\varphi_n : \Gamma \to U(n)$ give rise to true homo: φ^* :

 Γ is stable iff this φ^* can be lifted to homomorphism $\psi: \Gamma \to \Pi U(n)$.

The kernel K is a "very" non-commutative group, but if **the norm is** submultiplicative K can be approximated by abelian small steps.

Vanishing of H^2 gives small extensions and the limit gives ψ .

The same strategy can, in principle, work for the uniform stability. BUT

(I) The relevant cohomology here is the bounded cohomology!

(II) We need ψ to be internal i.e., $\psi = (\psi_n)_{n \in \mathbb{N}}$.

(In the ordinary stability we care about the values of ψ only on the generators; every ψ is internal).

Putting points (I) and (II) together gives:

Proposition

The group Γ is Ulam-g-stable if and only if every homomorphism φ that has an internal lift

has an **internal** lift homomorphism ψ .

What captures this lifting problem, when $\| \|$ is **submultiplicative**, is a new cohomology theory, which we call the asymptotic cohomology $H_a^n(\Gamma, \mathcal{L})$ of Γ (really of $^*\Gamma$) which deals only with **internal** cochains.

Theorem (Glebsky, Lubotzky, Monod, Ramanujan)

If $H^2_a(\Gamma, \mathcal{L}) = 0$ (w.r.t. to φ obtained from almost homo in the uniform sense - φ_n) then $\{\varphi_n\}$ are near true homo's $\{\psi_n\}$.

Remarks:

1) There is a canonical map

$$H^n_a(\Gamma, \mathcal{L}) \longrightarrow H^n_b(\Gamma, \mathcal{L})$$

but we do not know if this is injective(?) surjective(?)

2) $H_a^n(\Gamma, V) = 0 \ \forall n, \ \forall V \text{ if } \Gamma \text{ is amenable, so we recover Kazhdan Thm.}$

Our goal: Prove $H^2_a(\Gamma, \mathcal{L}) = 0$ when Γ is high-rank lattice

Step one: Shapiro Induction

Theorem

If Γ high-rank lattice in G, then \forall dual Banach space V with Γ action:

 $H^2_{\mathbf{b}}(\Gamma, V) = H^2_{\mathbf{b}}(G, W)$

where $W = Ind_{\Gamma}^{G}(V)$.

By a lot of work, we can imitate an Eckman-Shapiro approach to get

$$H^2_a(\Gamma, \mathcal{L}) = H^2_a(G, \mathcal{W})$$

for $\mathcal{W} = Ind_{\Gamma}^{G}(\mathcal{L}).$

Why a lot of work? Even a standard result like Shapiro Lemma requires for Γ in G (e.g. what is $L^{\infty}(\Gamma \setminus G)$? what is $L^{2}(\Gamma \setminus G)$?).

Step two: Reducing to trivial module

In the Monod-Shalom proof, they obtain

Theorem

For dual separable Banach space W with G action:

 $H^2_{\mathbf{b}}(G,W) = H^2_{\mathbf{b}}(G,W^G)$

In particular, if $V^{\Gamma} = W^{G} = 0$, then $H^{2}_{h}(G, W) = 0$.

A similar conclusion holds in our setting too:

Theorem

Suppose \mathcal{W} has no fixed point "upto infinitesimals". Then

 $H^2_a(G,\mathcal{W}) = 0$

Step three: Dealing with Fixed Points

We can do it for all lattices Γ is a simple Lie group G if G satisfies $G(Q_1, Q_2)$.

 $G(Q_1, Q_2)$ means: G has two parabolic subgroups Q_1 and Q_2 satisfying:

(i) $Q_1 \cap Q_2$ contains a minimal parabolic P, and $\langle Q_1, Q_2 \rangle = G$

(ii) $H^2_b(Q_i,\mathbb{R})=0$ and

 $H^3_b(Q_i, \mathbb{R})$ is Hausdorff.

(Note: conditions on the bounded cohomology with trivial coefficients).

"Most" simple groups satisfy $G(Q_1, Q_2)$, so our result, as of now, is quite general but still not complete.