Neural coding and adaptation

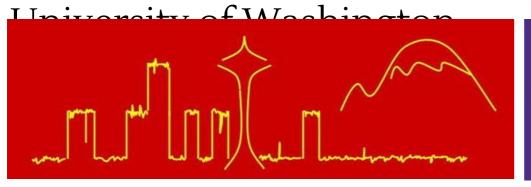
Adrienne Fairhall

Physiology and Biophysics

Center for Computational Neuroscience

UW Swartz Center for Theoretical

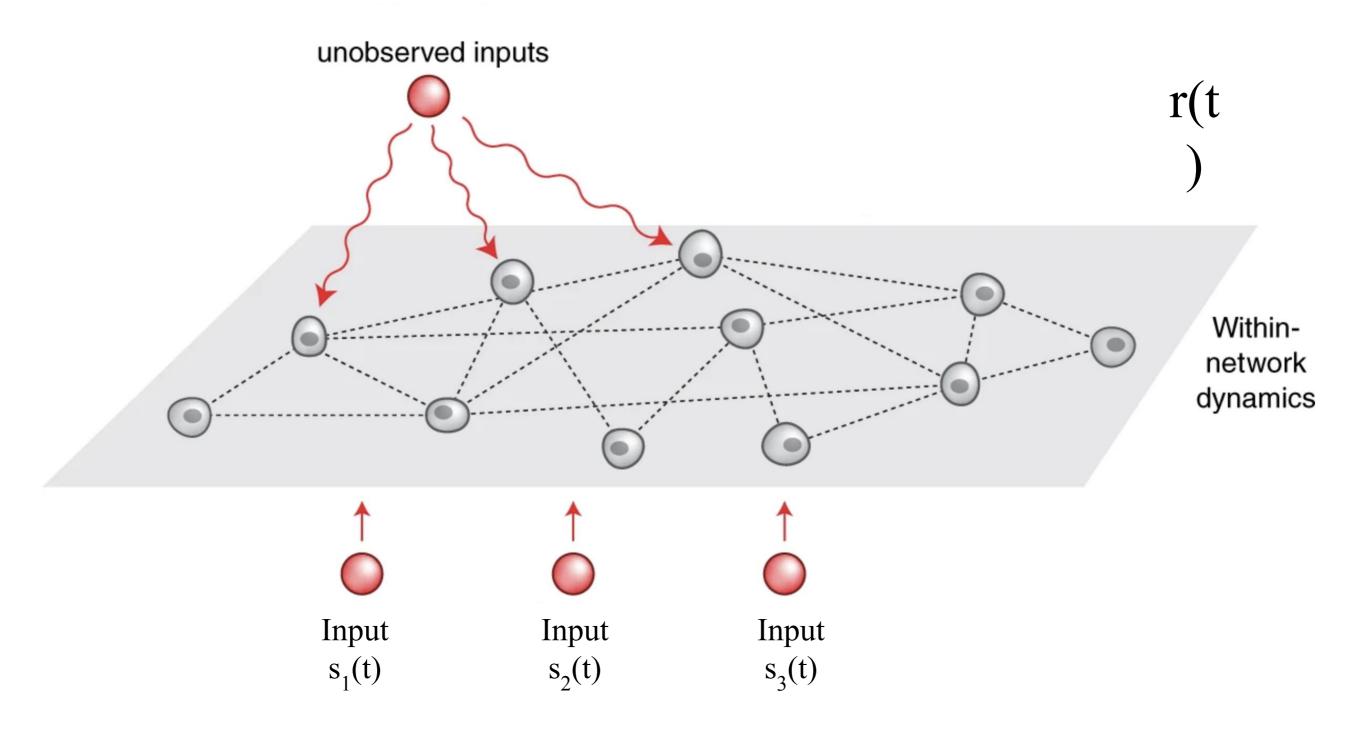
Neuroscience



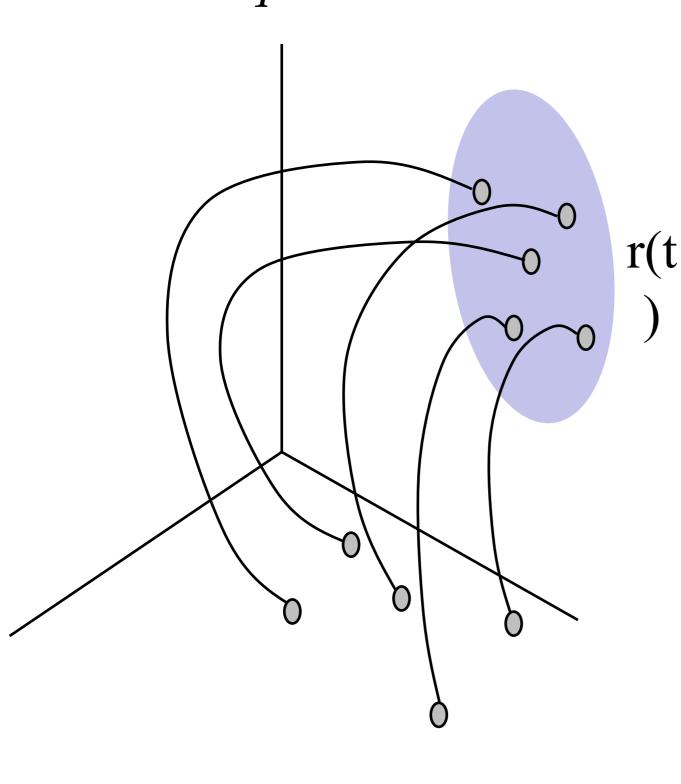
Plan

- Neural coding
- Some basic methods for exploring coding
- Coding is a moving target: adaptation
- Adaptation and its role in coding

What could neural coding mean?



The concept of representation



$$dr(t)/dt = F(r(t) + I(t))$$

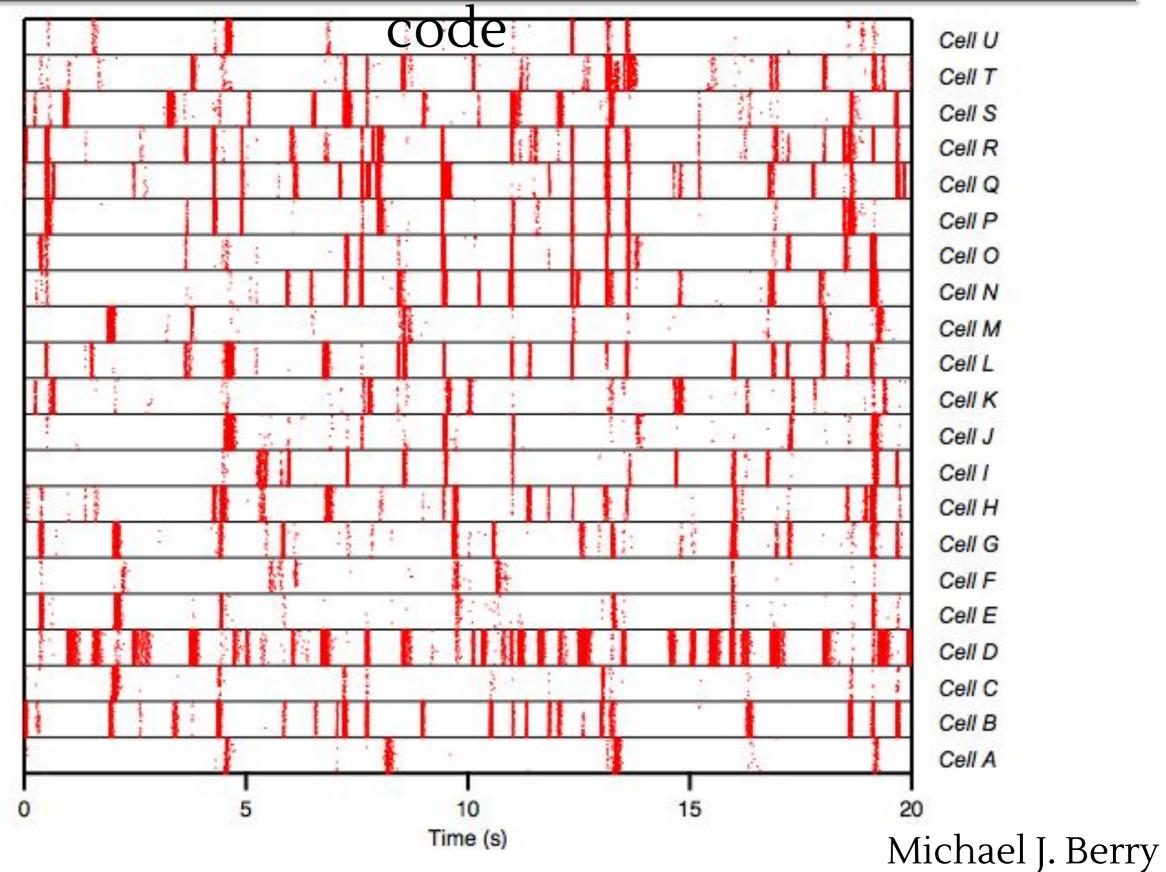
What is the relationship between external variables and r?

What can one infer about brain state from observing r?

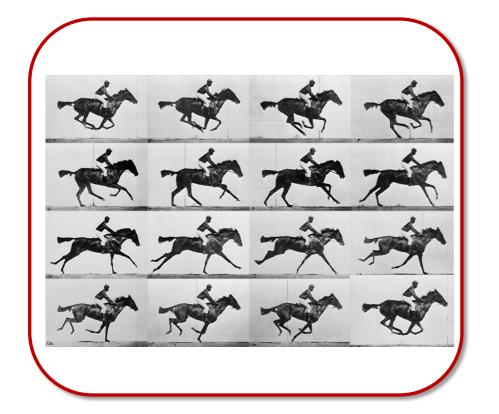
Is r the right variable set?
What low dimensional structure do these response states have?

What dynamics does the network carry out and what computation does it embody?

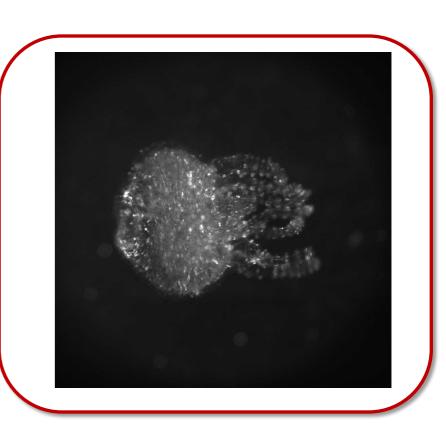
At the sensory end, this definitely looks like a

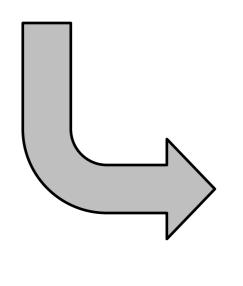


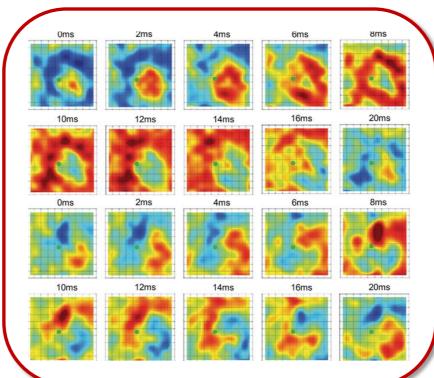
Neural coding

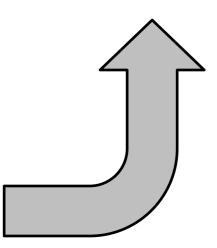


P(X|Y)

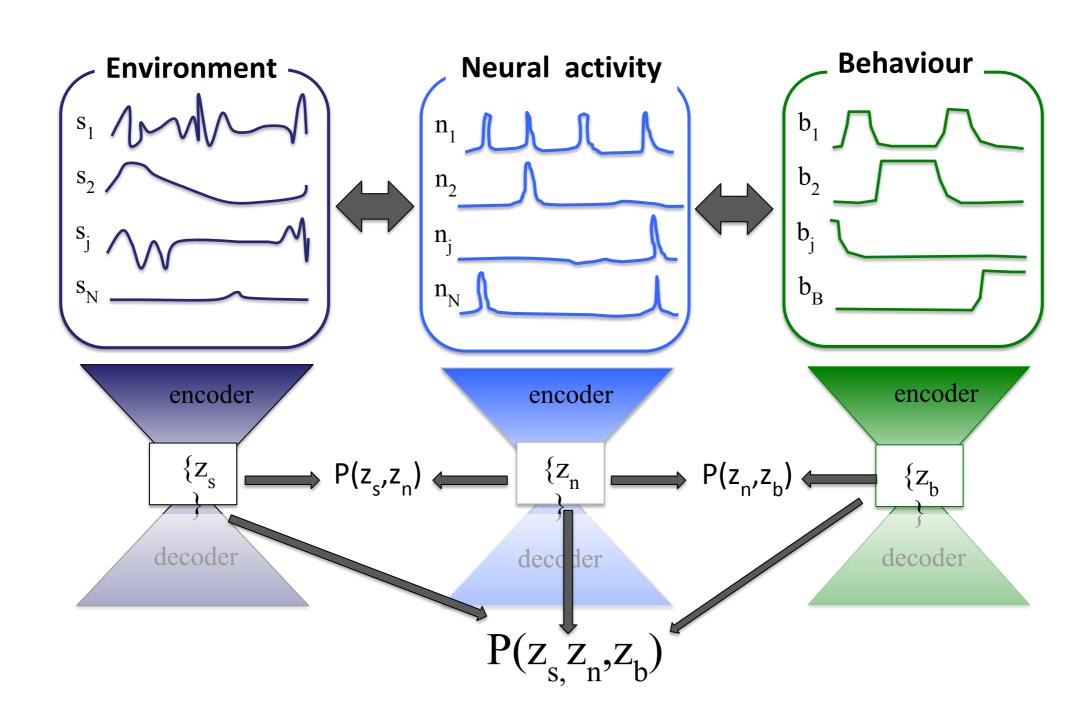




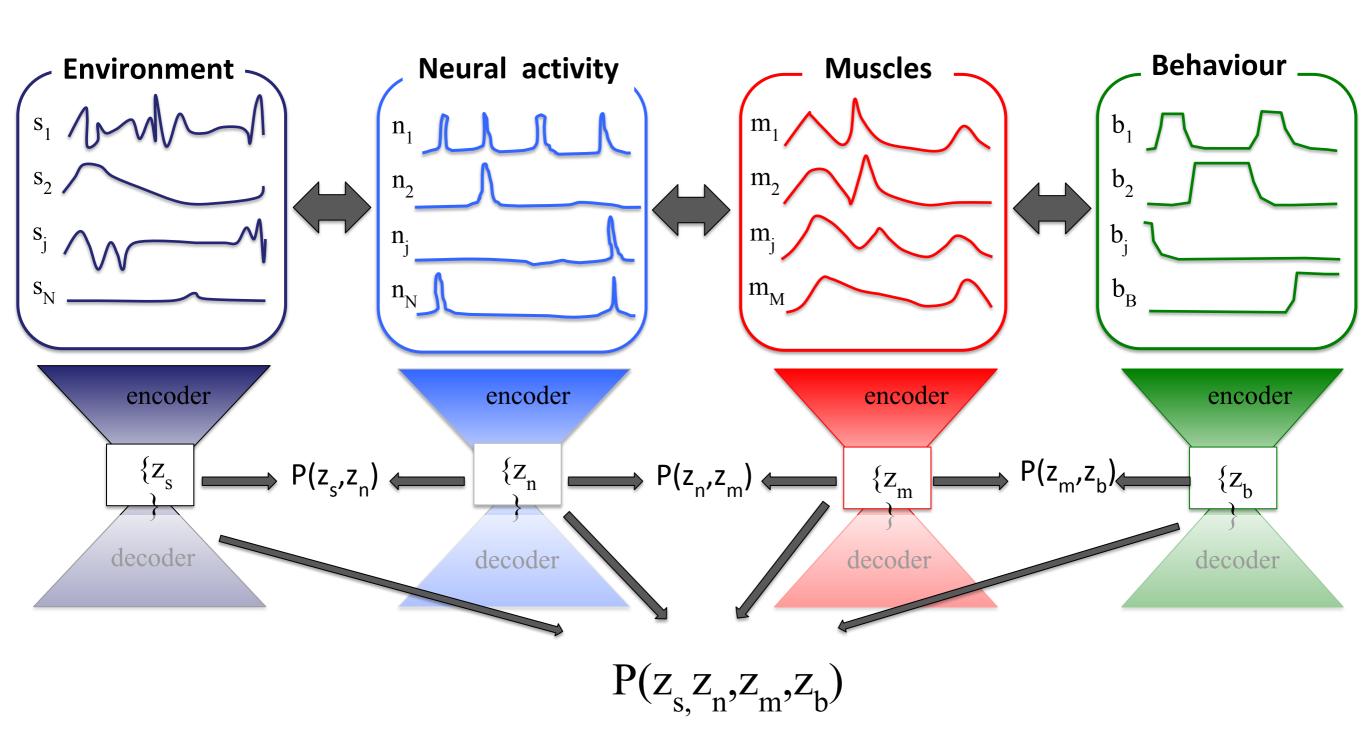




Statistical models in neuroscience

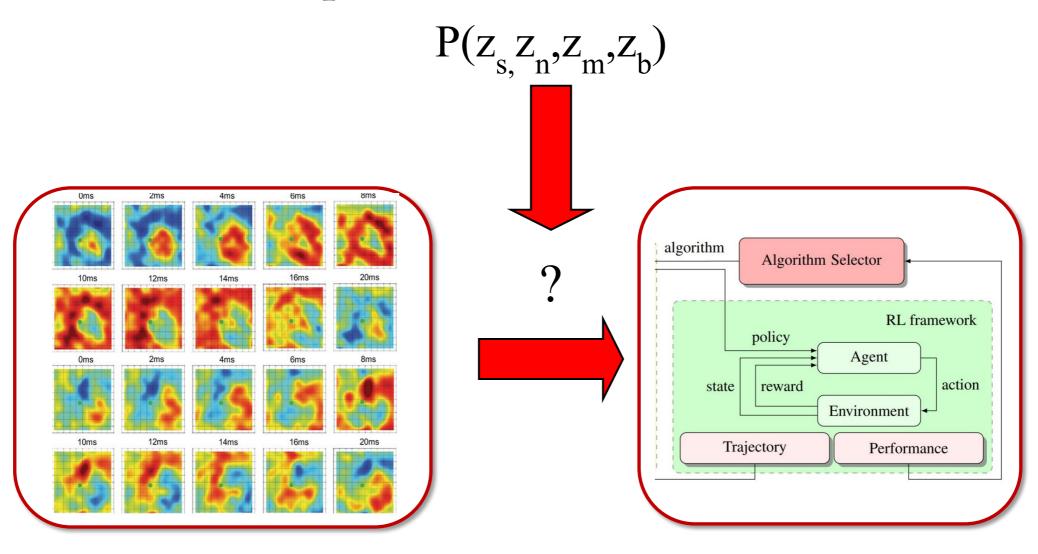


Statistical models in neuroscience



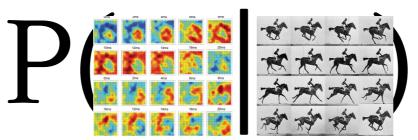
Finding representations is just a starting

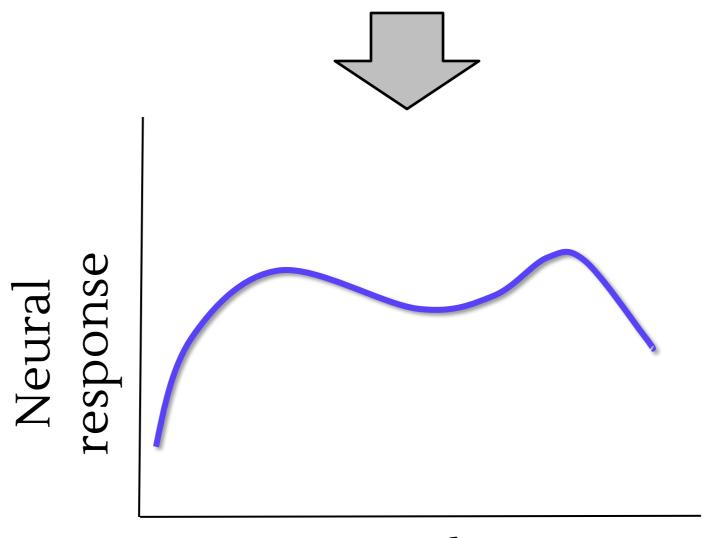
point



"Neural coding" is a quest to reduce

dimensionality



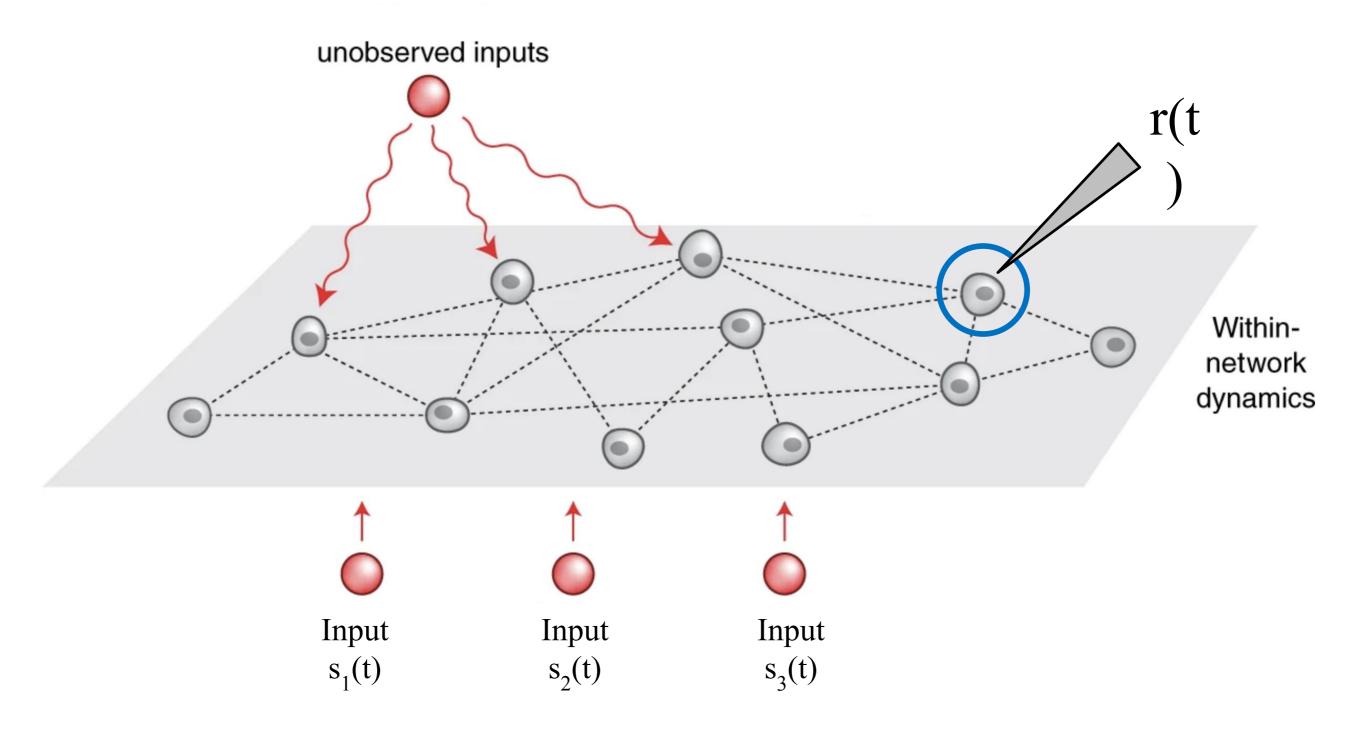


Stimulus parameter

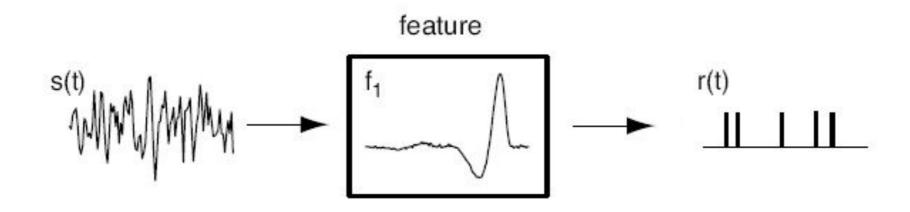
Dimensionality reduction

$$S(t) = \sum a_i(t)\varphi_i$$

Coding



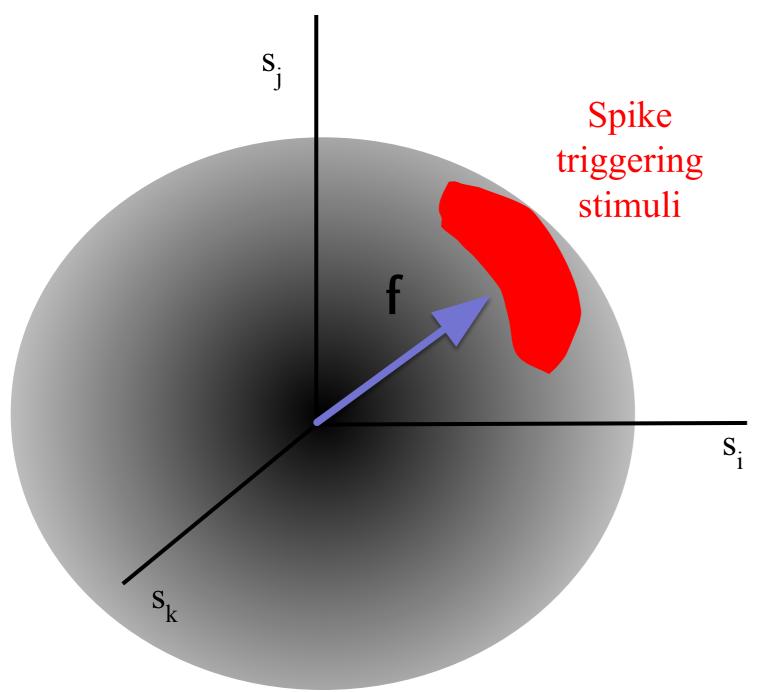
Build from linear coding model



Linear filter:
$$r(t) = \int f(\tau) s(t-\tau) d\tau$$

The weights f are a linear filter

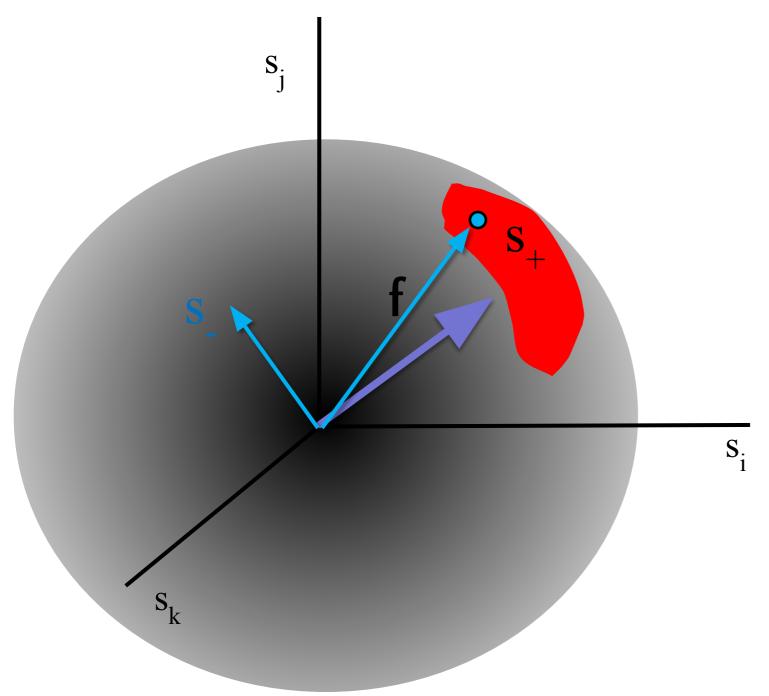
Linear filter: $r(t) = \int f(\tau) s(t-\tau) d\tau$



Filtering =
convolution =
projection =
feature
template

Linear filtering = convolution = projection

Linear filter: $r(t) = \int f(\tau) s(t-\tau) d\tau$

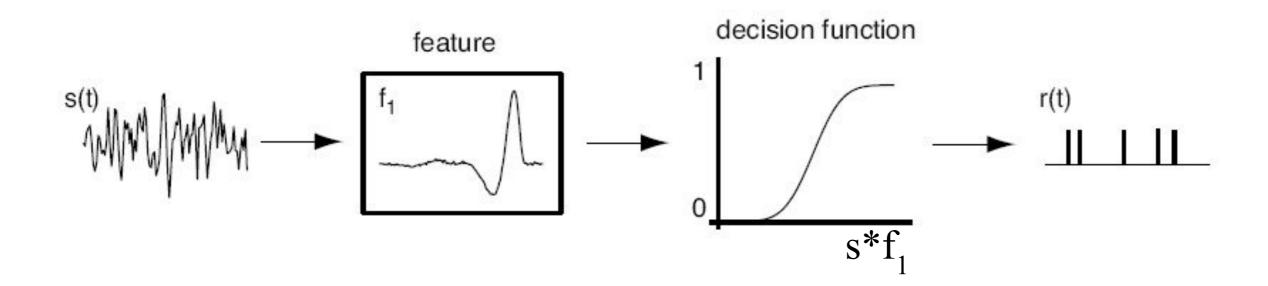


Need another

step

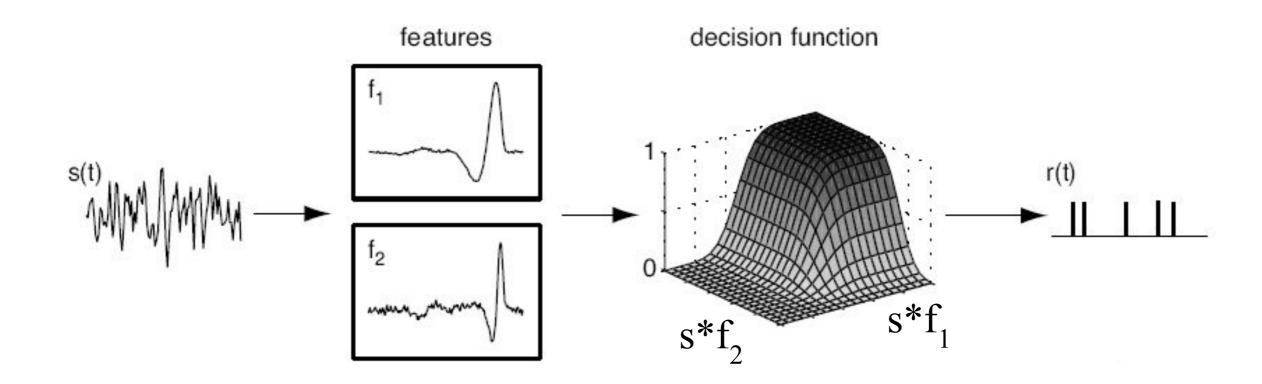


Next most basic coding model



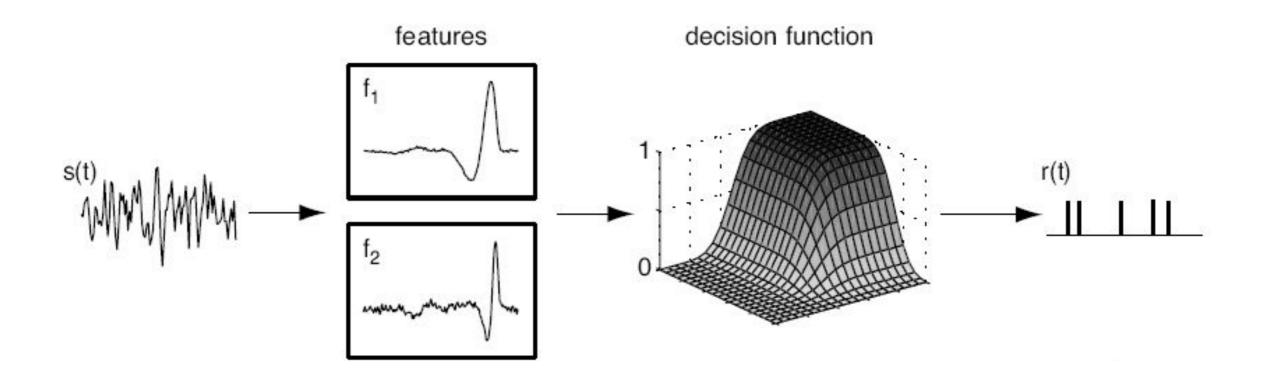
Linear filter & nonlinearity: $r(t) = g(\int f(\tau) s(t-\tau) d\tau)$

Why stop there: multidimensional



Linear filters & nonlinearity: $r(t) = g(s*f_1, s*f_2, ..., s*f_n)$

Coding



Generalizes the idea of representation to any arbitrary

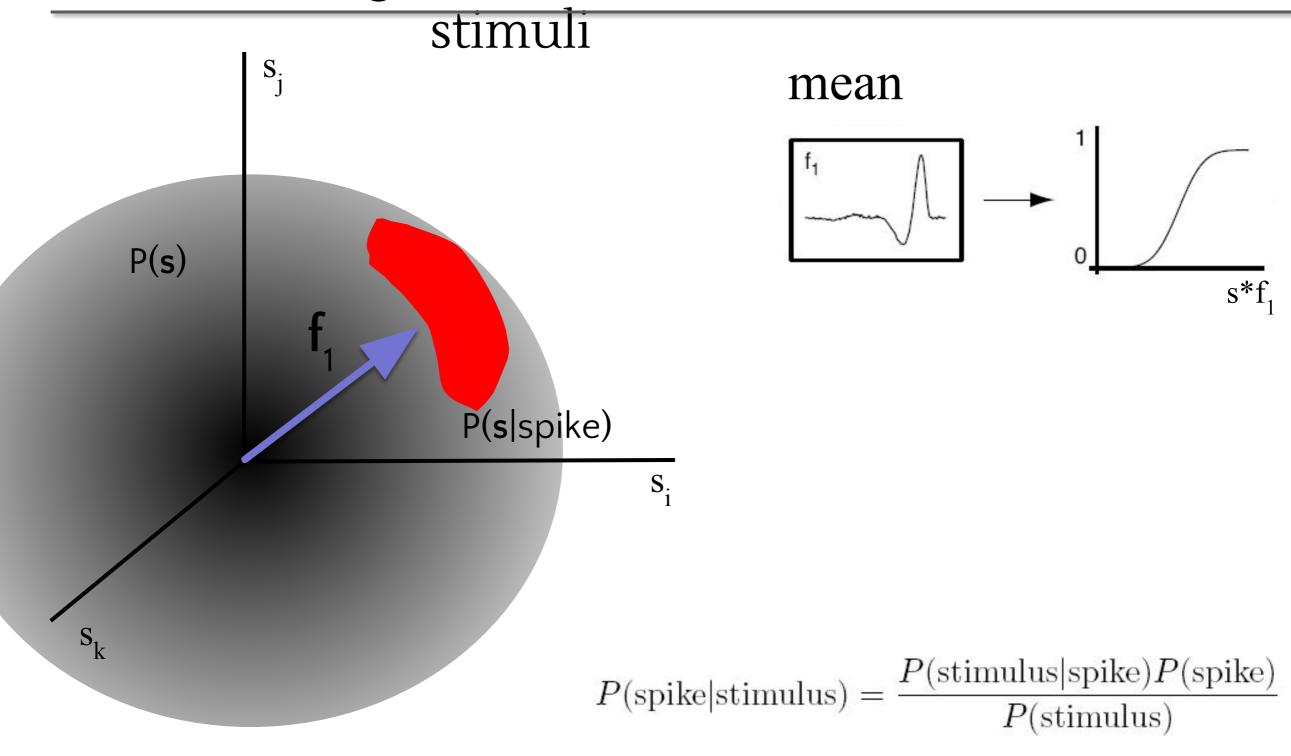
stimulus feature and any arbitrary nonlinearity

Allows us to quantify how neural representations change

Determining models from random stimuli



Determining models from Gaussian

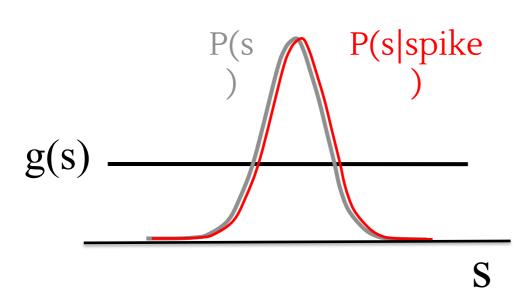


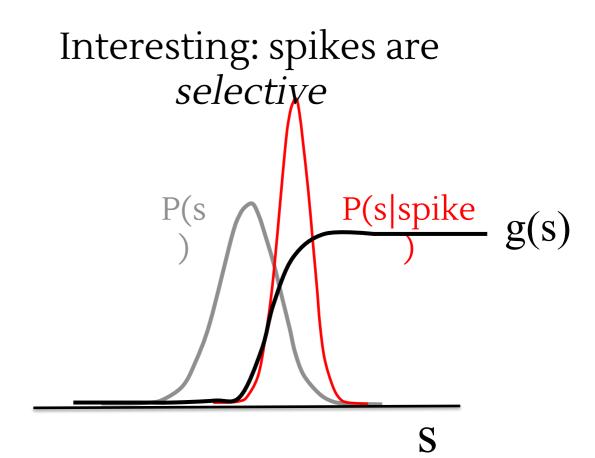
Finding the nonlinearity

s = stimulus*f

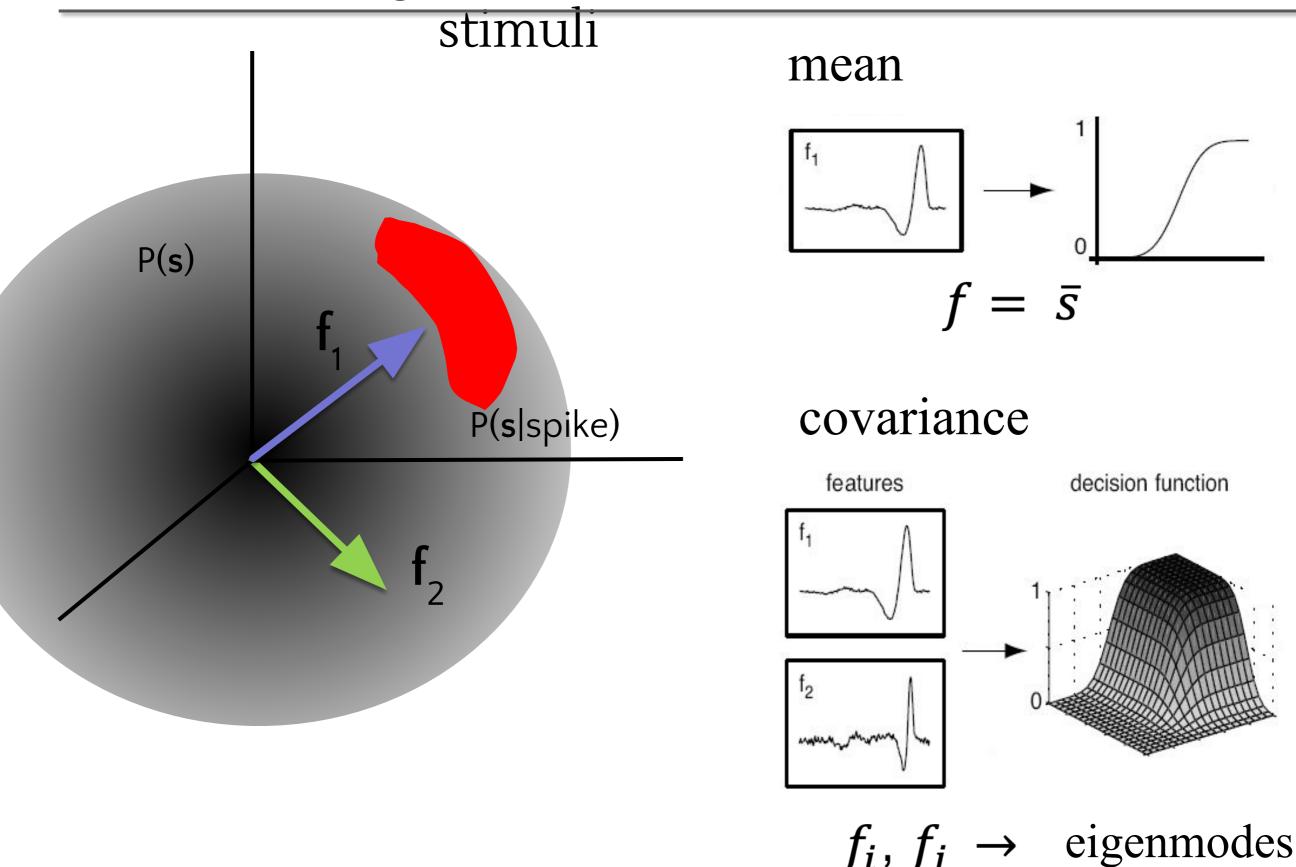
$$P(\text{spike}|s) = P(s|\text{spike}) P(\text{spike}) / P(s)$$

Fail: spikes *unrelated* to stimulus





Determining models from random

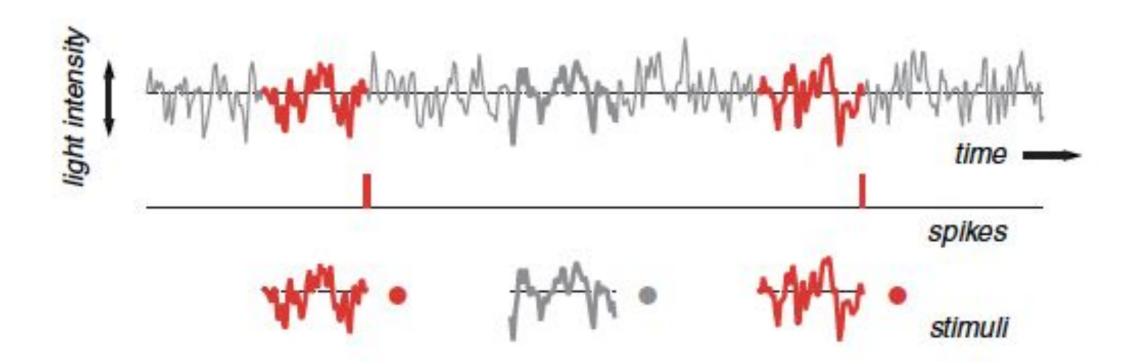


Identifying multiple

features

Compute the covariance matrix of spike-conditioned stimulus samples:

$$C_{ij} = \langle (s(t - i\tau) - \overline{s_i})(s(t - j\tau) - \overline{s_j}) \rangle$$



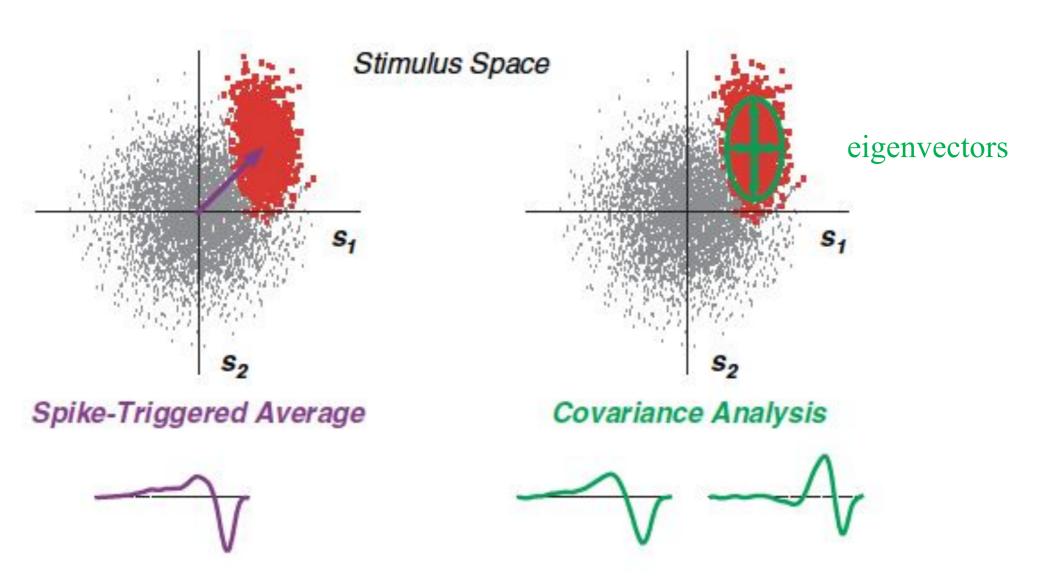
Bialek et al., 1988; Brenner et al., 2000; Bialek and de Ruyter,

Identifying multiple

features

Compute the covariance matrix of spike-conditioned stimulus samples:

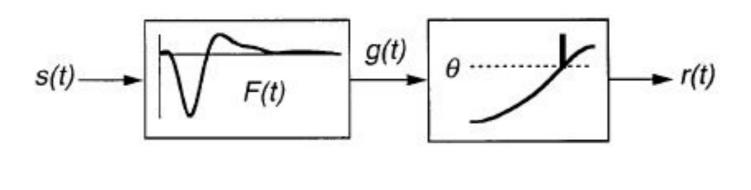
$$C_{ij} = \langle (s(t-i\tau)-\overline{s_i})(s(t-j\tau)-\overline{s_j}) \rangle$$

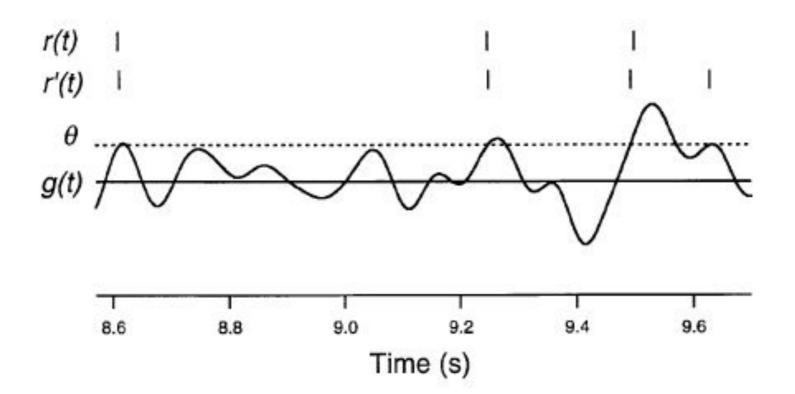


Bialek et al., 1988; Brenner et al., 2000; Bialek and de Ruyter,

How does this work with simple

models?

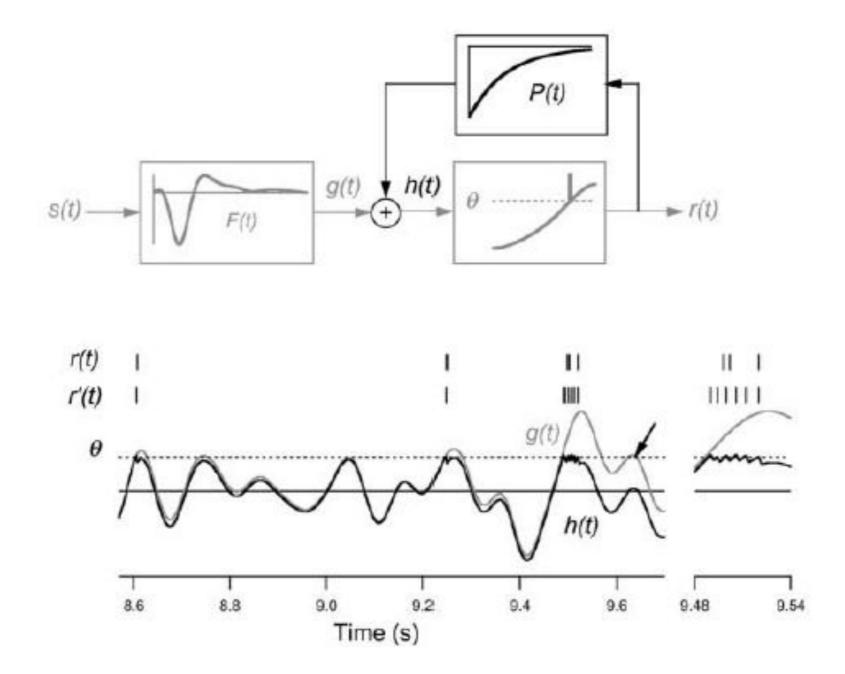




Modeling precise spike times from visual neurons, Keat et al, Neuron 2001

How does this work with simple

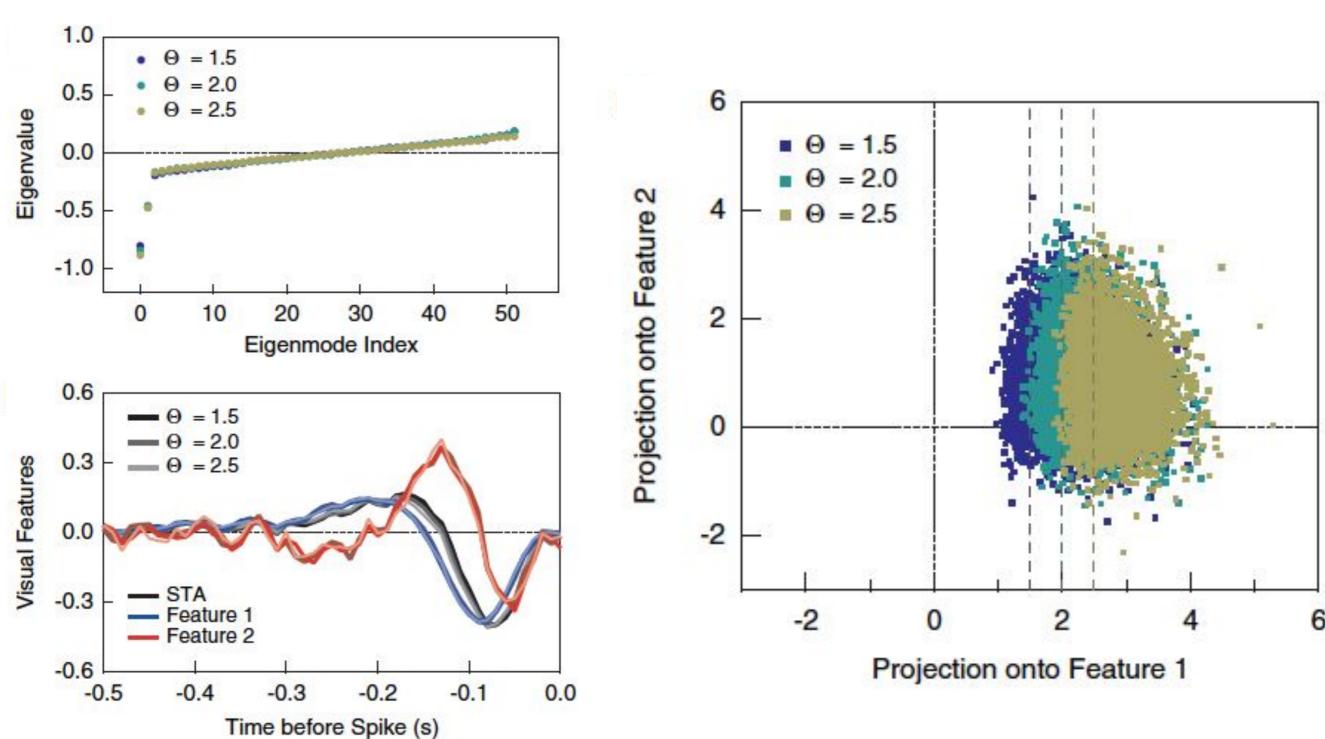
models?



Modeling precise spike times from visual neurons, Keat et al, Neuron 2001

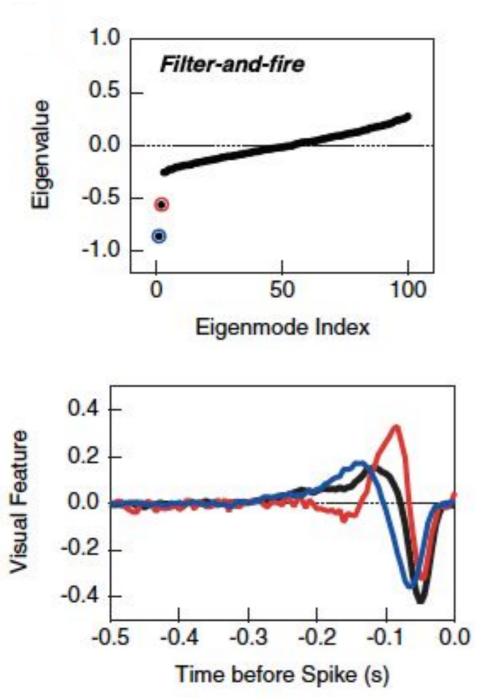
Filter and fire

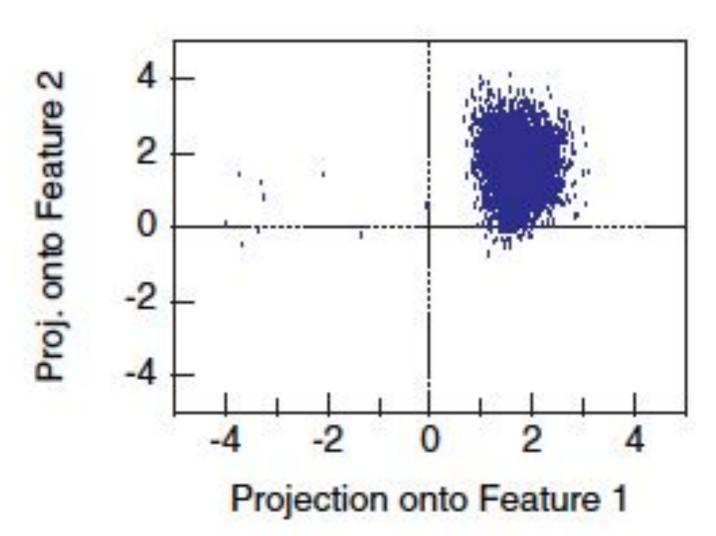
model



Retinal ganglion cell

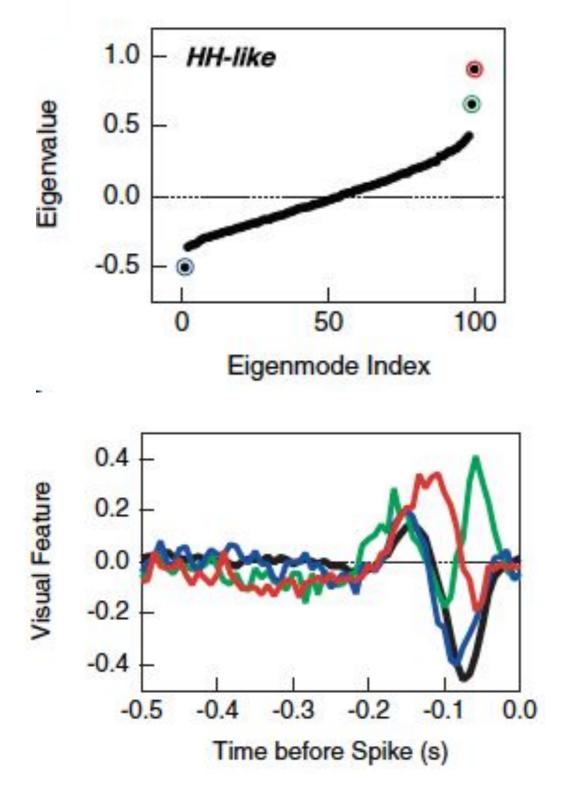
types

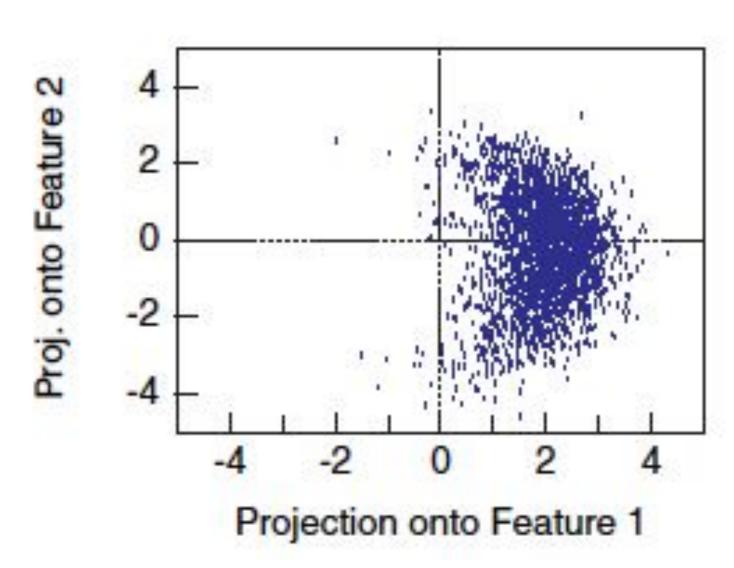




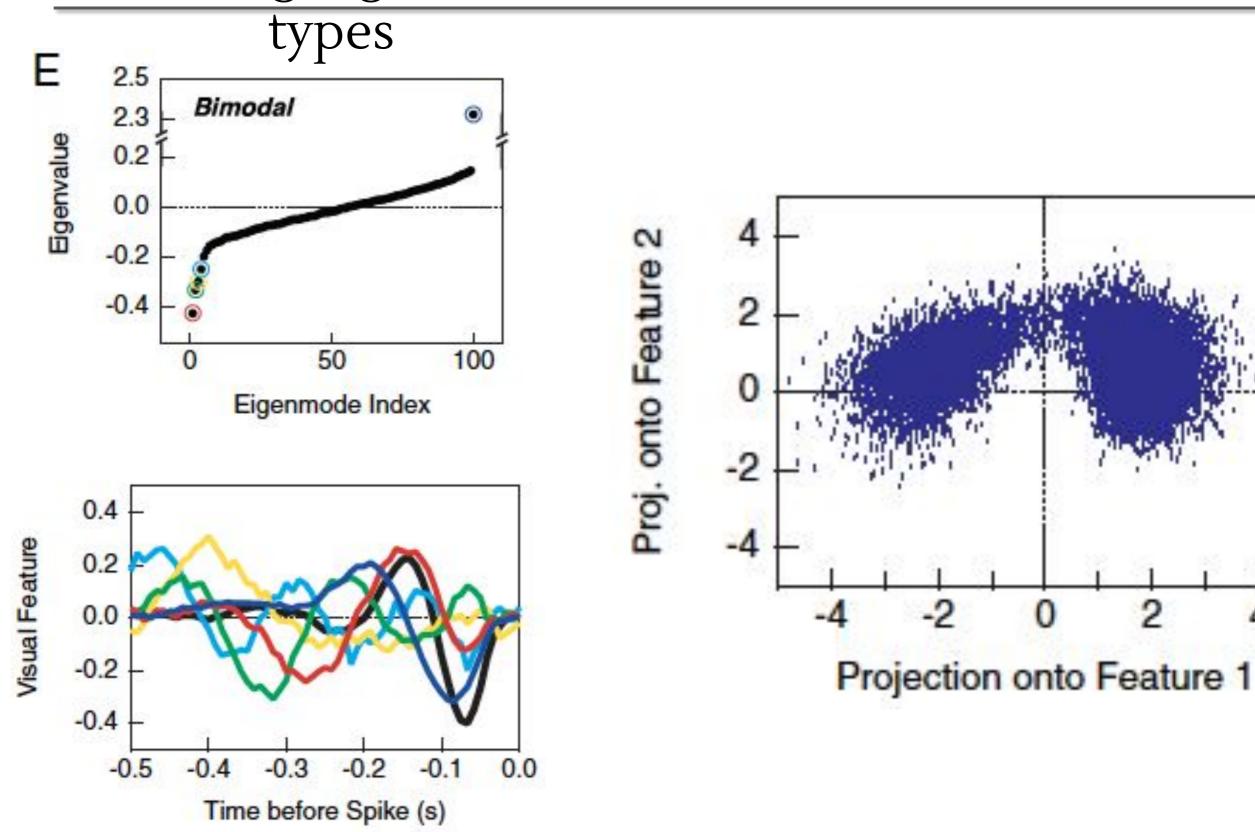
Retinal ganglion cell

types

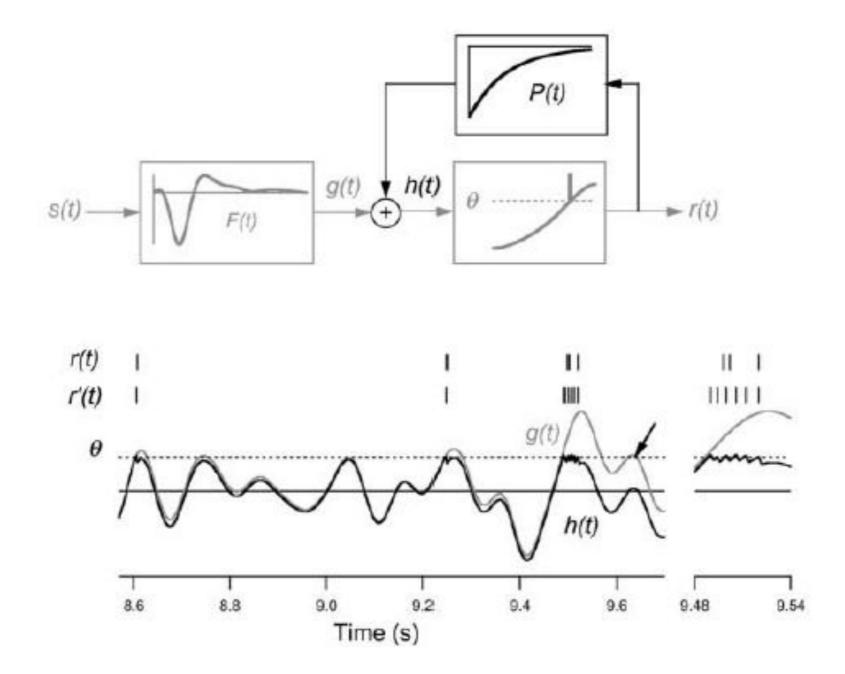




Retinal ganglion cell



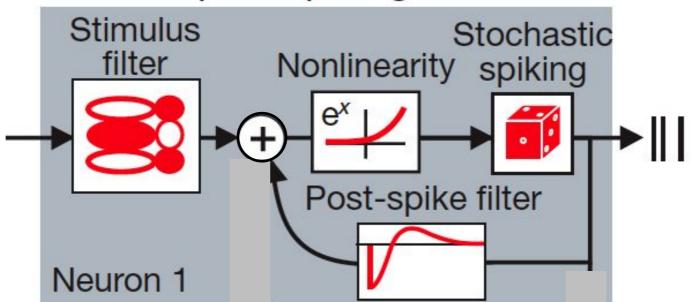
How might one deal with spike history effects?



Modeling precise spike times from visual neurons, Keat et al, Neuron 2001

Generalized linear

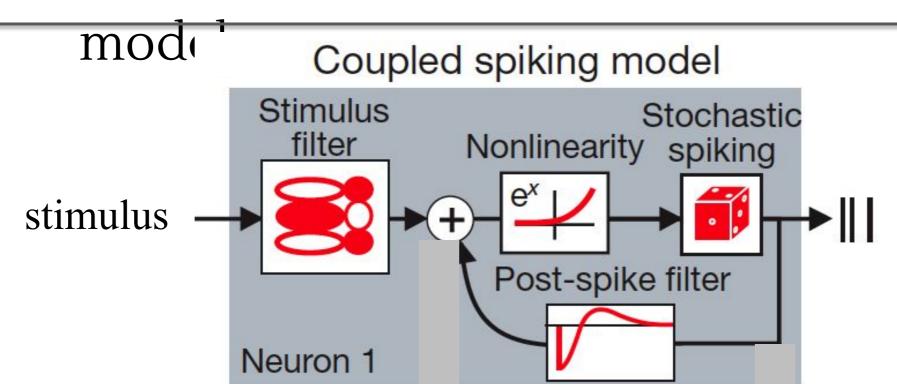
mod: Coupled spiking model



GLM:
$$r(t) = g(f*s + h*r + ...)$$

Pillow et al., *Nature* 2008; Truccolo, .., Brown, *J. Neurophysiol*.

Generalized linear



GLM:
$$r(t) = g(f*s + h*r + ...)$$

Fit by writing down the *likelihood* of the spike data given

a choice of model, and maximizing over the free parameters of the model (g, f, h, ..)

Poisson
$$P_T(k) = (r(t)T)^k \exp(-r(t)T)$$

T)/k!

Pillow et al., Nature 2008; Truccolo, .., Brown, J. Neurophysiol.

Comparison for real-life

Neuron data
Primer

Analysis of Neuronal Spike Trains, Deconstructed

Johnatan Aljadeff, 1,2,* Benjamin J. Lansdell, 3 Adrienne L. Fairhall, 4,5 and David Kleinfeld 1,6,7,*

¹Department of Physics, University of California, San Diego, San Diego, CA 92093, USA

²Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA

3Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA

⁴Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA

⁵WRF UW Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA

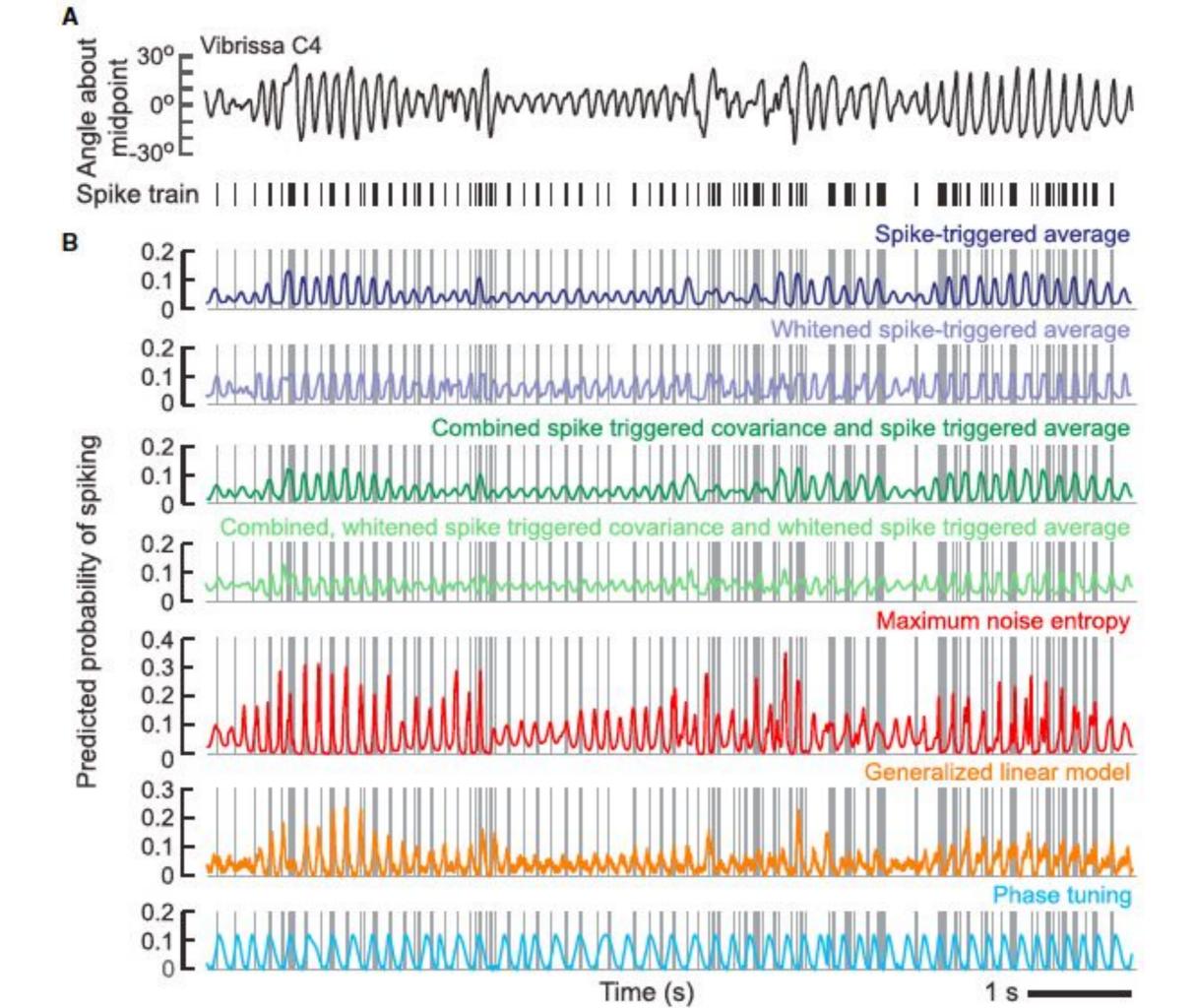
⁶Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA

⁷Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA

*Correspondence: aljadeff@uchicago.edu (J.A.), dk@physics.ucsd.edu (D.K.)

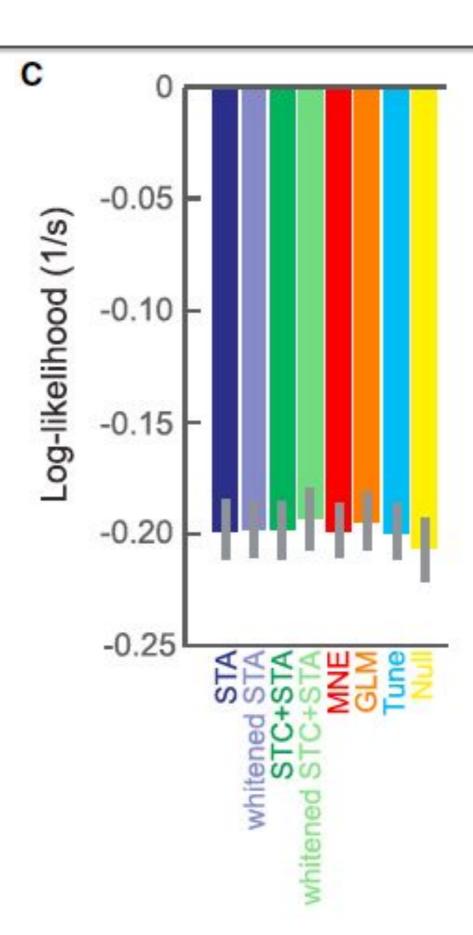
http://dx.doi.org/10.1016/j.neuron.2016.05.039

As information flows through the brain, neuronal firing progresses from encoding the world as sensed by the animal to driving the motor output of subsequent behavior. One of the more tractable goals of quantitative neuroscience is to develop predictive models that relate the sensory or motor streams with neuronal firing. Here we review and contrast analytical tools used to accomplish this task. We focus on classes of models in which the external variable is compared with one or more feature vectors to extract a low-dimensional representation, the history of spiking and other variables are potentially incorporated, and these factors are nonlinearly transformed to predict the occurrences of spikes. We illustrate these techniques in application to datasets of different degrees of complexity. In particular, we address the fitting of models in the presence of strong correlations in the external variable, as occurs in natural sensory stimuli and in movement. Spectral correlation between predicted and measured spike trains is introduced to contrast the relative success of different methods.



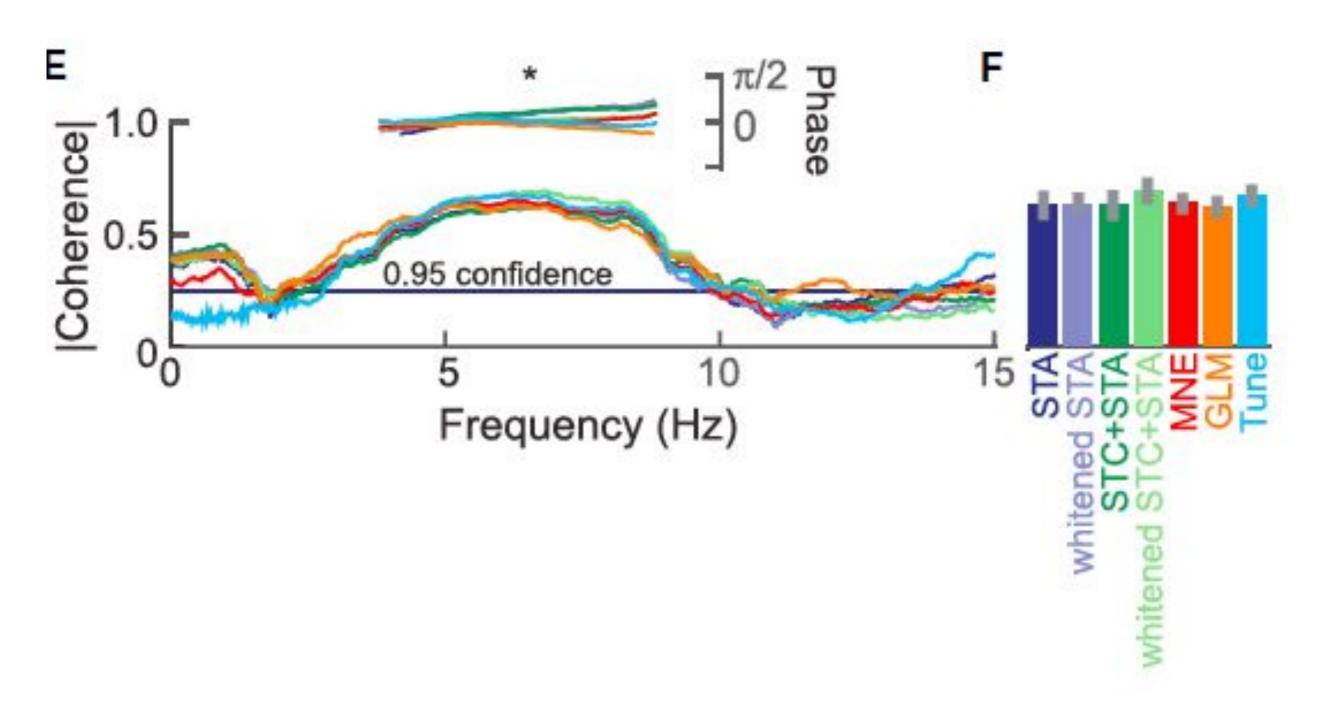
Who

wins?

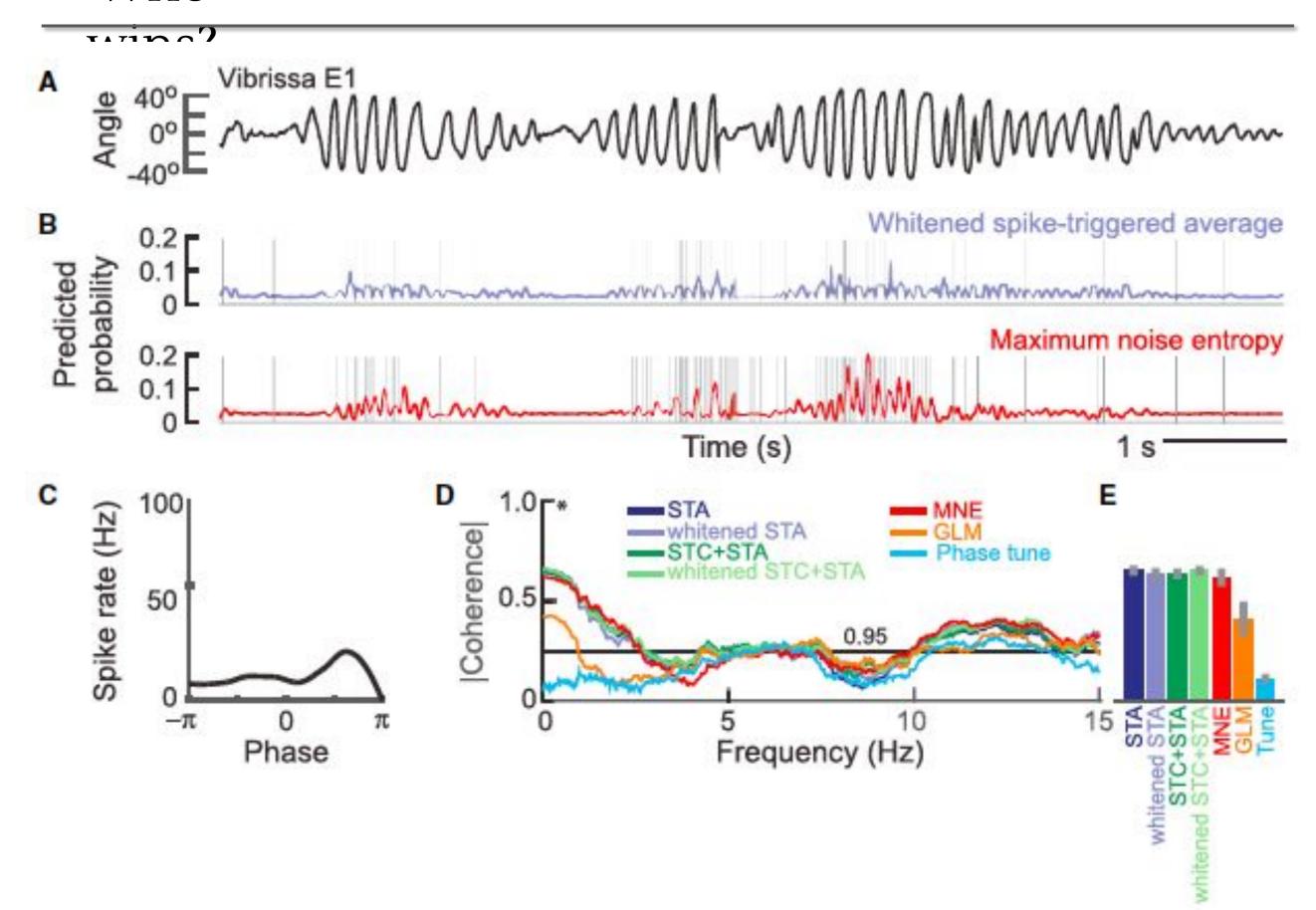


Who wins?:

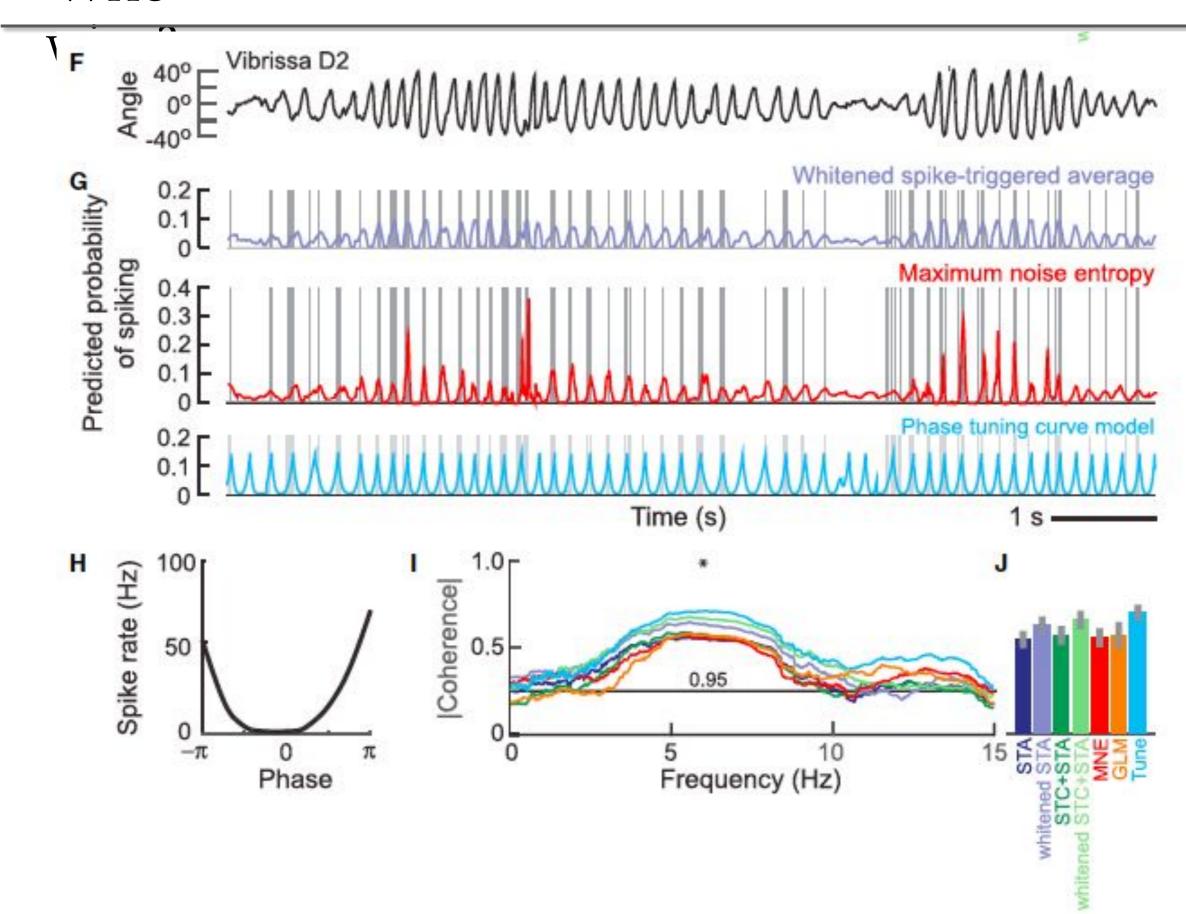
coherence



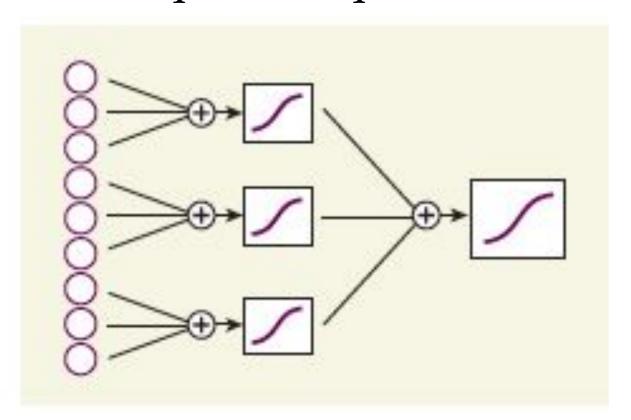
Who

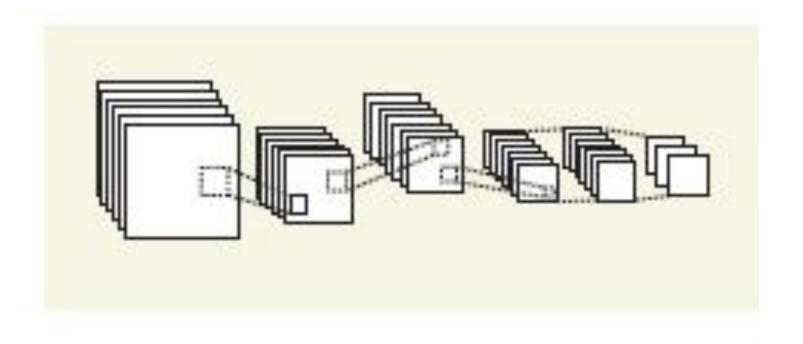


Who

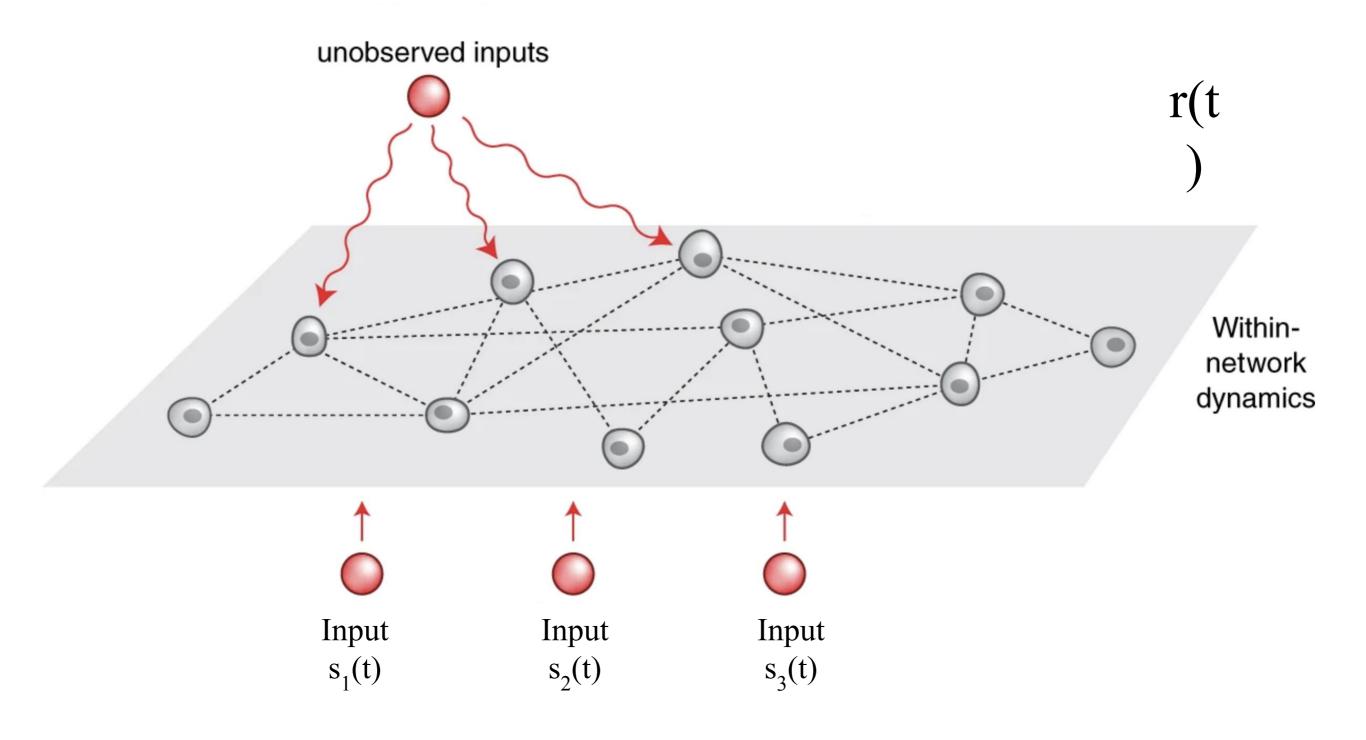


Next gen models to fit input/output

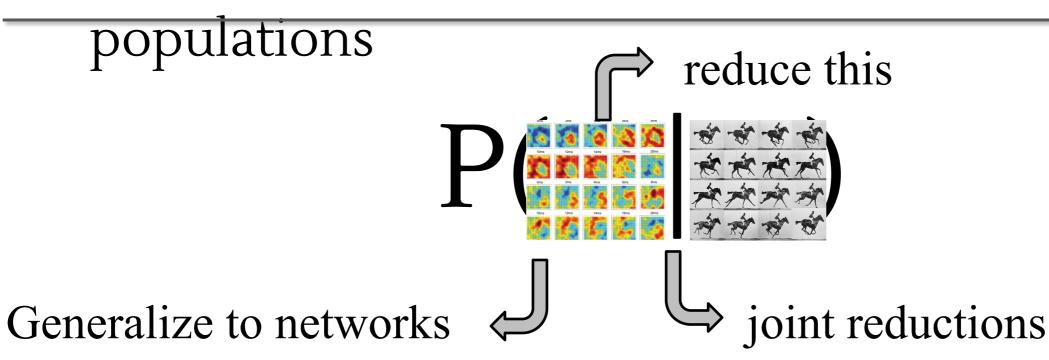


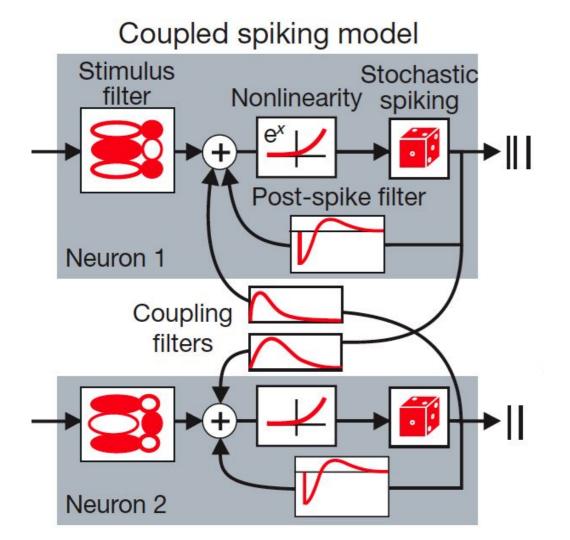


Complexities



Neuronal

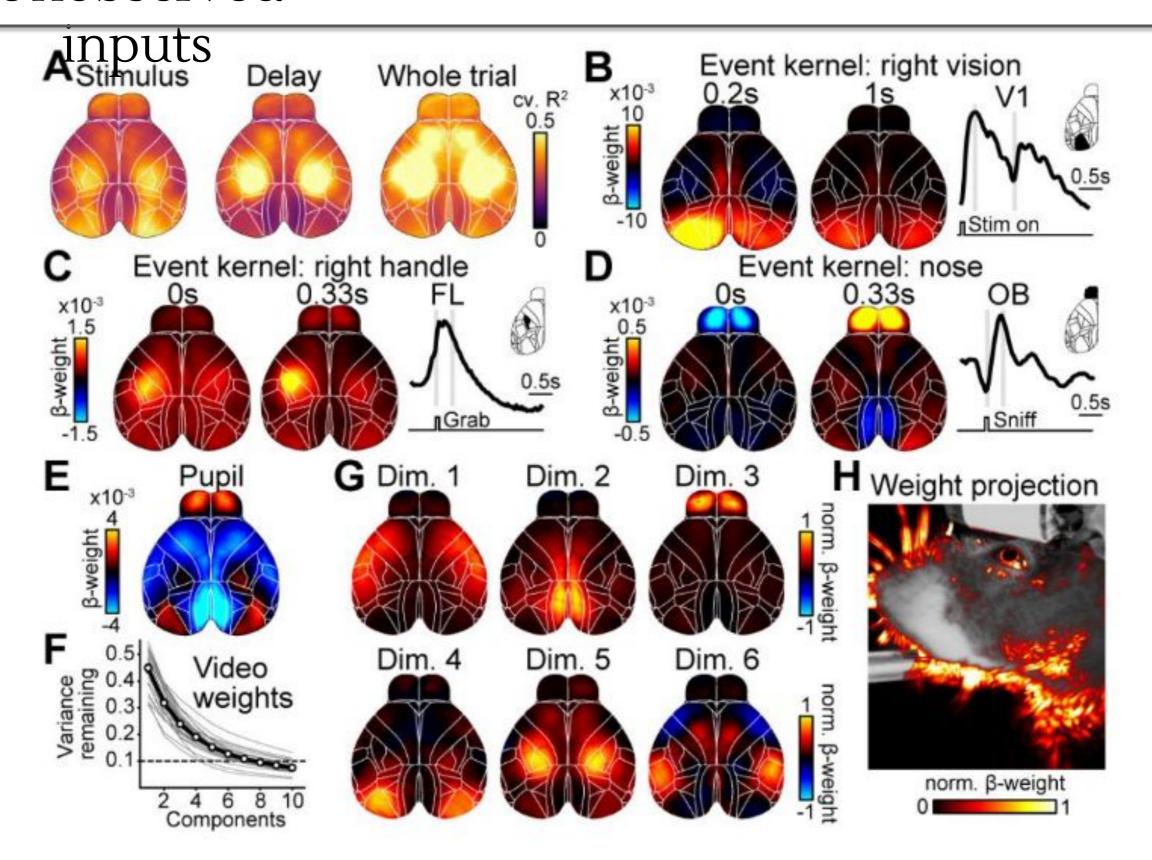




canonical correlation analysis

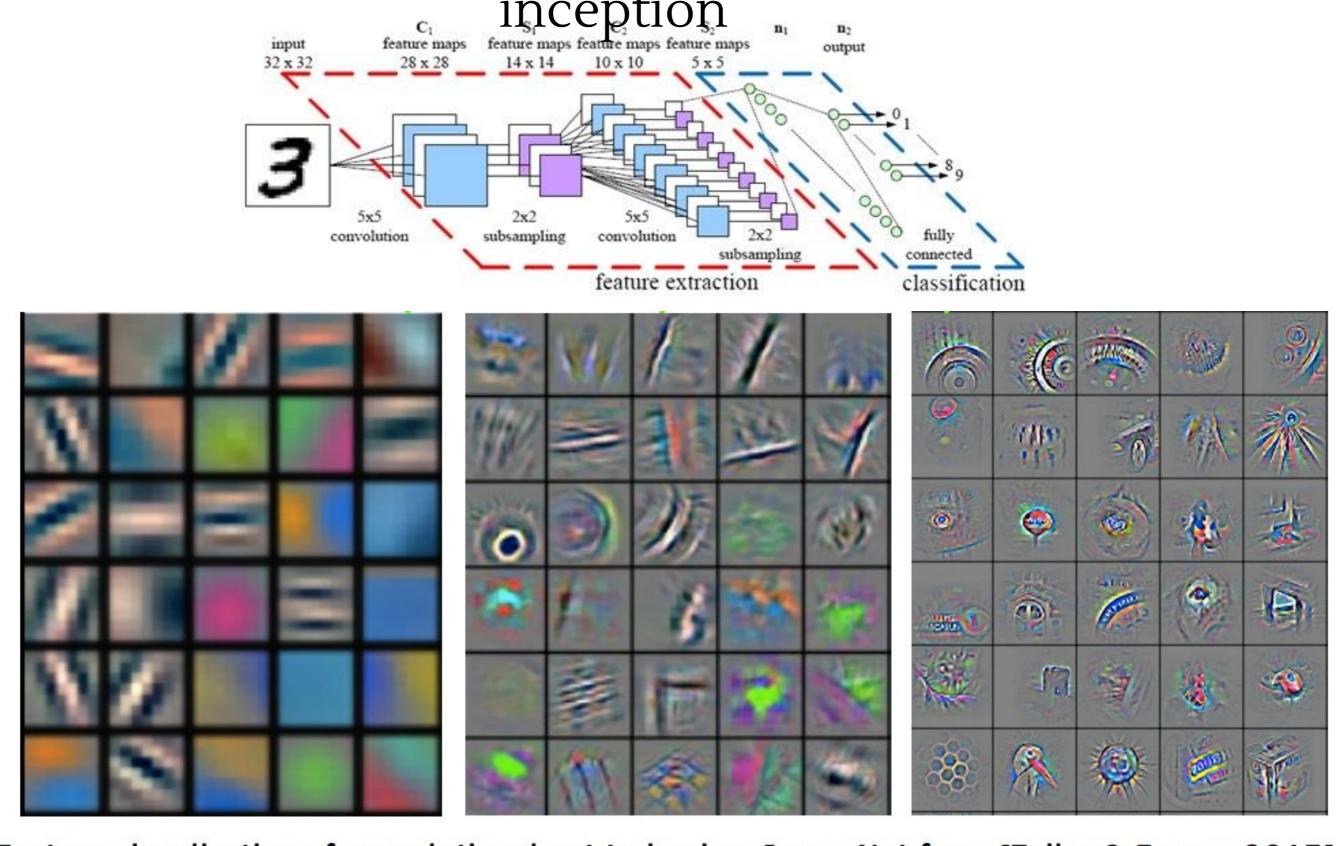
dPCA

Unobserved



Musall, Kaufman et al., 2018

Complex feature spaces: artiphysiology and



Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

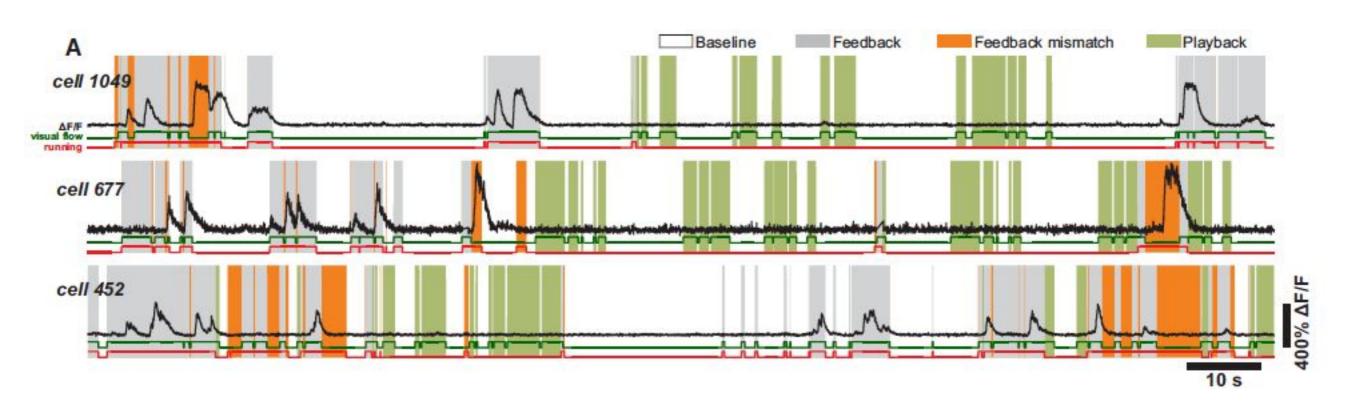
Top-down effects: signatures of "internal

models"

Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse

Georg B. Keller, 1,2,* Tobias Bonhoeffer, 1 and Mark Hübener 1,*

²Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

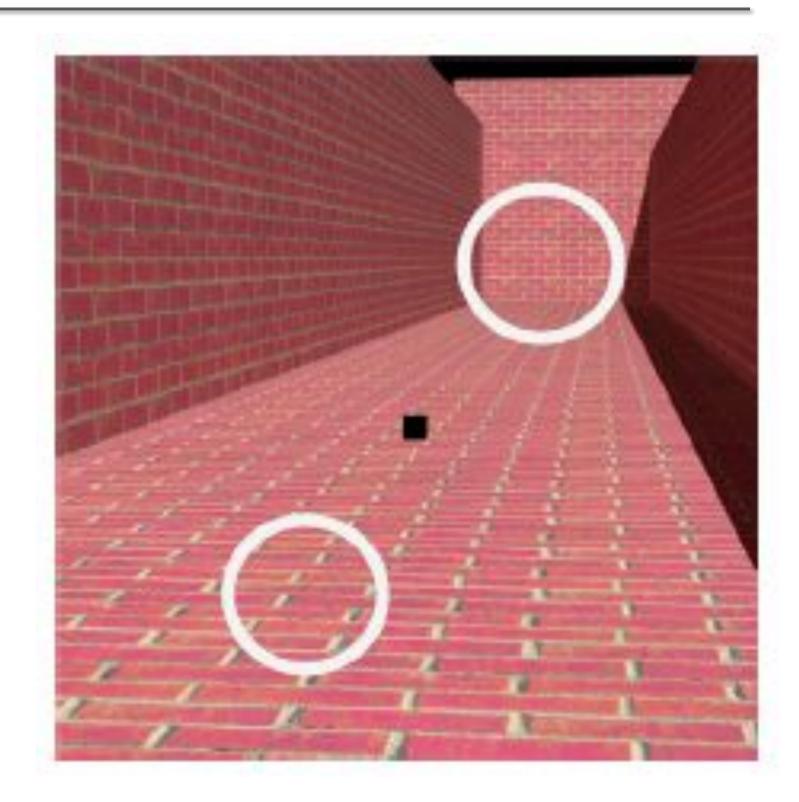


¹Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany

Internal models: top-down

effects

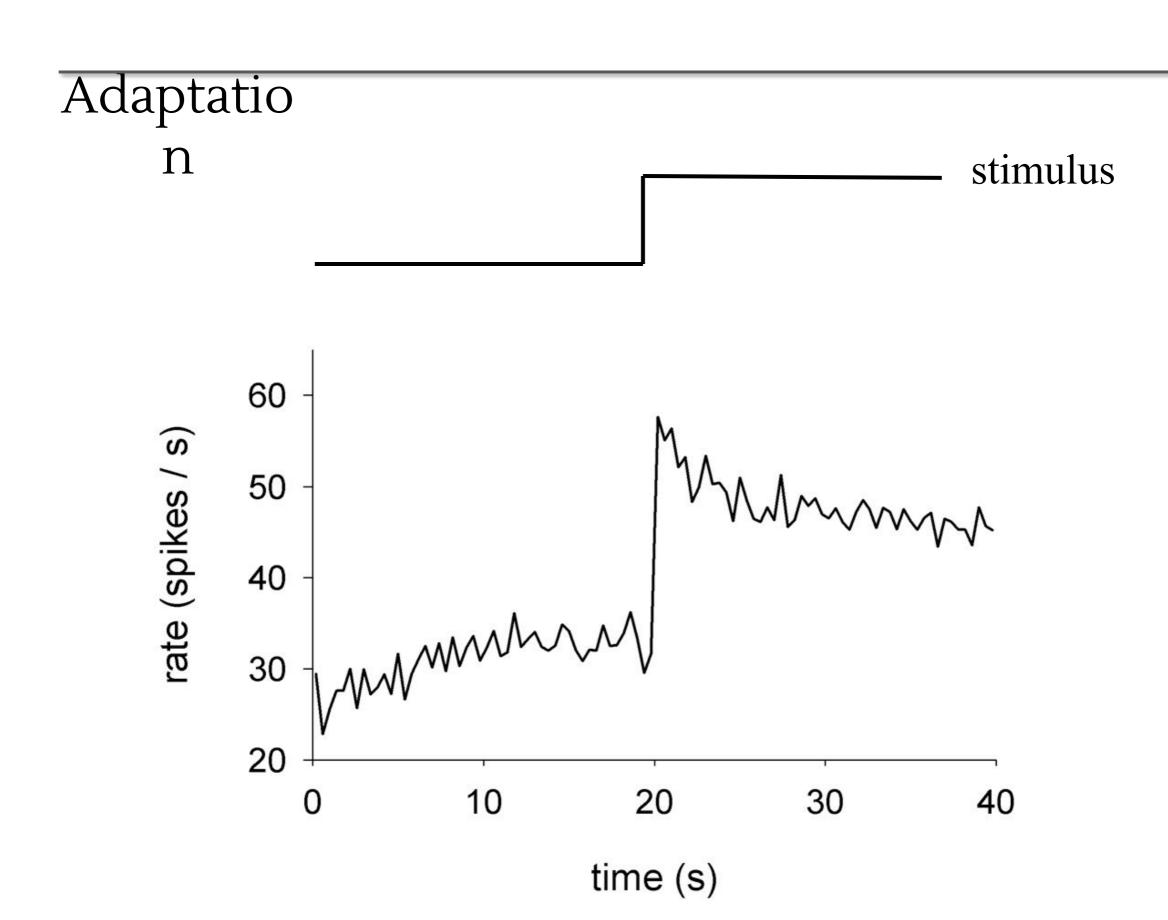
Scott Murray, Dan Kersten, Greg Horwitz



Ni et al., Curr. Biology,

Plan

- ✓ Neural coding
- ✓ Some basic methods for exploring coding
 - Coding is a moving target: adaptation

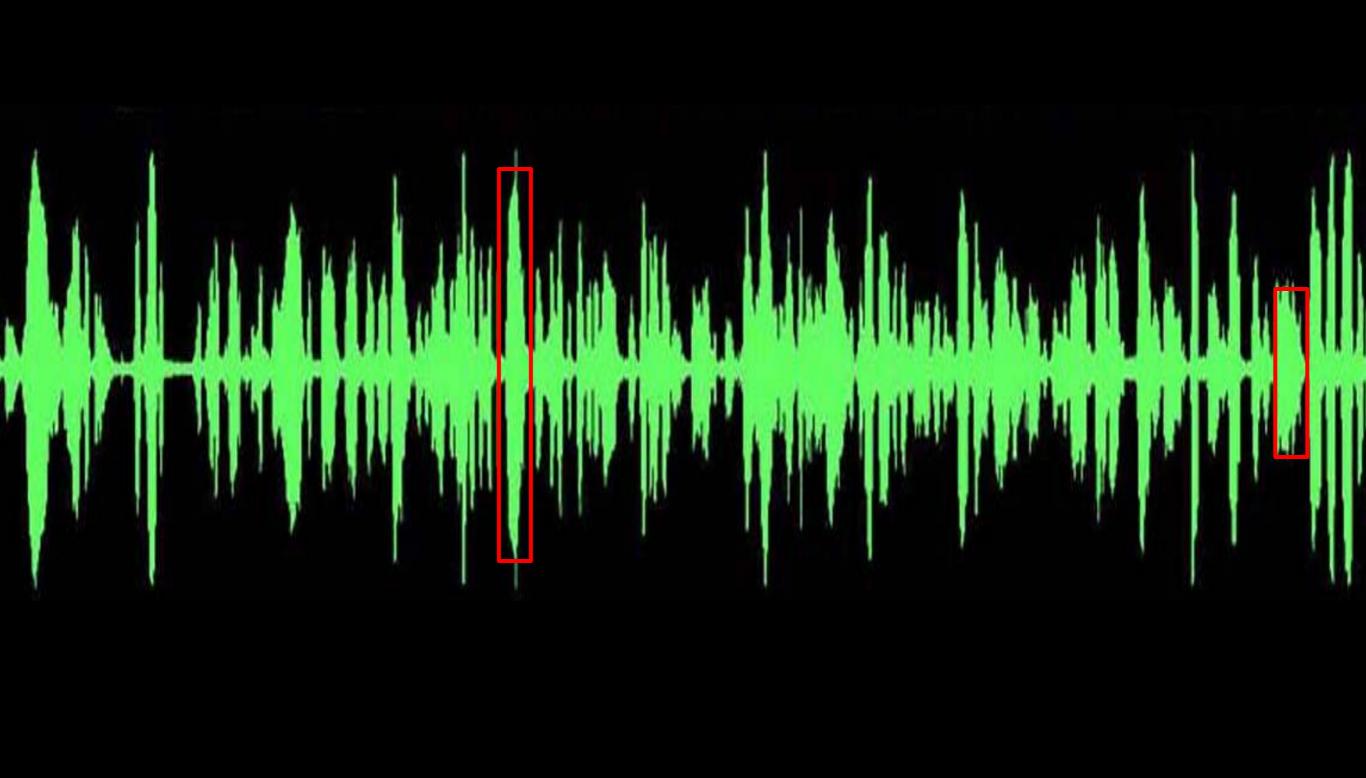


History dependence

- Ion channel dynamics
- Synaptic dynamics
- Network dynamics

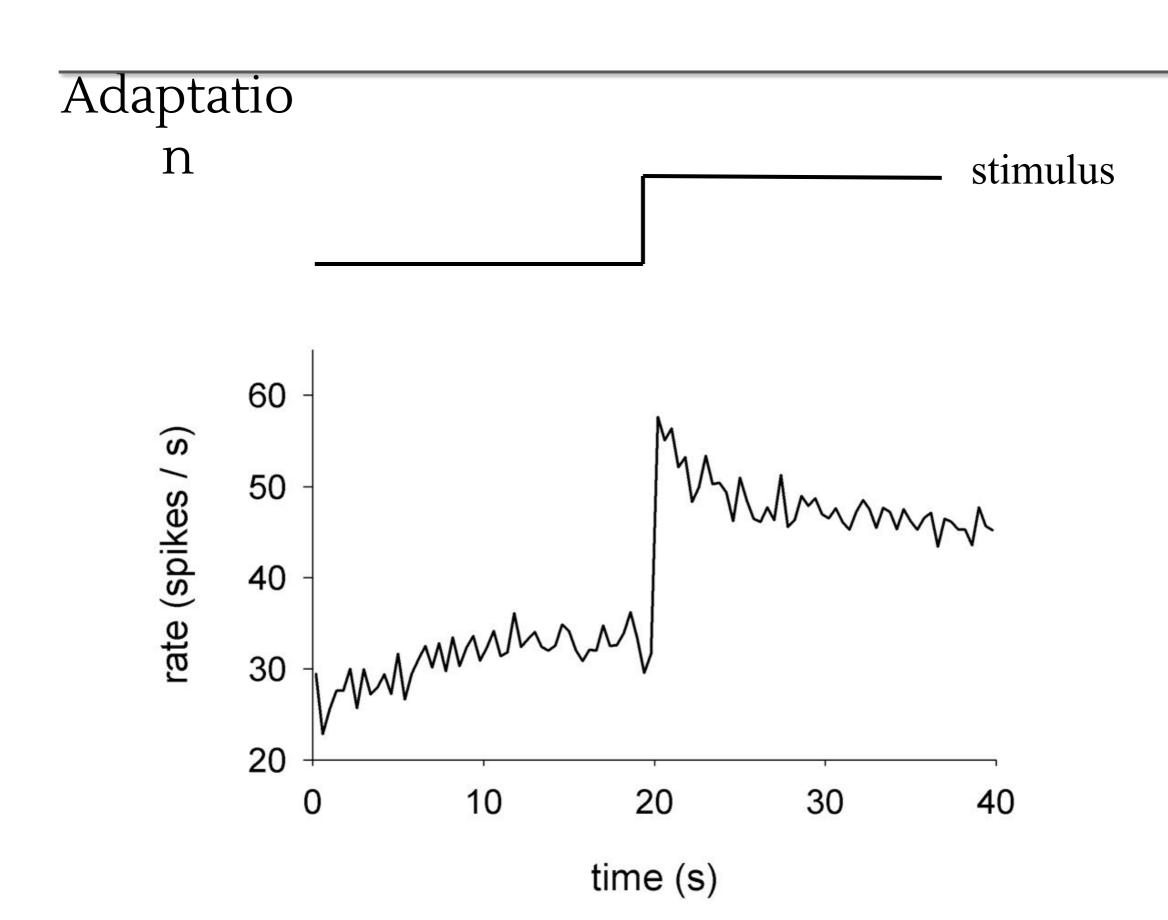
... forms of short term memory

... enrich computational properties of neurons

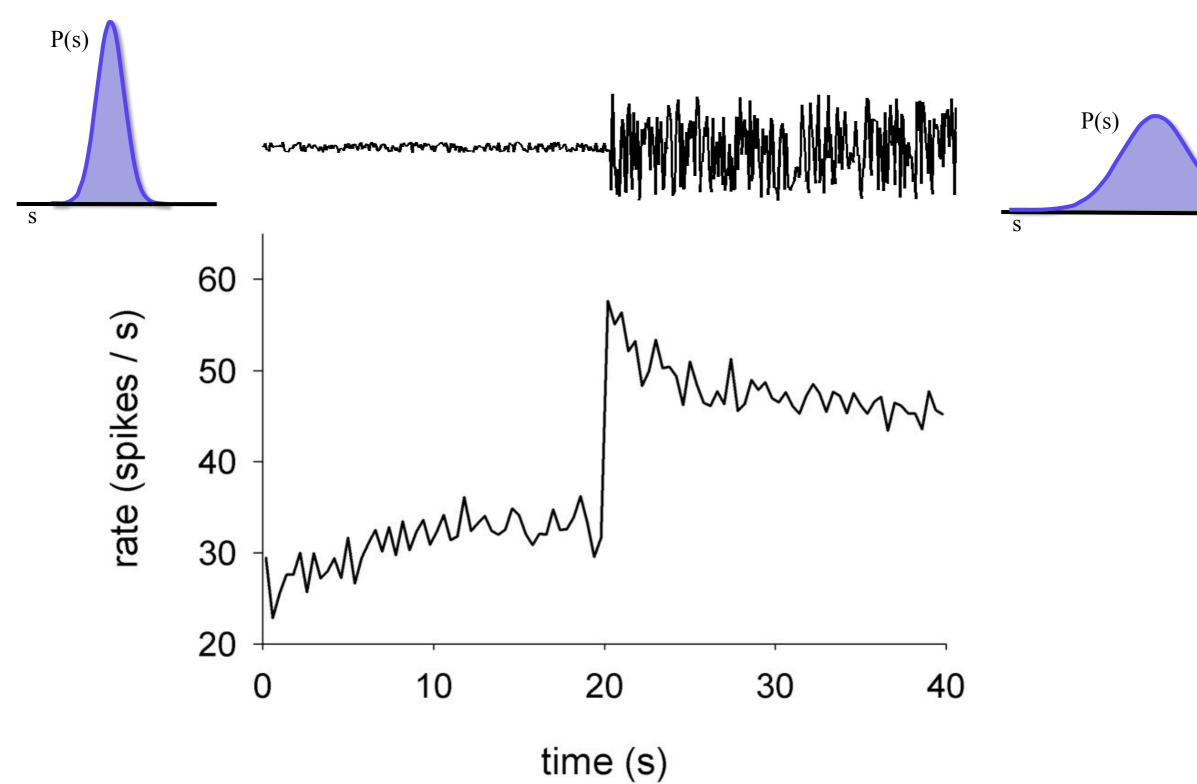


Encoding complex signals

How do neural systems maintain high fidelity representations of stimulus details in the face of fluctuating amplitudes?

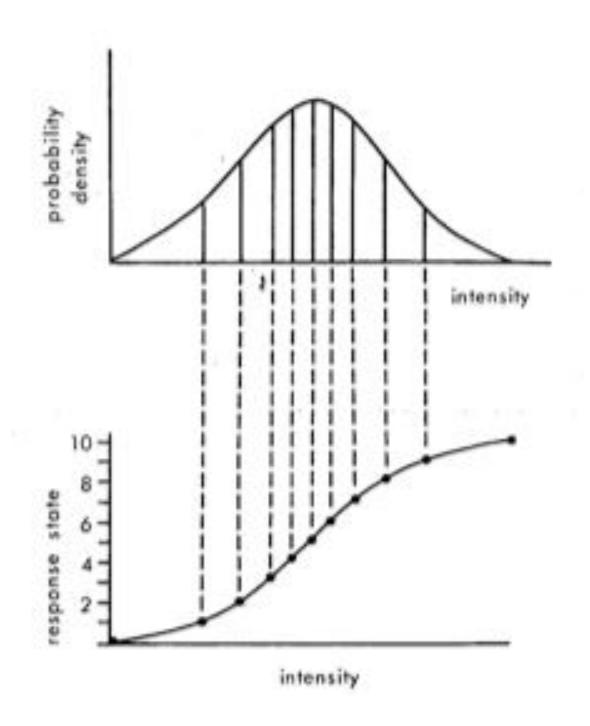


Adaptation to a change in stimulus distribution



Input/output curves depend on the stimulus

- Optimal coding: sensory systems should maximize information transmission
- Goal: efficient use of available response bandwidth
- Predicts dependence of I/O curves on input distribution

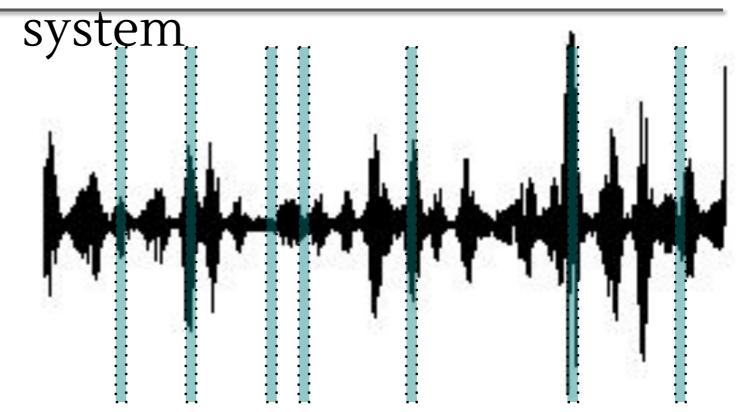


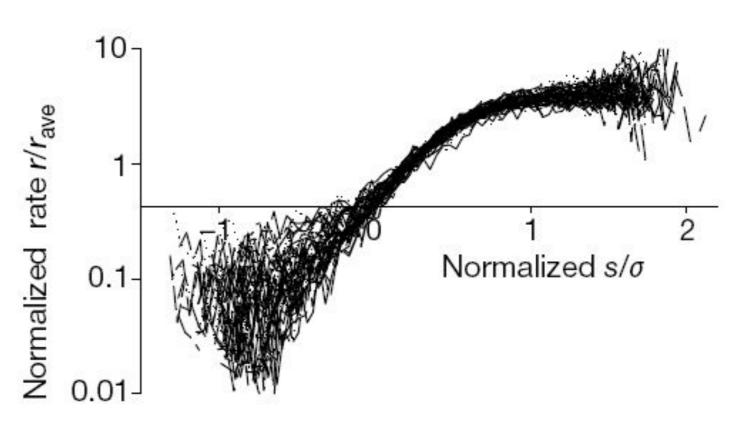
Dynamically optimal coding

What would an optimal neuron do?

Normalized stimulus representation in the fly visual

For fly neuron Hl, determine the input/output relations throughout the stimulus presentation

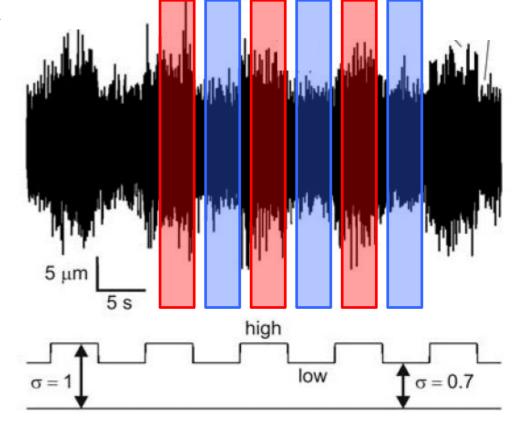




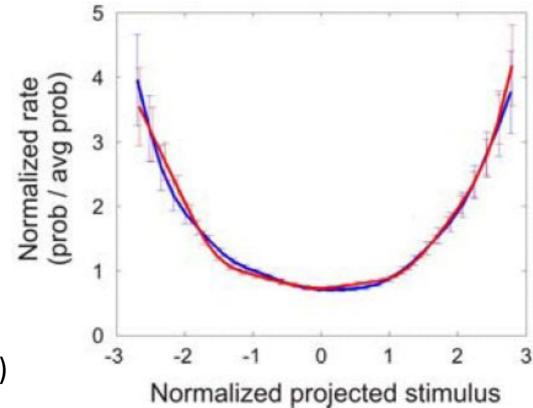
A. Fairhall, G. Lewen, R. R. de Ruyter and W. Bialek (2001)

Normalized stimulus representation in rat barrel

cortex



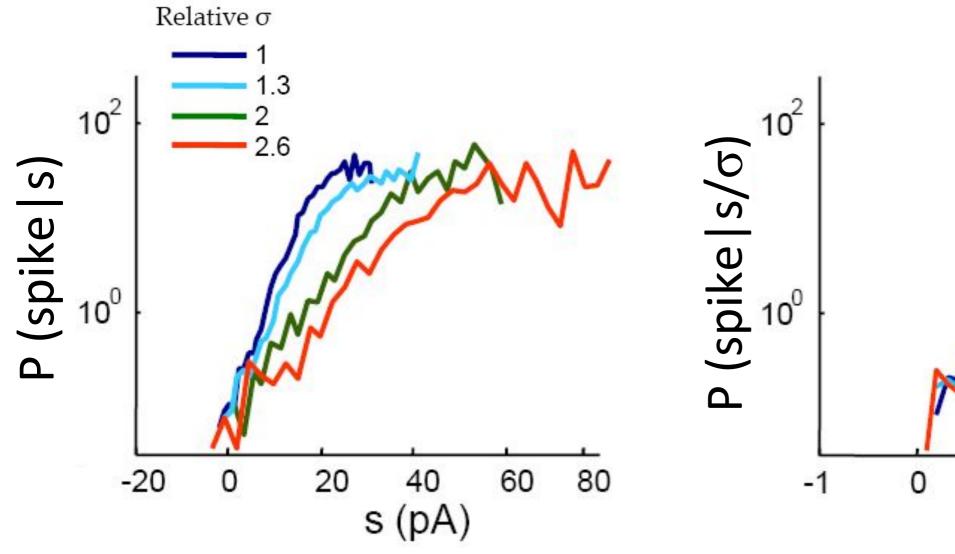
Extracellular *in vivo*recordings
of responses to whisker
motion
S1 barrel cortex in the
anesthetized rat

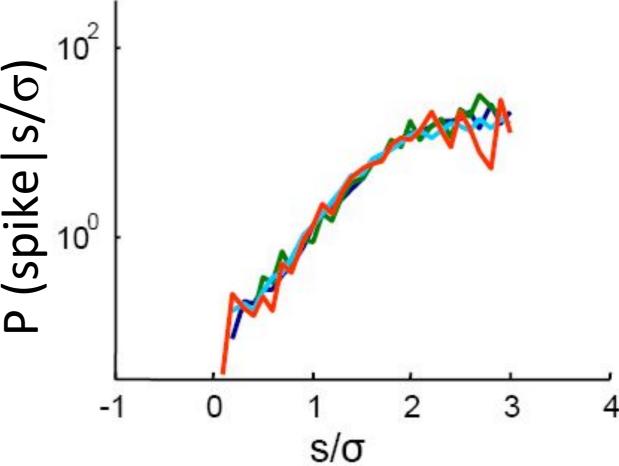


M. Maravall et al., PLoS Biology (2007)

Normalized input representation in single cortical

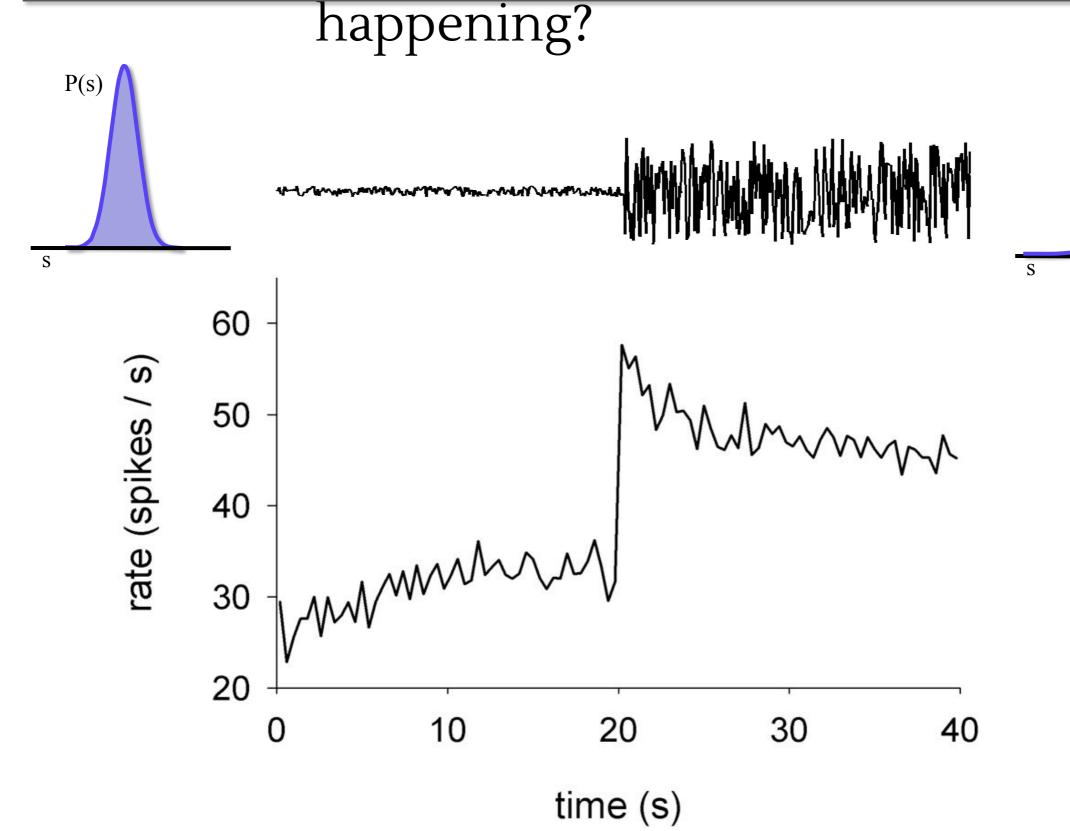
neurons





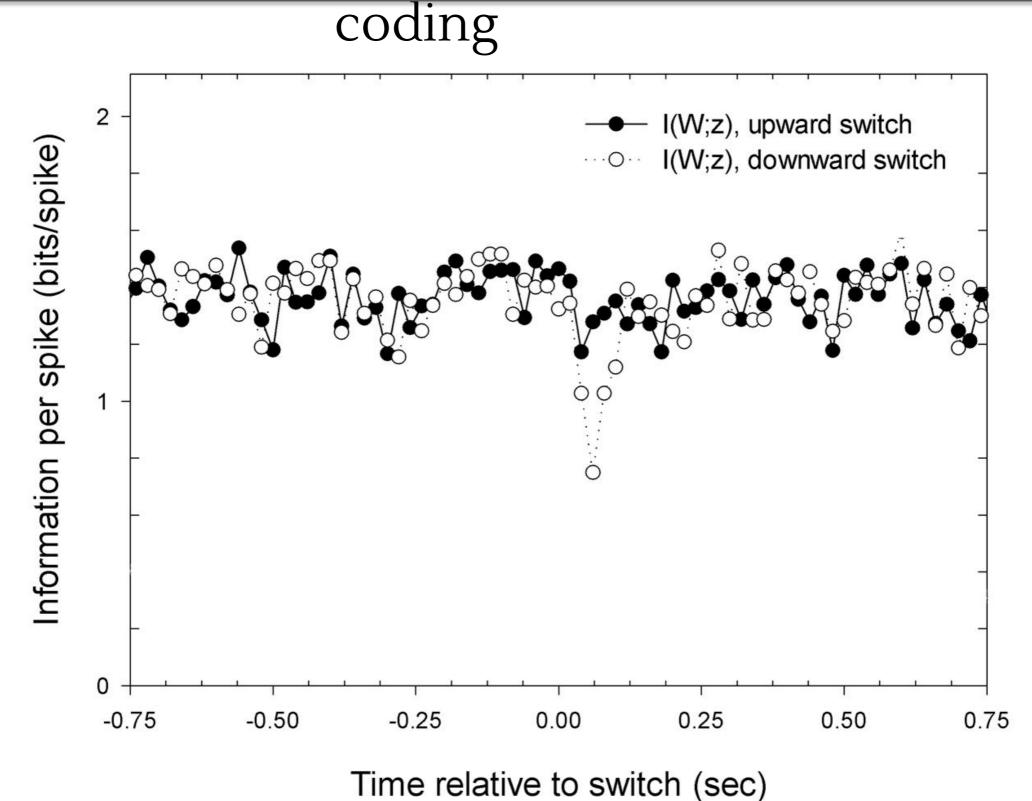
R. Mease, A. Fairhall and W. Moody

How rapidly is gain rescaling



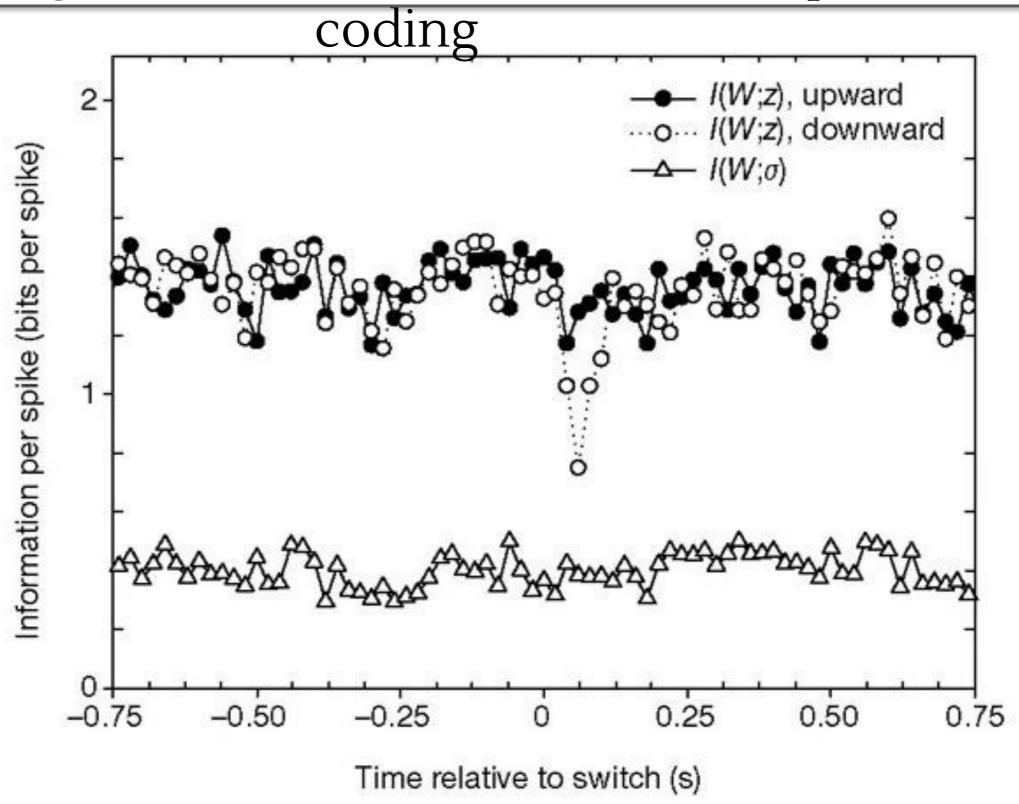
P(s)

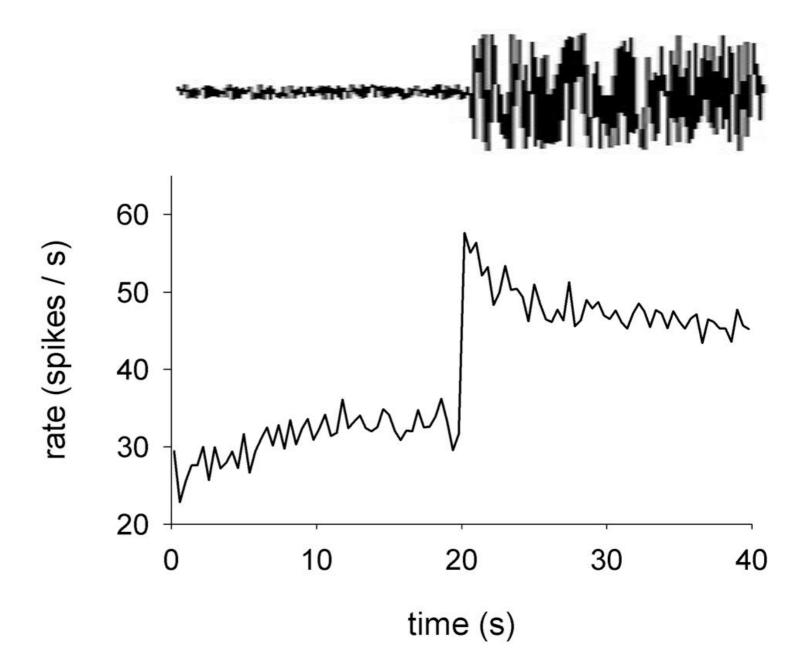
Using information to evaluate efficient

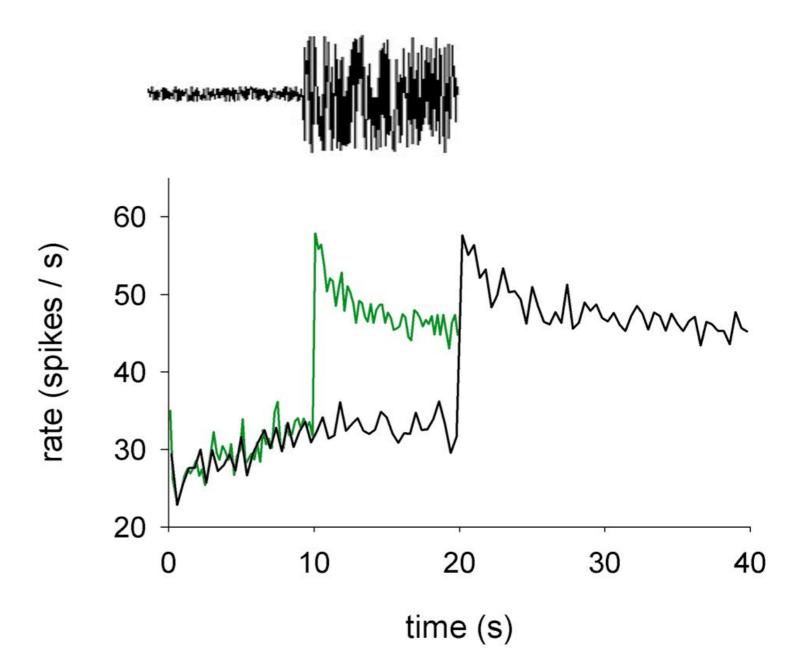


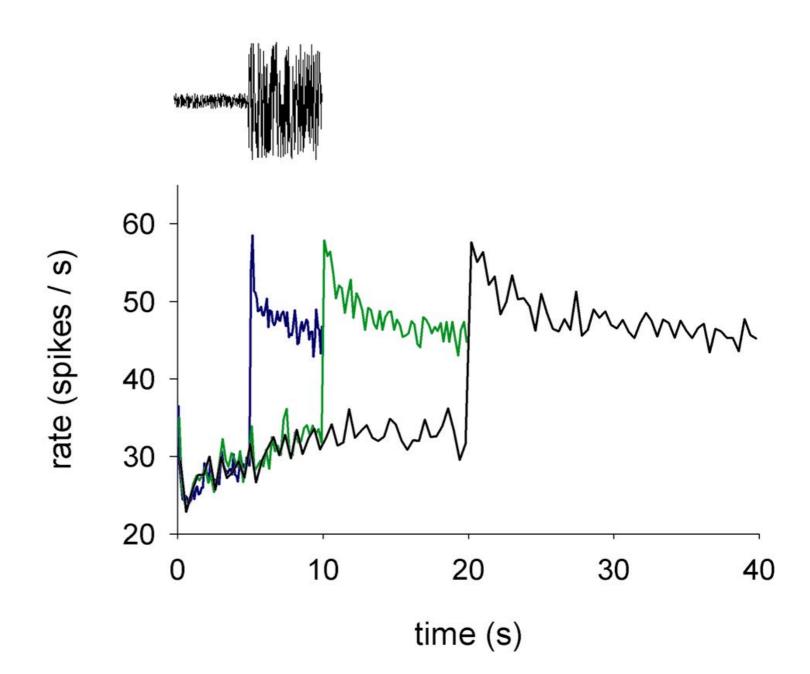
Does normalized coding lead to ambiguity?

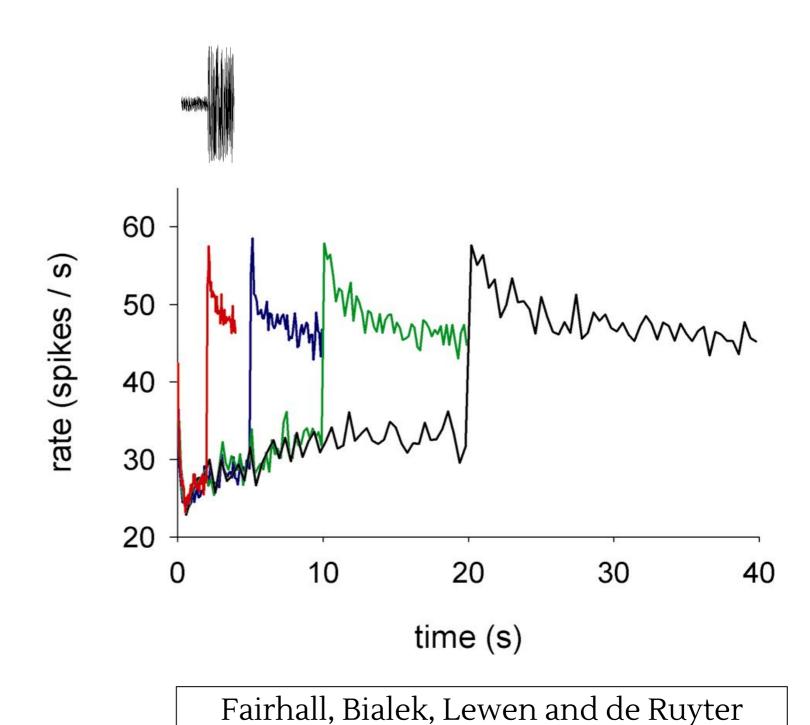
Using information to evaluate envelope









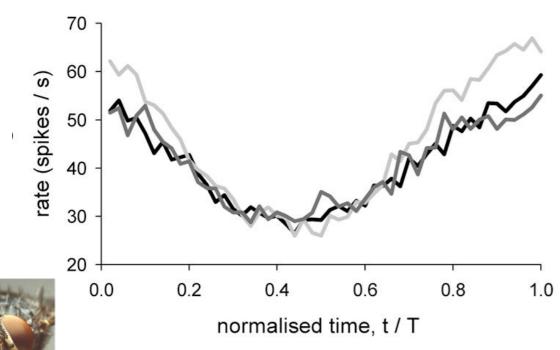


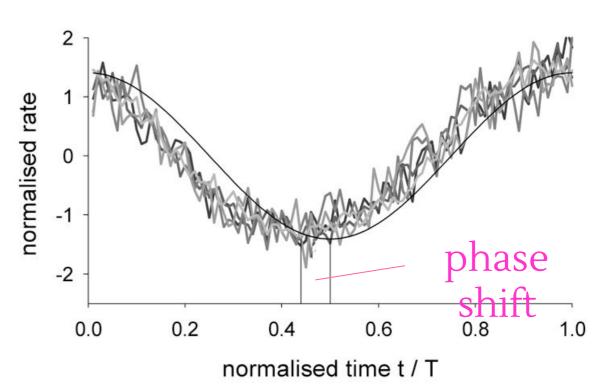
(2001)

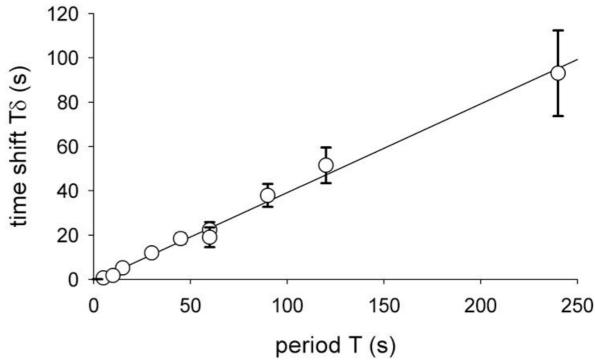
Finding the transfer

function

- Stimulate with a set of sine waves
- at different frequencies Variance envelope ~ exp[sin t/T]





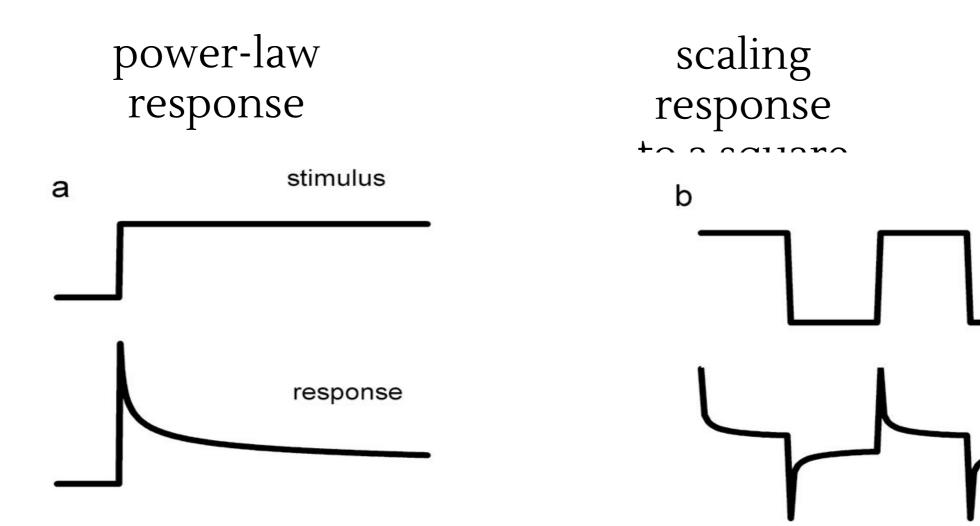


The transfer function: *fractional* differentiation

Fourier representation $(i\omega)^{\alpha}$: each frequency component scaled by ω^{α} and with phase shifted by a constant phase i^{α} $\alpha\pi/2$

stimulus

response



Fractional

differentiation From sinusoid experiments, find exponent α

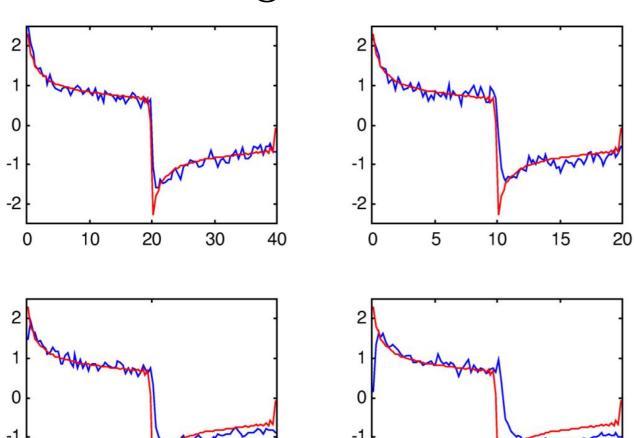
~ 0.2

2

3

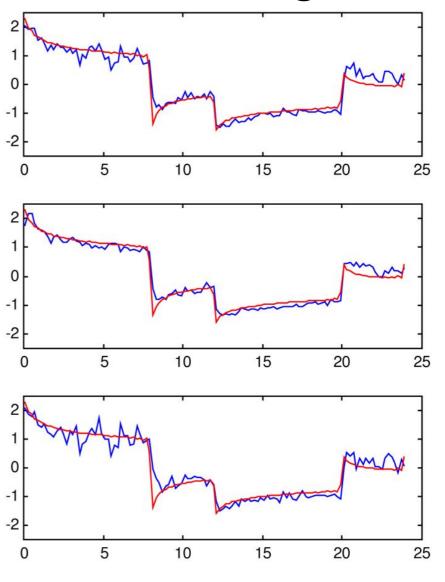
Two-state switching

-2



10

Three-state switching



Multiplexin

g

- Spike timing optimally encodes instantaneous fluctuations
- Spike rate encodes envelope (optimally?)

Common rules for temporal information processing in cortex?

S1 V1 **A1**

Ilan Lampl

Nicholas Priebe

Eli Nelken

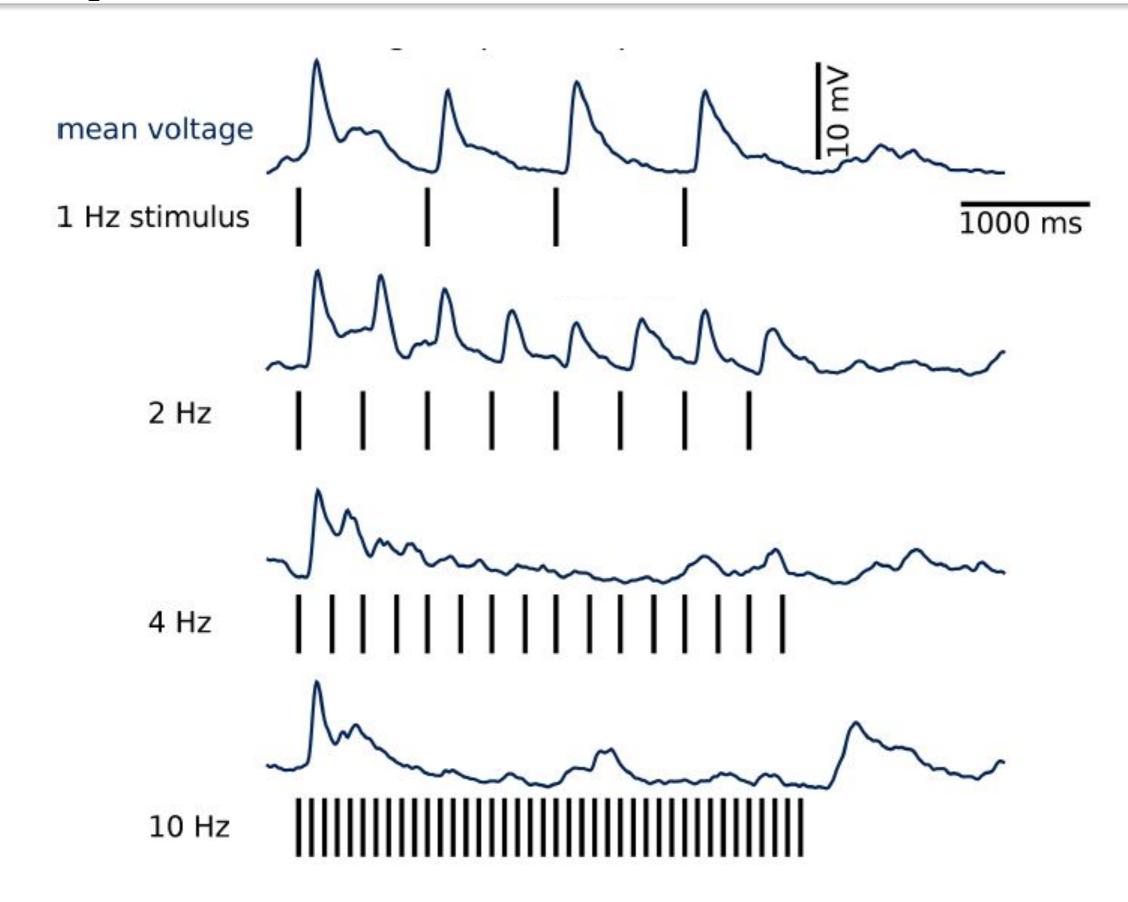
Kenneth Latimer

Common rules for information processing in cortex?

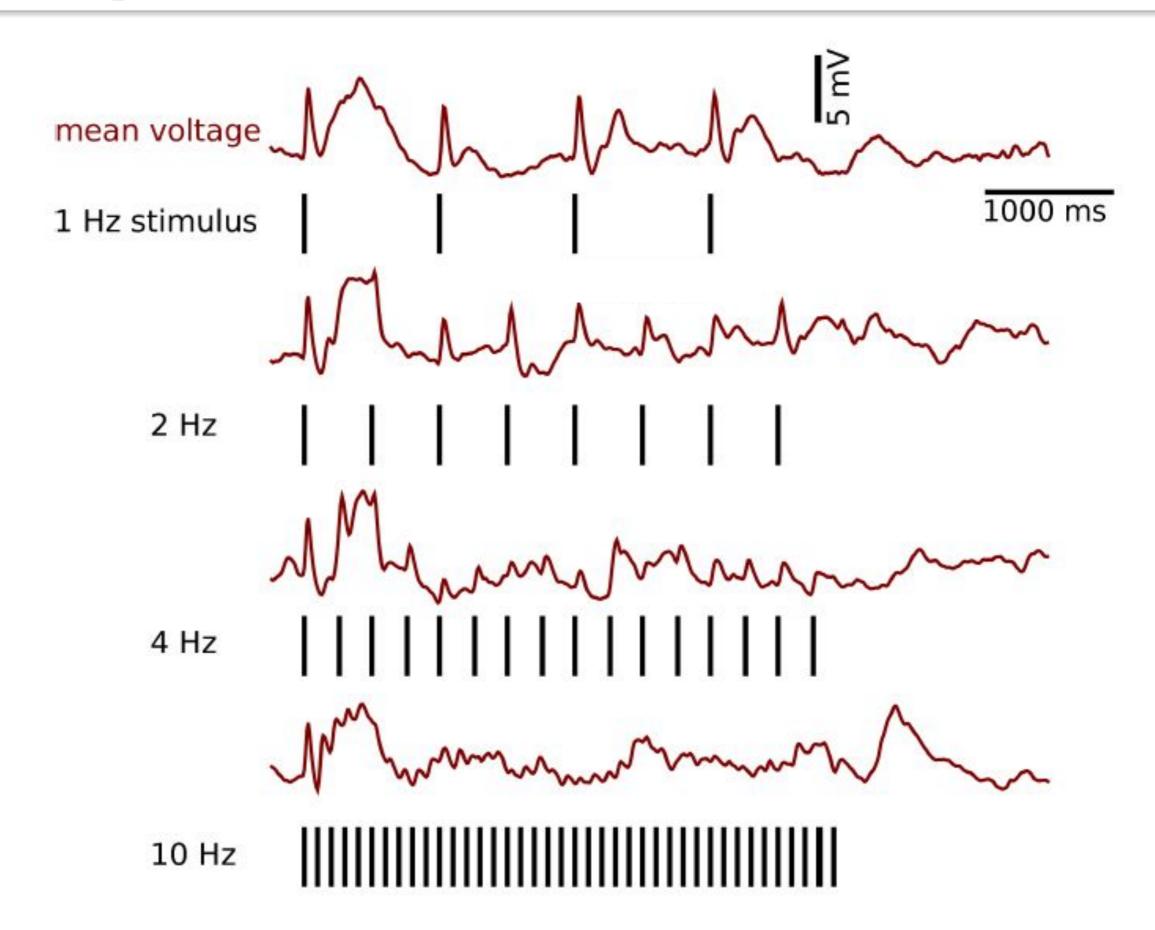
Common stimulus design: 20ms pulses

- Same mouse strain (C57BL/6)
- Same anaesthesia (urethane and chlorproxithene)
- Whole cell current clamp recording

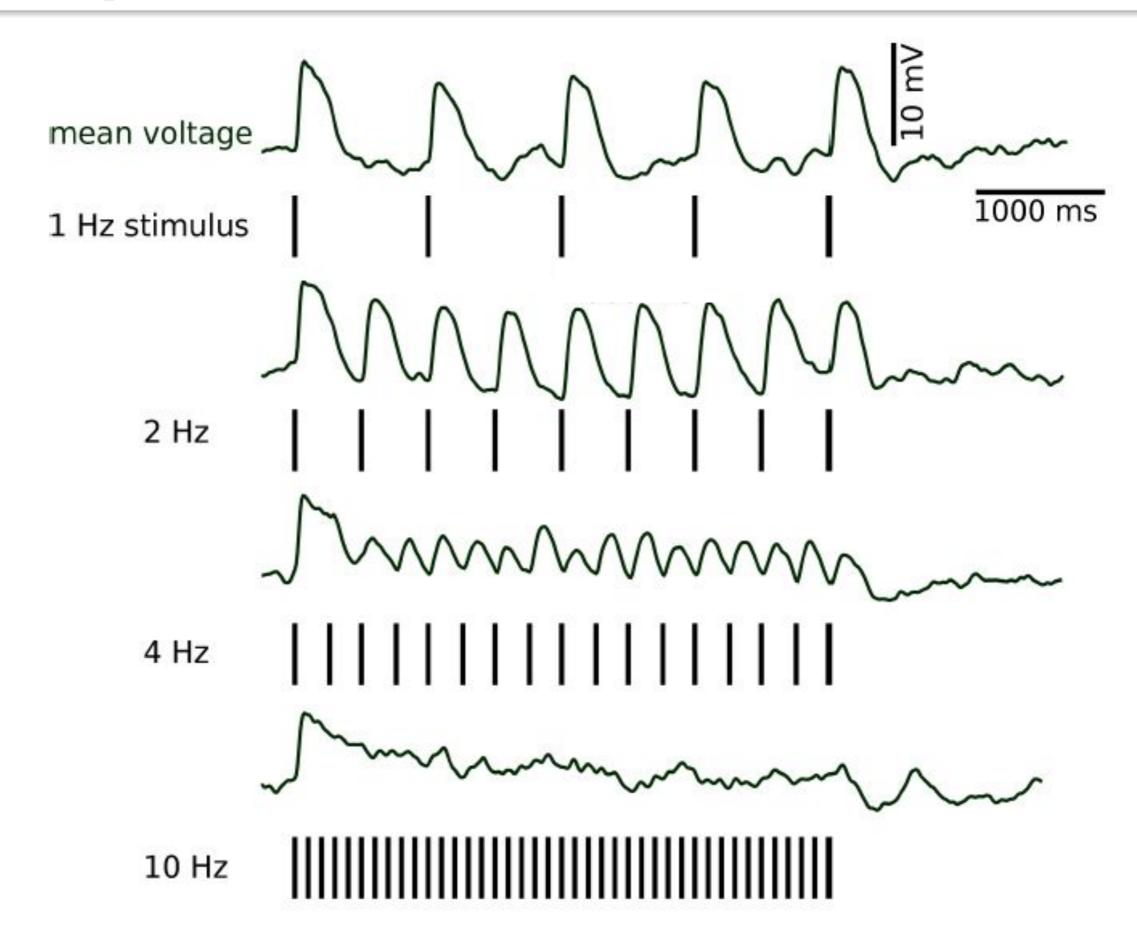
Pulse responses in V1



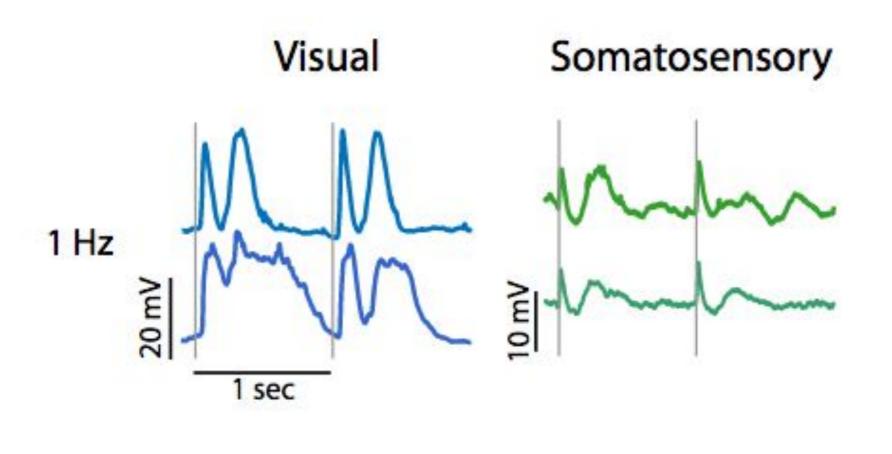
Pulse responses in S1

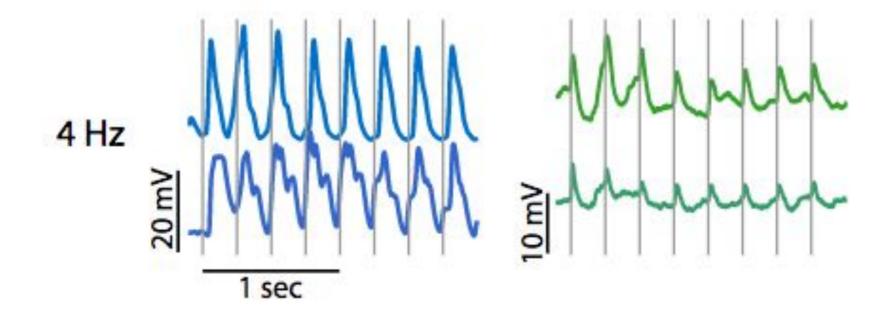


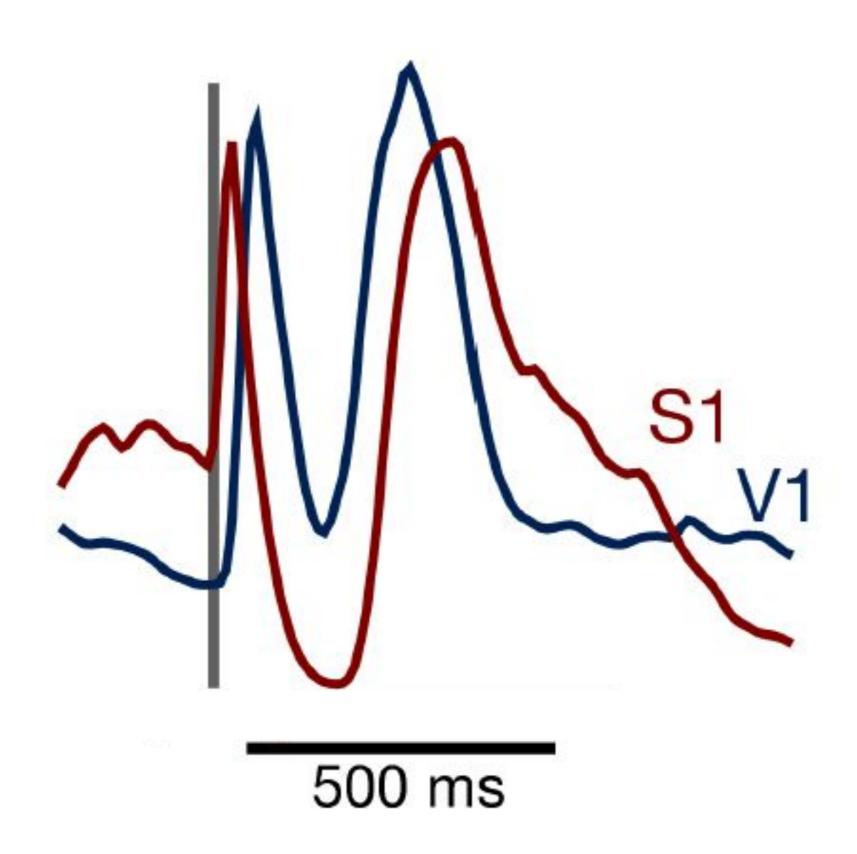
Pulse responses in A1



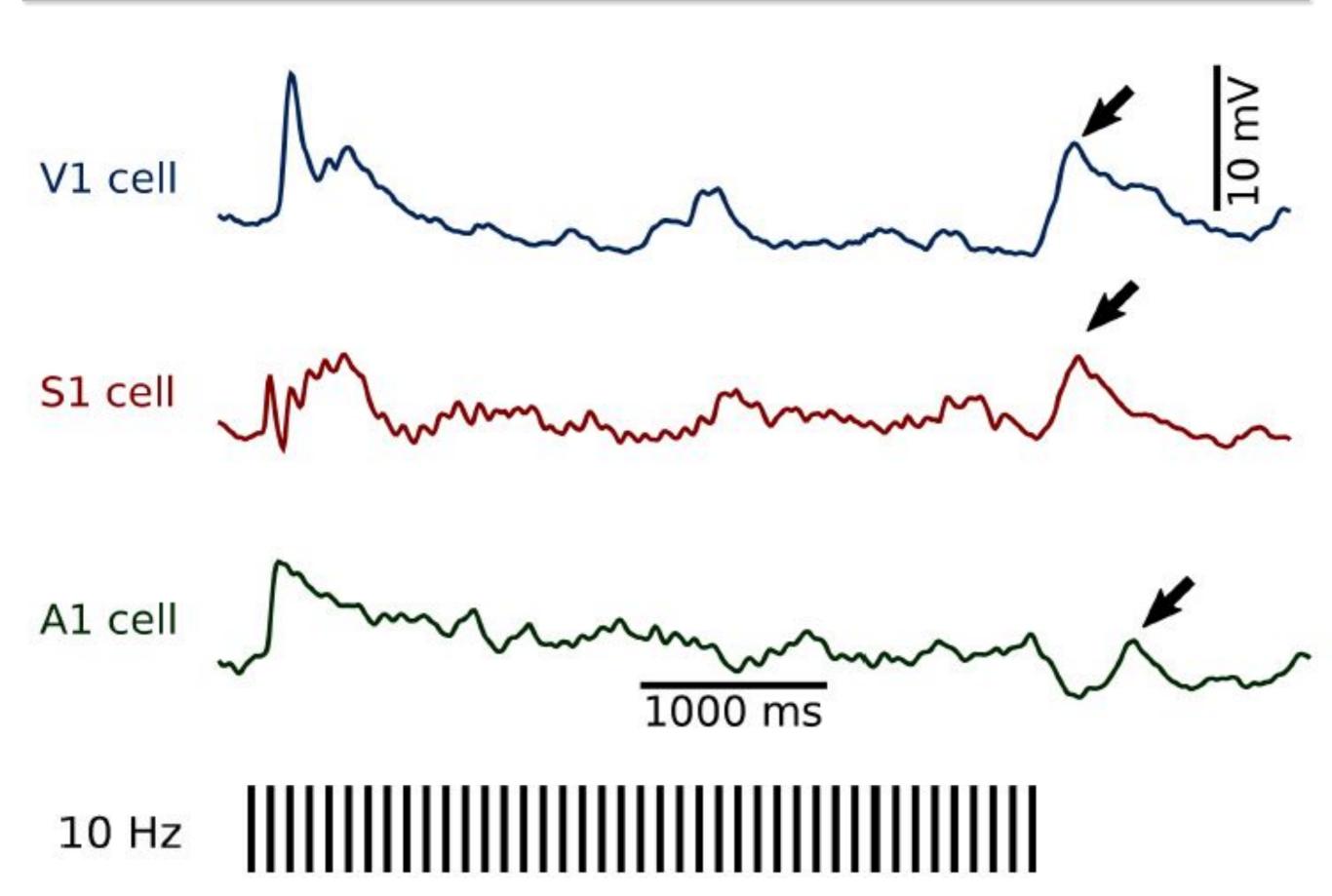
Complex single-pulse response in V1 and S1



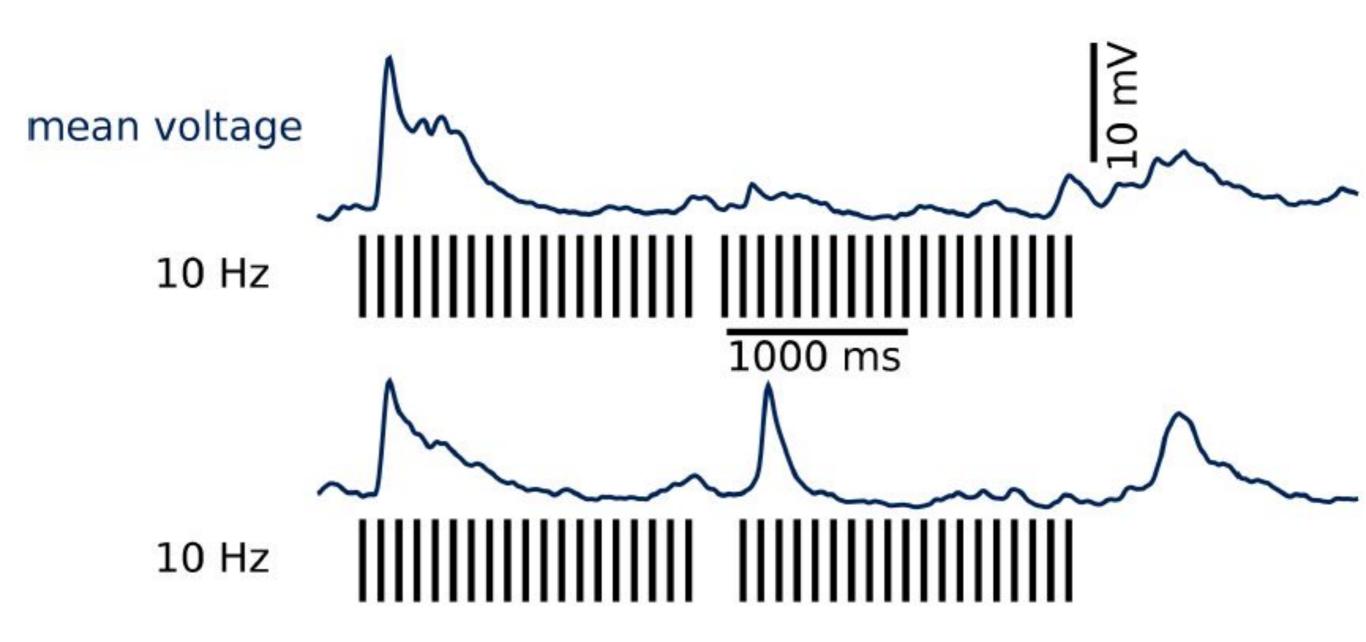




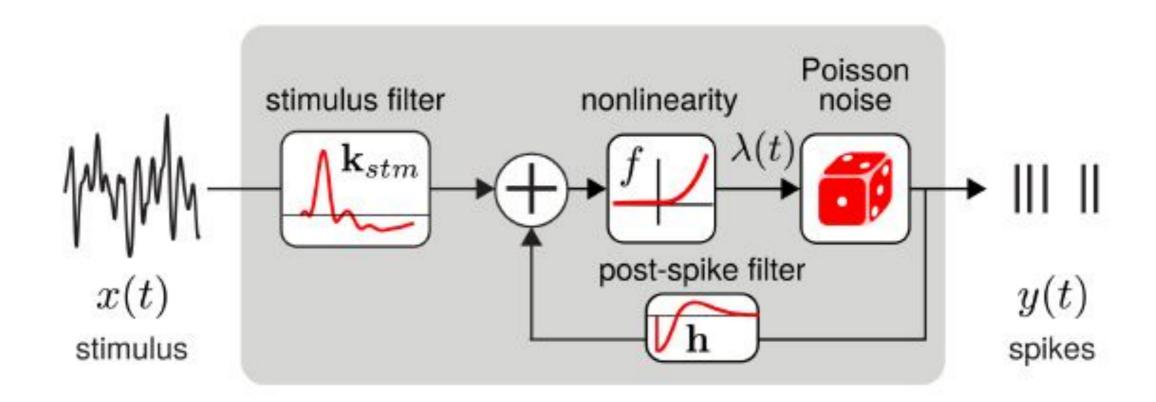
Temporal pattern detection: offset response



Omitted stimulus response

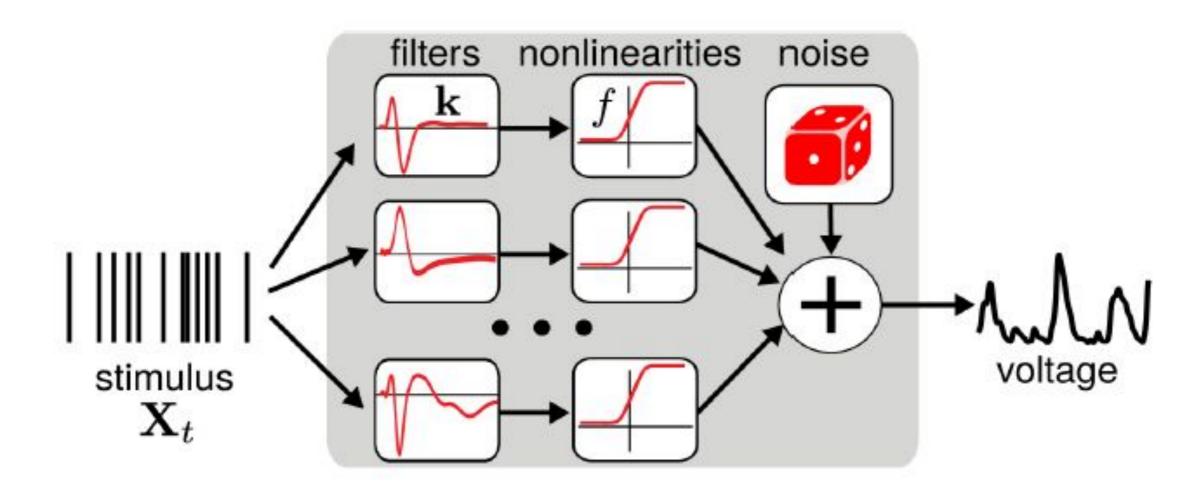


First pass approach: model



Fit model with Poisson inputs

Extended GLM models

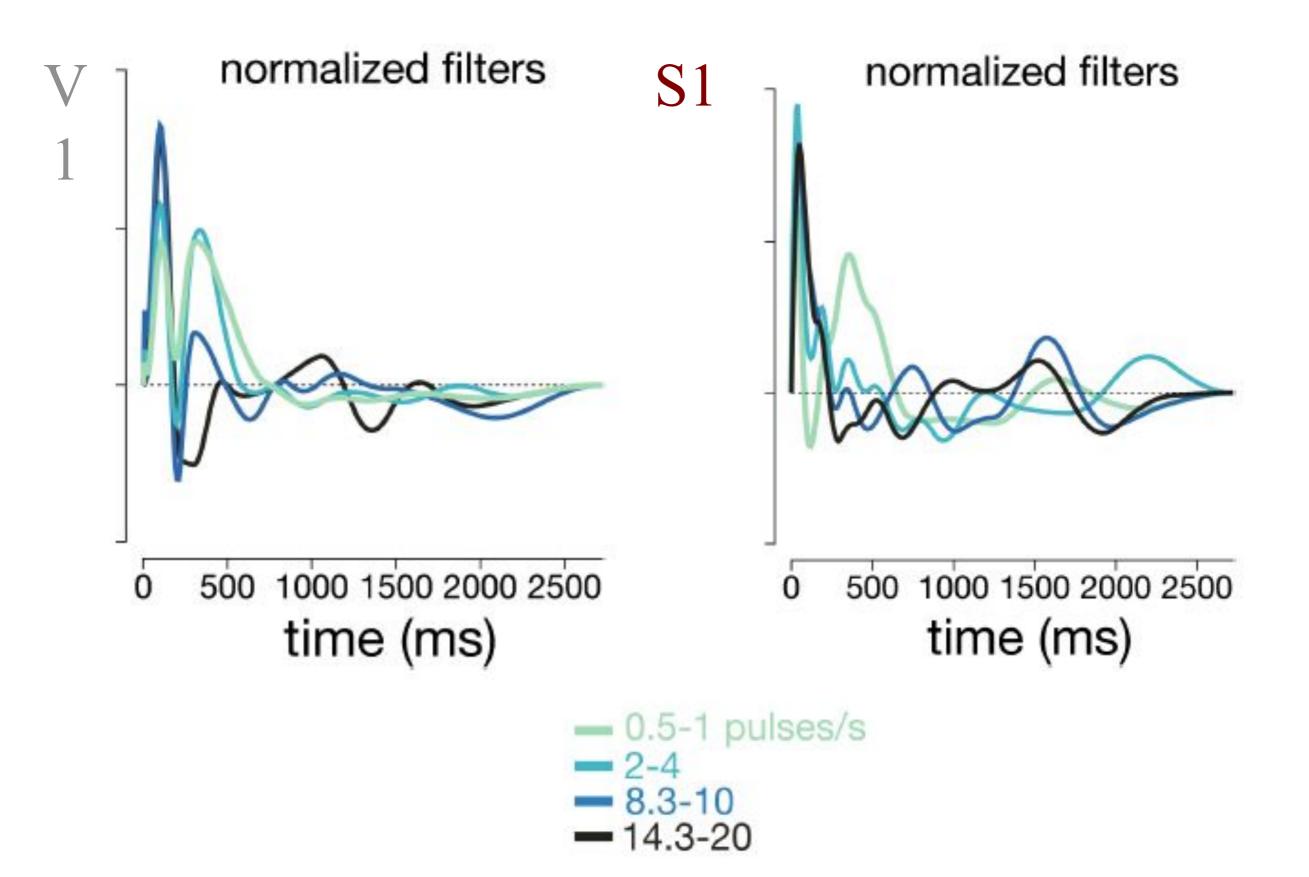


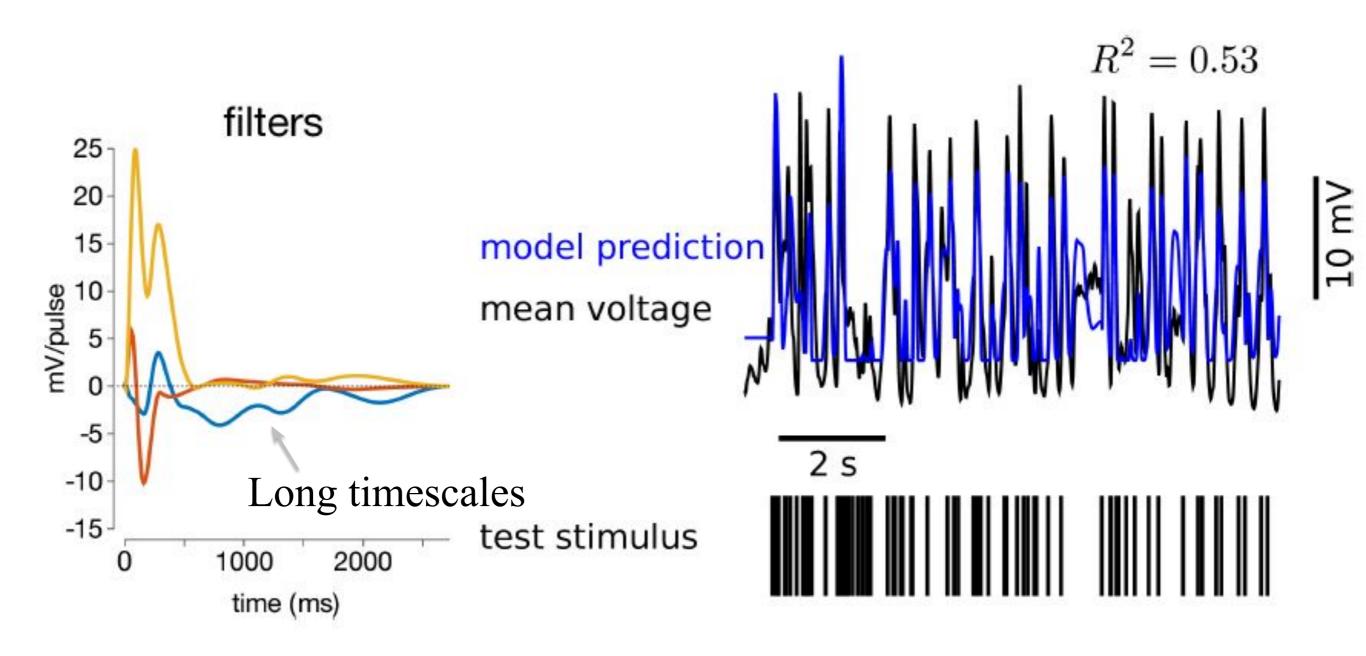
$$V_t = \sum_{i=1}^{N} f\left(\mathbf{X}_t^{\top} \mathbf{k}_i\right) + b + \epsilon_t, \qquad \epsilon_t \sim \mathcal{N}\left(0, \sigma^2\right)$$

"subunits"

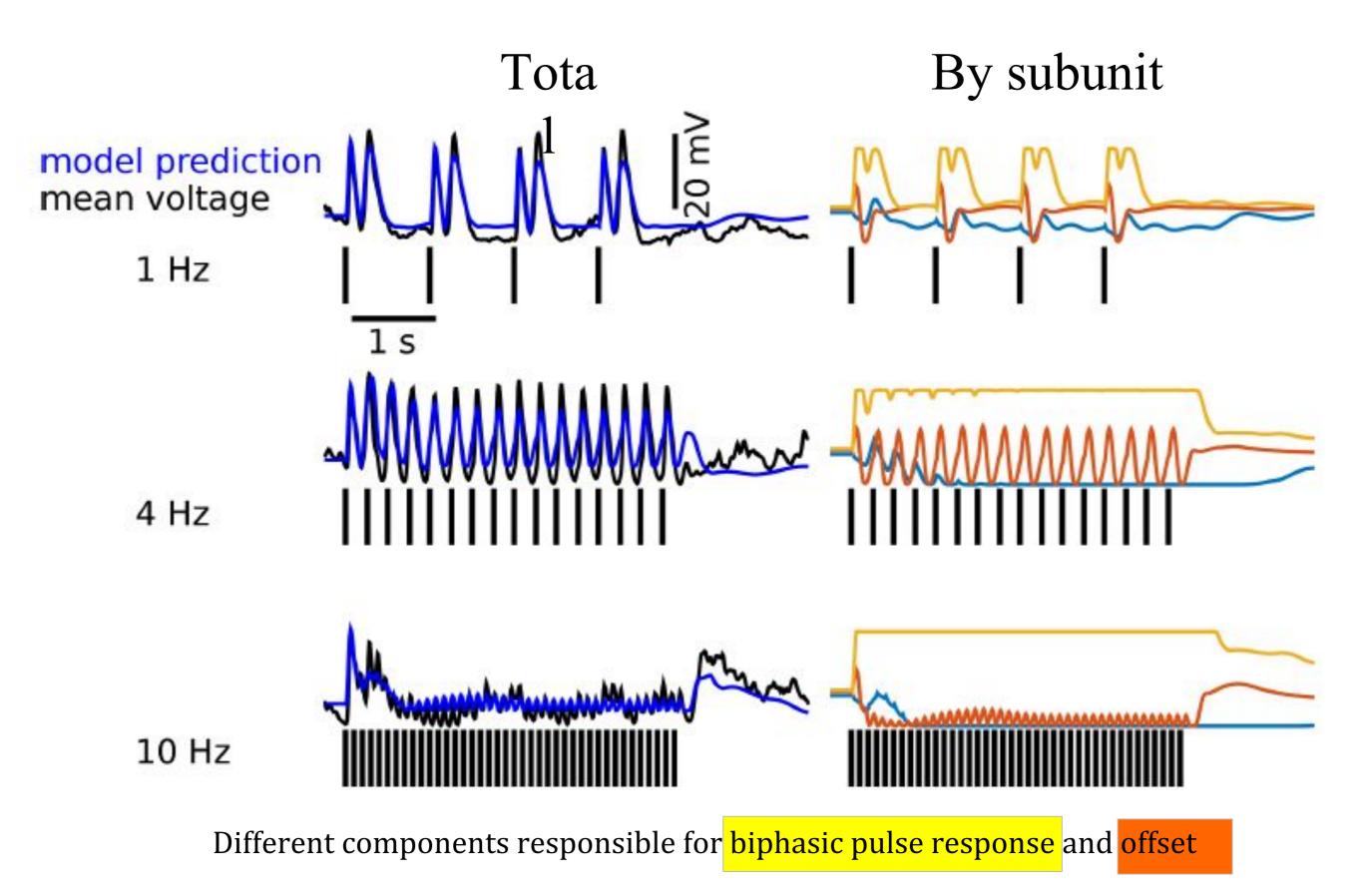
Latimer and Pillow, Butts

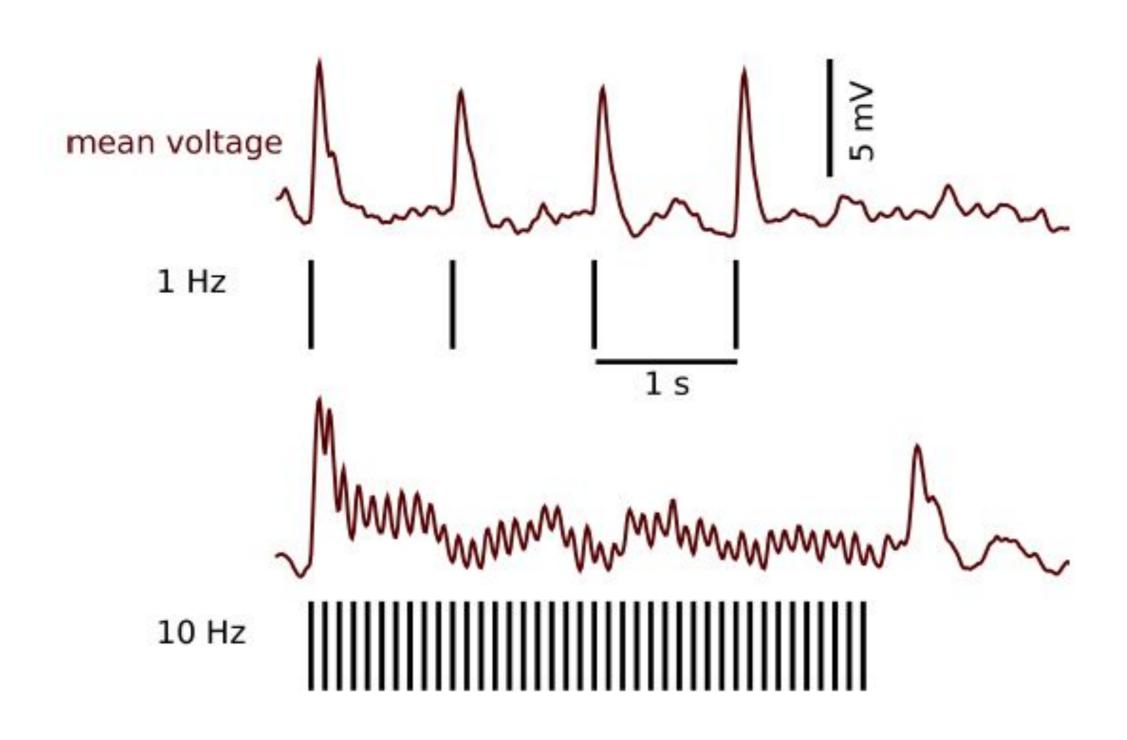
Filters depend on stimulus frequency



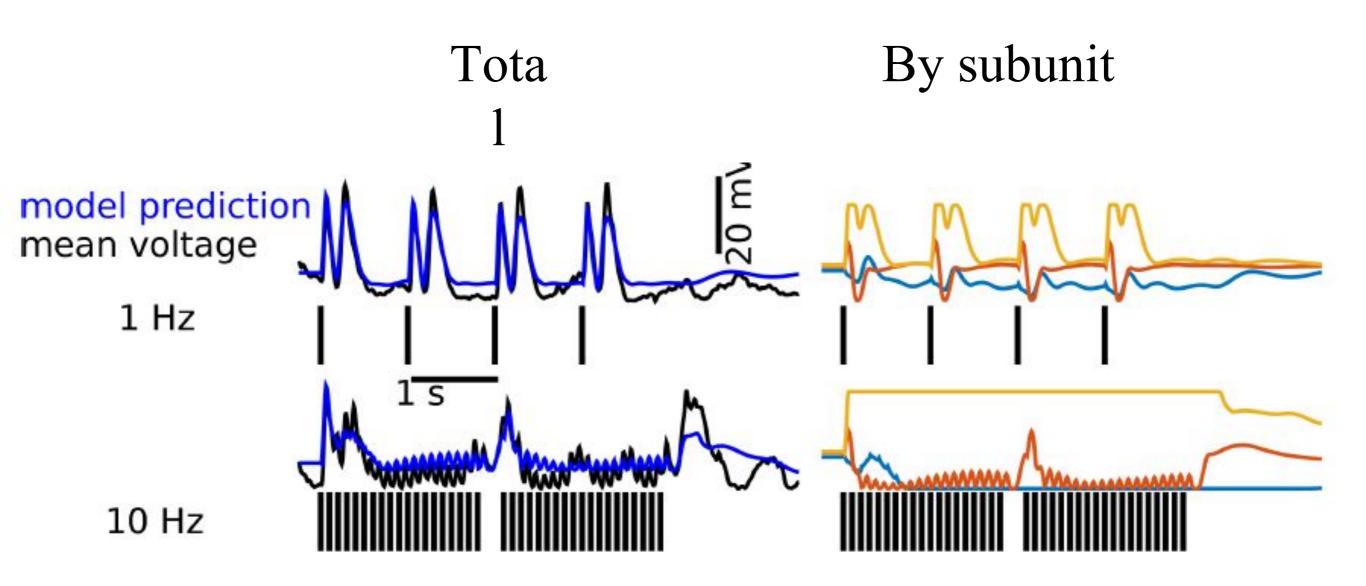


Use model to predict response to periodic stimulus

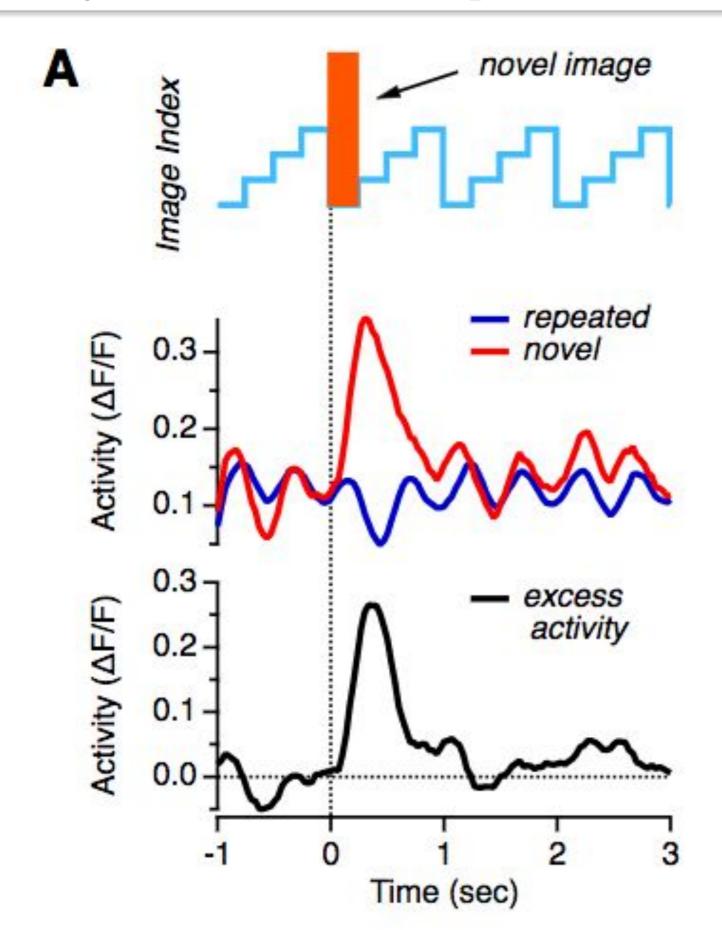




Offset subunit captures omitted response



Novelty detection in sequences



Jomann, .., Tank, Berry, bioarxiv

Subsummary

- Complex multiple timescale dynamics: a substrate for pattern detection
- Captured by relatively simple filter model; requires several filters
- Timescale and some feature differences between different cortical areas
- Some responses may be inherited from thalamus; some thalamocortical
- Little differentiation in response by cell type: differences in circuit
- Caveat: all anaesthetized!

Capturing adaptation

$$\frac{d\mathbf{r}}{dt} = F(\mathbf{r}, \mathbf{s}) \qquad \qquad \mathbf{r}(t) = f(\mathbf{s}_{\tau}(t))$$

With adaptation, apply a separation of timescales:

$$r(t) = f(s_{\tau}(t), \theta_T(t))$$
 where $\theta_T(t) = g(s_T(t))$

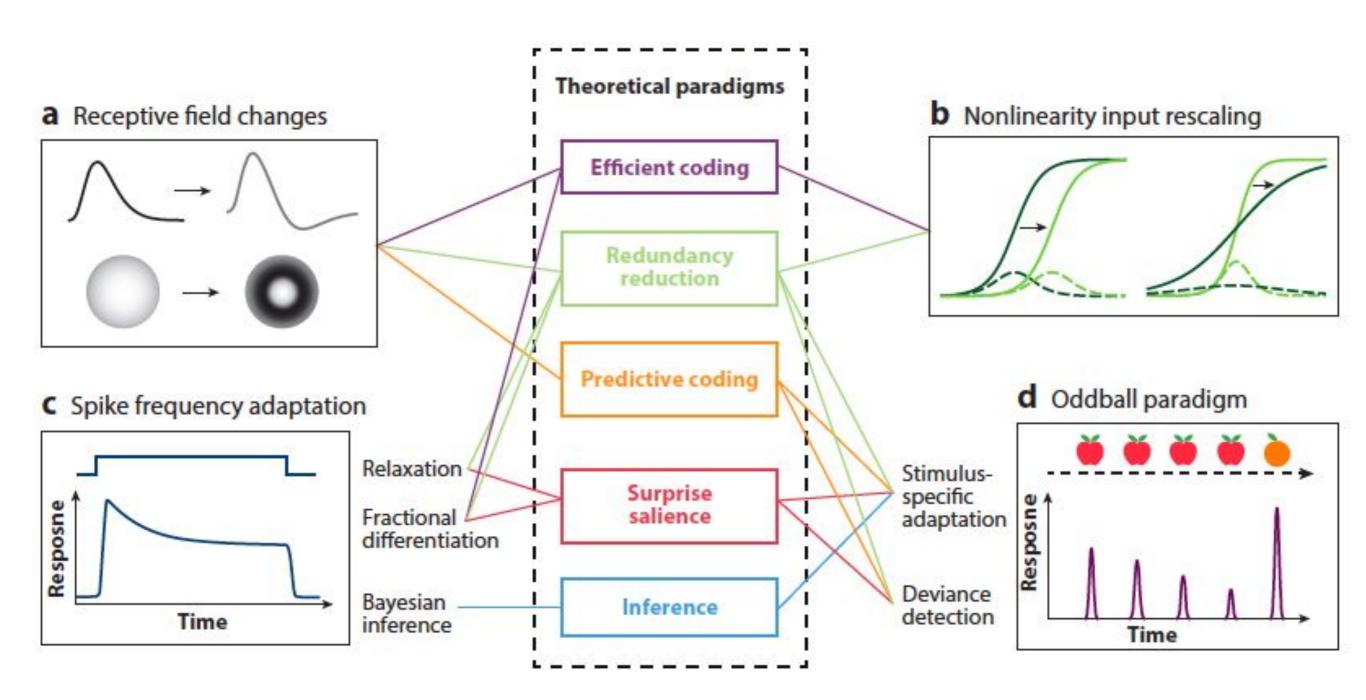
E.g. in fly H1:

$$r(t) = R(\sigma(t))f(s_{\tau}(t)/\sigma(t))$$

However, likely need to consider:

$$r(t) = h(s_T(t))$$

Theoretical paradigms for adaptation



Summary

- Sensory systems use common strategies to optimally represent stimulus information in dynamically varying environments
- Can capture multiple timescales of responses in statistical models
- Adaptation can be thought of as encoding longer timescale temporal properties
- Can resolve ambiguities by considering temporally multiplexed code
- Low-level biological properties confer computational richnes