

Sources of Continuous GW Radiation: Implications to Physics and Astrophysics

LIGO Science Workshop, ICTS-TIFR, Bengaluru 27–28 October, 2023

Arunava Mukherjee DAE-Saha Institute of Nuclear Physics (SINP), HBNI

LIGO-G2302108-v3

CW Signals: a Few Scientific Motivations

How is it different from CBC signals?

- Compact binary coalescence (CBC) signals have been proved an excellent tool:
 - To test of general relativity (TGR)

B. P. Abbott, et al. PRL, 116, Issue 22, id.221101 (2016);
B. P. Abbott, et al. PRL, 123, Issue 1, id.011102 (2019);
B. P. Abbott, et al. PRD, 103, Issue 12, id.122002 (2021)

• To constrain dense matter physics under extreme conditions, e.g., NS EOS

B. P. Abbott, et al. PRL, 119, Issue 16, id.161101 (2017);
B. P. Abbott, et al. PRL, 121, Issue 16, id.161101 (2018);
B. P. Abbott, et al. PRX, 9, Issue 1, id.011001 (2019)

- CW signal is **persistent**, as opposed to transient CBC signals
- Useful for **precision tests** of certain aspects of TGR and Extreme Matter Physics
- **Reliability** and **reproducibility** of results
- Assured improvements in science results in future with ever increasing SNR

Continuous Gravitational Wave Radiations

Sources and Mechanisms

(Courtesy of C. Hanna and B. Owen, Penn State)

Source: https://cqgplus.com/2015/06/11/black-hole-superradiance-and-the-hunt-for-dark-matter/

Rapidly spinning deformed neutron stars

CW Sources & Emission Mechanism I

- * Consider a non-axisymmetric neutron star with mis-aligned rotation axis (say, z-axis)
- * The ellipticity (ϵ) of the star is defined as:

$$\epsilon = \frac{I_{xx} - I_{yy}}{I_{zz}}$$

- * For l = m = 2 mode, continuous gravitational wave (CW) frequency $f_{GW} = 2 \times f_{spin}$
- * GW-strain amplitude (h) is given by:

$$h_0 = \frac{4\pi^2 G I_{\rm zz} f_{\rm gw}^2}{c^4} \epsilon = 10^{-26} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{f_{\rm gw}}{100 \text{ Hz}}\right)^2 \left(\frac{d}{1 \text{ kpc}}\right)^{-1}$$

* Gravitational wave power and spin-down is given by:

$$\frac{dE_{\rm rot}}{dt} = -\frac{32G}{5C^5} \epsilon^2 I_3^2 \omega_{\rm rot}^6.$$

$$\dot{\omega}_{\rm rot} = -\frac{32G}{5c^5} \,\epsilon^2 I_3 \omega_{\rm rot}^5.$$

NS Quasi Normal Modes, CFS Instability

CW Sources & Emission Mechanism II

 CFS (Chandrasekhar-Friedman-Schutz) instabilities are strong candidates to emit detectable CW signals in the near future
 S. Chandrasekhar (1970):

S. Chandrasekhar (1970); Friedman and Schutz (1975, 1978)

- Depending on the intrinsic and extrinsic properties, a NS can have various QNMs (non-radial modes) that becomes CFS unstable due to GW emission
 - f-mode (fundamental mode) → fluid oscillation modes due to pressure gradient, e.g., *supernovae*, *BNS mergers*, etc. → freq range ~ 2.2 4 kHz

Andersson & Kokkotas (1998)

r-mode (Rossby wave) → restoring force: coriolis force → freq range ~ (4/3 * f_{spin} + GR correction from NS EOS)
 L. Lee, et al. (1998); B. Owen, et al. (1998);

N. Andersson (1998)

g-mode (gravity waves) → restoring force: buoyancy/gravity driven
 → freq range ~ 100 – 200 Hz

Dark Matter/Bosonic Clouds Around BHs

CW Sources & Emission Mechanism III

- Ultralight Bosons (axion-like dark matter candidates) can be found in large amount around spinning black holes Arvanitaki et al. 2010; Baumann et al. 2019
- These particles could be spontaneously created via **energy extraction** from BH's spin using **Penrose process**. There could be two intriguing channels:
 - 1. Axions can **annihilate with each other** to produce gravitons with frequency $f_{graviton} = 2m_{axion}c^2/h$ Arvanitaki et al. 2015; K. Riles, 2023
 - 2. Emission occurs through the **level transition of quanta** in the Boson cloud. This becomes plausible when:
 - A. those particles form **Bose condensation** around the BHs
 - B. Compton wavelength of axion

$$\lambda = \frac{h}{m_{axion}c} \gtrsim \frac{4\pi G M_{BH}}{c^2} \implies m_{axion} \lesssim = (7 \times 10^{-11} eV/c^2) \frac{M_{\odot}}{M_{BH}}$$

Arvanitaki et al. 2015; Baumann et al. 2019; K. Riles, 2023

Implications to Fundamental Physics & Astrophysics

Implications to Test of General Relativity

Polarisation Tests of Alternate Theories of Gravity

• **In GR**: gravitational wave propagating in Z-direction looks in transverse traceless gauge (TT-gauge):

$$(A_{\alpha\beta}^{\mathrm{TT}}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -Axx & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- It predicts **two independent polarisation** modes for GW: '+' & 'x' polarisation
- Long duration continuous gravitational wave (CW) signals are excellent tools to determine/ constrain GW-polarisation modes

Non-Tensorial Polarisations Beyond GR

Testing Modified/non-GR Theory of Gravity

For GW propagating in Z-directions:

- Alternate theories of gravity predicts other (non-tensorial) polarisation modes
- In general, there could be six independent polarisation modes of a gravitational waves in other theories of gravity (i.e, modified General Relativity OR Mod-GR)

Effect of 6 different polarisation modes on matter

$(A_b + A_+)$	$A_{ imes}$	A_{Vx}
A_{\times}	$A_b - A_+$	A_{Vy}
A_{Vx}	A_{Vy}	A_l

Theories	Polarization modes
Metric $f(R)$ gravity	+, ×, b, l
Palatini $f(R)$ gravity	+, ×
Scalar-tensor theory (massive)	+, ×, b, l
Brans-Dicke theory (massive)	+, ×, b, l
Brans-Dicke theory (massless)	+, ×, b

CW signals are promising tool to find the polarisation modes

Implications to Physics and Astrophysics

Properties of NS & Extreme Matter Physics

- GW170817 (CBC/BNS source) provided a constraint on NE EOS
- A CW-signal can be used for **much stricter constraints** (e.g., r-mode, g-mode) on the EOS parameter space and the composition of dense β-equilibrium matter
- A proper identification of NS ellipticity can shed light on the properties of crustal physics:
 - direct / modified URCA processes (*connecting to Astroparticle Physics*!) →
 deep crustal heating → "thermal mountain" (?!)
 - Geometry and distribution of **magnetic fields inside** the star
 - **Inhomogeneity** caused to the neutron star by **accretion process**
 - Indirect detection of **dark matter** (if lucky!), or constraints on parameter space
- Precision test on the **propagation effects of gravitons** w.r.t. photons (in combination of EM-observations)

Challenges & Opportunities

Challenges in CW Detection

Computational cost for wide parameter space searches

- CW signals are extremely weak —> needs very long observation time -> can quickly become computationally expensive (*see David's talk next*)
- Often we have only partial/no knowledge of the source properties (e.g., spin freq, and its time-derivatives, sky position, etc.) → computational cost increases
- Spinning NS in a **binary system** which could be more interesting can further increase the computational cost
- NS in accreting LMXB systems can be promising: but fluctuating accretion rate cause loss in coherence due to **spin-wandering** effect

Usefulness of Additional GW-Detectors

Importance of LIGO-India

- Semi-coherent searches are the most intriguing ones —> they have the potential for the strong statistical detection of a CW signal
- **Computational cost** increases as a **steep power** of observational duration for any search

Curtesy: LSC & LIGO-CalTech

• On the contrary, adding more detectors only **marginally increases** the computational cost —> **adding LIGO-India will be useful**!

Benefits of EM (X-Ray, Radio) Observations

Increase in Detection Sensitivity

- Electromagnetic observations can significantly reduce the search parameter space
 - It results in much lower computing cost
 - It reduces the false-alarm probability
 - It can significantly increases the search sensitivity => detection probability
 - Systematic monitoring of glitching pulsars will be important and useful for CW searches
 - Simultaneous X-ray/radio/optical observations of interesting CW sources could be highly rewarding!

27-28 October 2023

Scope of Indian Observational Facilities

Synergising EM Astronomy Community

India has several excellent radio & X-ray telescopes (at present and possibly in future)

A coordinated and planned observations of interesting/promising targets could be extremely beneficial! GMRT (Courtesy: NCRA-TIFR)

Thank You!

We Encourage Comments & Discussions After Both the Presentations

Backup Slides

Different Observational Scenarios

EM Observations Can Constrain Some of the Source Parameters

TABLE I. Different parameter-space search regions considered for Sco X-1. Note that \mathcal{P}_0 has been used in this study as a test range for various Monte Carlo tests of BINARYWEAVE, and \mathcal{P}_{1-3} represent observational constraints considered in recent CW searches and studies. In addition, various combinations of parameter ranges are considered, \mathcal{P}_{4-21} , in order to explore the impact of improved observation constraints and reduced search ranges.

Search space \mathcal{P}	f [Hz]	<i>a</i> _p [ls]	$P_{\rm orb}$ [s]	$t_{\rm asc}$ [GPS s]	Reference(s)/Comment(s)
$\overline{\mathcal{P}_0}$	10–700	0.3–3.5	68023.7 ± 0.2	1124044455.0 ± 1000	BINARYWEAVE test range
${\cal P}_1$	20-500	1.26-1.62	68023.70496 ± 0.0432	897753994 ± 100	Leaci and Prix [36]
${\mathcal{P}}_2$	60-650	1.45-3.25	68023.86048 ± 0.0432	974416624 ± 50	Abbott et al. [28]
\mathcal{P}_3	40–180	1.45-3.25	68023.86 ± 0.12	1178556229 ± 417	Zhang et al. [29]
\mathcal{P}_4	600–700				
\mathcal{P}_5	1000-1100				
\mathcal{P}_6	1400-1500	1.45-3.25	68023.70496 ± 0.0432	974416624 ± 100	Different ranges in frequency
\mathcal{P}_7	20-250				with broad range in $a_{\rm p}$
${\cal P}_8$	20-1000				1
\mathcal{P}_9	20-1500				
${\cal P}_{10}$	600-700				
${\cal P}_{11}$	1000-1100				
${\cal P}_{12}$	1400-1500	1.40-1.50	68023.70496 ± 0.0432	974416624 ± 100	Different ranges in frequency
${\cal P}_{13}$	20-500				with narrow range in a_{p}
${\cal P}_{14}$	20-1000				1
${\cal P}_{15}$	20-1500				
${\cal P}_{16}$	600–700				
\mathcal{P}_{17}	1000-1100				
${\cal P}_{18}$	1400-1500	1.44-1.45	68023.70496 ± 0.0432	974416624 ± 100	Different ranges in frequency
${\cal P}_{19}$	20-500				with well-constrained $a_{\rm p}$
${\cal P}_{20}$	20-1000				1
\mathcal{P}_{21}	20–1500				

AM, Prix, Wette (2023)

Different Observational Scenarios [contd ...]

How Computing Cost Varies With Source Properties?

- Estimated a set of CW searches for different observational scenarios
- The source was a binary system
- Source parameters are 'Sco X-1' like, a well known LMXB system
- Estimated the computing cost for each of the search scenarios

Search setup	$T_{\rm obs}$ [months]	ΔT [days]	N	$\mu_{ m max}$
search setup-I	6	1	180	0.031
search setup-II	12	3	120	0.056
search setup-III	6	3	60	0.025
search setup-IV	12	1	360	0.025
search setup-V	6	10	18	0.025
search setup-VI	12	10	36	0.025

 TABLE II. Different search setups

AM, Prix, Wette (2023)

TABLE III. Computing-cost estimates $C_{\mathcal{P}}$ (in million core hours [Mh]) for different parameter spaces \mathcal{P}_n defined in Table I. We consider two setups, search setup-I and search setup-II of Table II, assuming either a 3D or 4D template bank.

	(I,3D)	(I,4D)	(II,3D)	(II,4D)
$\overline{\mathcal{P}_1}$	3.18	23.51	3.93	43.23
\mathcal{P}_2	28.50	466.48	35.22	857.69
${\mathcal{P}}_3$	5.00	63.40	6.17	116.57
\mathcal{P}_4	26.38	577.57	32.60	1061.95
${\mathcal P}_5$	68.76	2425.79	84.96	4460.17
\mathcal{P}_6	131.09	6381.48	161.97	11733.30
\mathcal{P}_7	3.24	20.42	4.01	37.54
${\cal P}_8$	207.74	5226.87	256.69	9610.37
\mathcal{P}_9	701.14	26461.02	866.33	48652.49
${\cal P}_{10}$	0.90	11.65	1.12	21.42
${\cal P}_{11}$	2.36	48.94	2.91	89.97
${\cal P}_{12}$	4.49	128.73	5.55	236.70
\mathcal{P}_{13}	0.11	0.41	0.14	0.76
${\cal P}_{14}$	7.12	105.44	8.80	193.87
${\cal P}_{15}$	24.03	533.80	29.70	981.46
${\cal P}_{16}$	0.09	1.16	0.11	2.13
${\cal P}_{17}$	0.23	4.86	0.29	8.93
${\cal P}_{18}$	0.45	12.78	0.55	23.50
${\cal P}_{19}$	0.01	0.04	0.01	0.08
${\cal P}_{20}$	0.71	10.47	0.88	19.25
\mathcal{P}_{21}	2.40	52.99	2.96	97.43