Frustrated magnetism on complex networks

STABILITY OF QUANTUM MATTER **IN** & OUT OF EQUILIBRIUM AT VARIOUS SCALES, JAN'24

Why networks?

• Why limit to regular lattices?

Networks can host new many-body physics (e.g., from tuning dimensionality)

 Novel classical phenomena: explosive percolation, self-organized criticality Network topology controls disease spreading, synchronization Small-world property, community structure

Strogatz, Nature 410, 268 (2001) D'Souza *et al.*, Adv. Phys. 68, 123 (2019) Sousa da Mata, Braz. J. Phys. 50, 658 (2020)

• Possible to synthesize arbitrary network of quantum spins

Superconducting circuits Trapped ions Rydberg atoms

Lamata et al., Adv. Phys. X 3, 1457981 (2018) Korenblit et al., New J. Phys. 14 095024 (2012) Nguyen et al., PRX 8, 011032 (2018)

Superconducting qubits (Pedram's talk)

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Regular bipartite

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

 Regular nonbipartite

Frustrated

Savary, Balents, Rep. Prog. Phys. '16

Zhou, Kanoda, Ng, RMP, '17

Knolle, Moessner, '18

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

 Regular nonbipartite

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

 Regular nonbipartite

Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17 Knolle, Moessner, '18

General bipartite

Networks enable variable degrees of frustration — ingredient of spin liquid

Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$

Savary, Balents, Rep. Prog. Phys. '16 Zhou, Kanoda, Ng, RMP, '17 Knolle, Moessner, '18

Regular nonbipartite

Frustrated $S_{\text{total}} = 0$ Spin liquid

Networks enable variable degrees of frustration — ingredient of spin liquid

Savary, Balents, Rep. Prog. Phys. '16 Antiferromagnetic Heisenberg model: $\hat{H} = \sum_{\langle i,j \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$ Zhou, Kanoda, Ng, RMP, '17

Regular bipartite $S_{\text{total}} = 0$ Regular nonbipartite

Frustrated $S_{\text{total}} = 0$ Spin liquid

Knolle, Moessner, '18

Q: How does network topology determine magnetic order? Here: What sets S_{total} ?

Shovan Dutta

Random graphs

Random network of N spins & N_e bonds — generically nonbipartite

 $N = 30, N_e = 30$ $N = 30, N_e = 60$

Avg # of neighbors (degree) $\bar{k} = 2N_e/N = 2, 4, 6$

Random network of N spins & N_e bonds — generically nonbipartite

 $N = 30, N_e = 30$ $N = 30, N_e = 60$

Avg # of neighbors (degree) $\bar{k} = 2N_e/N = 2, 4, 6$

 $S_{ ext{total}}$ small — falls with increasing \bar{k} :

Random network of N spins & N_e bonds — generically nonbipartite

Magnetization falls with more neighbors

Random network of N spins & N_e bonds — generically nonbipartite

Magnetization falls with more neighbors

Random network of N spins & N_e bonds — generically nonbipartite

Magnetization falls with more neighbors

Random network of N spins & N_e bonds — generically nonbipartite

$$N_{\rho}^{\min} = N - 1$$

Magnetization falls with more neighbors

 $N_e^{\rm max} = N(N-1)/2$

Random (connected) graphs — correlations

 N_f : number of bonds to cut to make bipartite

Weak correlation w/ frustration

Random (connected) graphs — correlations

 N_f : number of bonds to cut to make bipartite

 $A \in [-1,1]$: +ve \implies high-degree nodes connect to high-degree nodes (& vice versa) Newman, PRE 67, 026126 (2003)

Weak correlation w/ frustration

Strong correlation w/ heterogeneity & assortativity

Heterogeneity

No heterogeneity: Random regular graphs

Every spin has k neighbors

No heterogeneity: Random regular graphs

Every spin has k neighbors

 \Rightarrow Nonzero S_{total} requires spread in degree (# of neighbors)

Power-law degree distribution

Power-law degree distribution

Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$ RMP 74, 47 (2002)

Power-law degree distribution \implies Hubs

Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$ RMP 74, 47 (2002)

Power-law degree distribution \implies Hubs

Barabasi-Albert: each new node connects to m existing nodes following preferential attachment — $p_i \propto k_i$ RMP 74, 47 (2002)

Shovan Dutta

Summary: Magnetization grows w/ heterogeneity

Results for: N = 30, $\bar{k} = 4$

Frustration level

Remove all triangles

Bayati, Montanari, Saberi, arXiv:0811.2853

$$N = 30, N_e = 45, N_\Delta = 0$$

Remove all triangles

Bayati, Montanari, Saberi, arXiv:0811.2853

Remove all triangles

\implies Spin distribution unaffected

Bayati, Montanari, Saberi, arXiv:0811.2853

Remove all triangles

\implies Spin distribution unaffected

Remove short loops

Shovan Dutta

Remove all triangles

\implies Spin distribution unaffected

Remove short loops \implies Magnetization follows heterogeneity

Remove all triangles

\implies Spin distribution unaffected

Remove short loops \implies Magnetization follows heterogeneity

Shovan Dutta

Tune N_{Δ} without changing degree distribution (~ $1/k^3$)

Holme and Kim, PRE 65, 026107 (2002)

Tune N_{Δ} without changing degree distribution (~ $1/k^3$)

Holme and Kim, PRE 65, 026107 (2002)

For every new node:

- (1) Connect to existing node *i* with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)

Tune N_{Δ} without changing degree distribution (~ $1/k^3$)

Holme and Kim, PRE 65, 026107 (2002)

For every new node:

- (1) Connect to existing node *i* with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)

Fewer triangles

More triangles

Tune N_{Δ} without changing degree distribution (~ $1/k^3$)

 \implies Weak variation of S_{total}

For every new node:

- (1) Connect to existing node *i* with prob $p_i \propto k_i$
- (2) With prob p connect to a neighbor of i, else repeat (1)

Holme and Kim, PRE 65, 026107 (2002)

Assortativity

Degree-preserving rewiring

Van Mieghem et *al*, EPJ-B 76, 643 (2010)

Degree-preserving rewiring

Van Mieghem et al, EPJ-B 76, 643 (2010)

Degree-preserving rewiring

Van Mieghem et al, EPJ-B 76, 643 (2010)

A = -0.95

Degree-preserving rewiring

Van Mieghem et al, EPJ-B 76, 643 (2010)

Degree-preserving rewiring

Van Mieghem *et al*, EPJ-B 76, 643 (2010)

Magnetization falls w/ assortativity

Results for: N = 30, $\bar{k} = 4$

Putting together: Tunable spin distribution

Parameters: N (no of spins), m ($\approx \overline{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

Parameters: N (no of spins), m ($\approx \overline{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

For every new node j:

- Randomly pick an existing node *i*
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat *m* times

Parameters: N (no of spins), m ($\approx \overline{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

For every new node j:

- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat m times

p = 0 : embedded hubs

$$N = 30, m = 2$$

Shovan Dutta

Parameters: N (no of spins), m ($\approx \bar{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

For every new node j:

- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat m times

p = 0 : embedded hubs p = 1 : random

$$N = 30, m = 2$$

Parameters: N (no of spins), m ($\approx \overline{k}/2$), p (probability)

Alam, Perumalla, and Sanders Data Sci. Eng. 4, 61 (2019)

For every new node j:

- Randomly pick an existing node i
- With prob p connect (i, j)
- With prob 1-p connect to a neighbor of i w/ $p_{i'} \propto k_{i'}$
- Repeat *m* times

N = 30, m = 2

Tunable spin distribution:

N = 30, m = 2

Tunable spin distribution:

Pairwise alignment: $\langle \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \rangle$

Hubs aligned opposite to other nodes

Can we tune S_{total} in a non-random (frustrated) graph?

 N_c central spins (fully connected) + N_b outer spins

$$J, J_{b}, J_{c} > 0$$

$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + \, J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

- -

 N_c central spins (fully connected) + N_b outer spins

$$J, J_b, J_c > 0$$

$$\hat{H} = (J_c/2) \ \hat{S}_c^2 + J \ \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + \ J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
 : $S_c = 0$

 N_c central spins (fully connected) + N_b outer spins

$$J, J_{b}, J_{c} > 0$$

$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + \, J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

•
$$J_c \gg J$$
: $S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$

- -

 N_c central spins (fully connected) + N_b outer spins

$$\hat{H} = (J_c/2) \ \hat{S}_c^2 + J \ \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$
$$\bullet \ J_c \gg J : \ S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$$

• Lower J_c : $S_c \sim 1$

 N_c central spins (fully connected) + N_b outer spins

$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$
$$\bullet J_c \gg J : S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$$

• Lower
$$J_c: S_c \sim 1 \implies$$
 if $J_b \ll J: S_b = S_b^{\max} = N_b/2$
 $S_{\text{total}} \sim (N_b - 1)/2$

 N_c central spins (fully connected) + N_b outer spins

$$\hat{H} = (J_c/2) \, \hat{S}_c^2 + J \, \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

$$\bullet J_c \gg J : \ S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$$

$$\bullet \text{ Lower } I : \ S_c \approx 1 \implies \text{if } L \ll I : \ S_c = S_c^{\text{max}} = N_c/2$$

• Lower
$$J_c: S_c \sim 1 \implies$$
 if $J_b \ll J: S_b = S_b^{\max} = N_b/2$
 $S_{\text{total}} \sim (N_b - 1)/2$

• $J_c/J \downarrow \Longrightarrow S_c \uparrow$, $J_b/J \uparrow \Longrightarrow S_b \downarrow$ —Variable S_{total}

 N_c central spins (fully connected) + N_b outer spins

$$\hat{H} = (J_c/2) \ \hat{S}_c^2 + J \ \hat{\mathbf{S}}_b \cdot \hat{\mathbf{S}}_c + J_b \sum_{n=1}^{N_b} \hat{\mathbf{S}}_n \cdot \hat{\mathbf{S}}_{n+1}$$

$$\bullet J_c \gg J : \ S_c = 0 \implies S_b = 0 \implies S_{\text{total}} = 0$$

$$\bullet \text{Lower } J_c : \ S_c \sim 1 \implies \text{if } J_b \ll J : \ S_b = S_b^{\text{max}} = N_b/2$$

$$S_{\text{total}} \sim (N_b - 1)/2$$

$$\bullet J_c/J \downarrow \implies S_c \uparrow, \ J_b/J \uparrow \implies S_b \downarrow \text{ --Variable } S_{\text{total}}$$

Exactly solvable:

 $S_{b}, S_{c}, S_{\text{total}} \text{ good quantum numbers} \longrightarrow \text{Energy minimized for } S_{\text{total}} = S_{bc} := |S_{b} - S_{c}|$ $\implies E(S_{b}, S_{c}) = \frac{J}{2} S_{bc}(S_{bc} + 1) + \frac{J_{c} - J}{2} S_{c}(S_{c} + 1) - \frac{J}{2} S_{b}(S_{b} + 1) + J_{b} \underbrace{E_{\min}^{XXX}(N_{b}, S_{b})}_{\text{Bethe Ansatz}}$

$$N_b = 30, N_c = 2$$

$$\tilde{J}_b := \frac{4J_b}{JN_c}$$
$$\tilde{J}_c := \frac{J_c N_c}{JN_b}$$

Shovan Dutta

$$N_b = 30, N_c = 2$$

$$\tilde{J}_b := \frac{4J_b}{JN_c}$$
$$\tilde{J}_c := \frac{J_c N_c}{JN_b}$$

Shovan Dutta

$$N_b = 30, N_c = 2$$

$$J_c \text{ small: } S_c = 1$$

$$\implies E = J_b \underbrace{E_{\min}^{XXX}(N_b, S_b)}_{\sim S_b^2} - JS_b$$

$$\tilde{J}_b := \frac{4J_b}{JN_c}$$
$$\tilde{J}_c := \frac{J_c N_c}{JN_b}$$

Shovan Dutta

$$N_b = 30, N_c = 2$$

$$\tilde{J}_b := \frac{4J_b}{JN_c}$$
$$\tilde{J}_c := \frac{J_c N_c}{JN_b}$$

Shovan Dutta

Shovan Dutta

Summary

- Degree mismatch disassortative hubs essential for nonzero $S_{
 m total}$
- $S_{\rm total}$ not sensitive to frustration level & falls w/ more neighbors
- $S_{\rm total}$ tunable over full range in nonbipartite graphs

Open questions:

- Structure of ground state spin liquids?
- Analytic understanding importance of embedded hubs
- Contrast w/ kinetic magnetism

Preethi G and SD, in prep

Other recent work

- Degree mismatch disassortative hubs essential for nonzero $S_{\rm total}$
- $S_{\rm total}$ not sensitive to frustration level & falls w/ more neighbors
- $S_{\rm total}$ tunable over full range in nonbipartite graphs

Open questions:

- Structure of ground state spin liquids?
- Analytic understanding importance of embedded hubs
- Contrast w/ kinetic magnetism

Preethi G and SD, in prep

Thank you :)