Of these do invariants of spaces, e.g.
Beti #'s, behave with BS convergence? (ADBG-)
'H
Recall:
$$X = \sum |acally finite pointed simplicial confloces?
(K,p)
If K $\bar{\mu}$ a finite complex, let μ_{K} from
be the measure on X that's the pick forcard
of the counti, measure under
 $V(K) \longrightarrow X$, $p \mapsto (K,p)$.
Then (Ki) BS-converges to μ if μ_{Ki} weekly
 μ_{Ki} is a verter
 $V(K) \longrightarrow X$, $p \mapsto (K,p)$.$$

Define BS-convergence of finite vol Rien
manifold similarly using
$$M^d = \sum pted Rien multides Z/2
instead of X.
Then (Elek '08) (Spose (Ki) is a sequence
of bounded degree complexes that BS-converges
Then br (Ki)/vol (Ki) converges Y le.$$

but
$$b_1(K_i) = (n_i) - n_i$$
 just has to
vol (K_i) = i + n_i - 1 < n_i
vorying ni there can accumulate onto
all of IR. Escentally the some is
that the Betti #S of a complete
graph aren't linearly bdd by vol.
Of Similar than for Rien mathdo?
Need something like a degree bound,
since I Rien math of small
why huge Bettis.

is a BS-conversent seq of closed
Riem d-mattal w/ sectional curvatures
in
$$[a_1b_1]$$
 and $[inj(Mi) = 2\epsilon > 0$ then
 $b_K(Mi)$
 $vol(Mi)$ converge $H(a_1, b_1)$

Here
$$inj(M) = ihf inj(x)$$
. Assumption
where m each ε -ball in each M_i
is a H_j ball.
An ε -net in M is a maximal
subset $S \subset M$ w) $d(x,y) \approx \varepsilon$ $4xy \in S$.
The ε -balls $B(x, \varepsilon)$, $x \in S$, cover
 M , and the nerve $N(S)$ is
the complex with vertex set S and
a k -nimplex for every k -fold
intersection of the balls $B(x, \varepsilon)$.
Nerve lemma IF $id_j(M) \approx 2\varepsilon$, then
 $N(S)$ is homotry $ejuiv + M$.
 $(=)$ Bettis are same.)

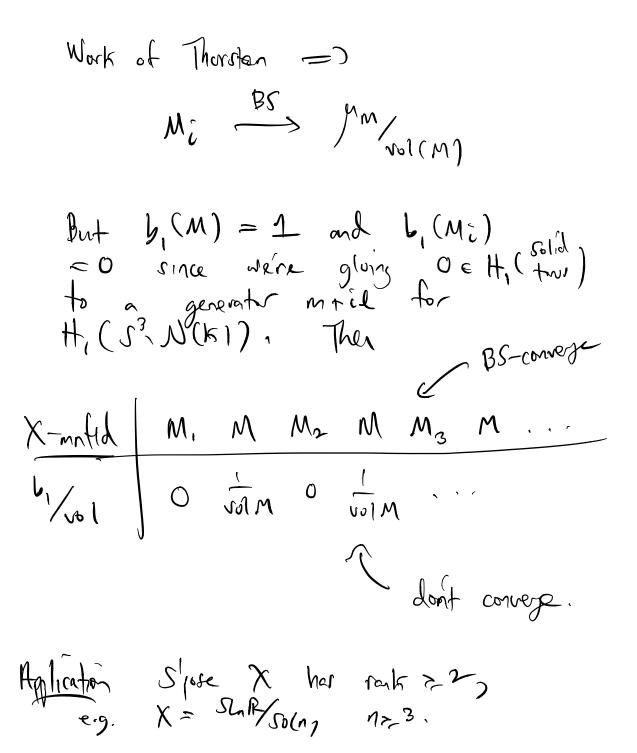
$$\frac{4}{16} \frac{1}{6} \frac{1}{16} \frac{$$

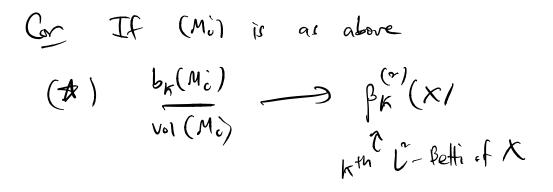
An X-mill is a quitert
$$M = \chi^{X}$$
.
Greener I some $C = C(X)$ r.t. if
 M is a fin with X-mill,
we have
 $b_{K}(M) \leq C \cdot v_{0}(M)$ VC.
Then (ABBG) Spece $X \neq HL^{3}$ and Mi
is a BS-convegent soz of
fin vol X-millo. Then
 $b_{K}(Mi)$ converge V(c.
 $vol(Mi)$
Realt when $X = Hl^{2}$ this fillows
form Gauss Bonnet, since any
hype surface S satisfie
 $(A) = \frac{L_{1}(S)}{vol S} = \frac{2-\chi(S)}{2\pi\chi(S)} = \frac{1}{\pi}\chi(S) - \frac{1}{2\pi}$

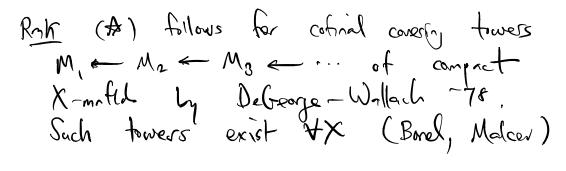
If
$$(S_i)$$
 BS converges then either
 $\chi(S_i) \rightarrow \infty$ or are eventually
constant, so in either case $\#$
(onverges.
Ex. when $\chi = H^3$
 S_{nise} K is the figure 8 knit, \mathfrak{S}
 $M = S^3 K$. Then M admits
a complete by metric of fin vol,
as do the Dehn fillings
 $M_i = M(1, i)$
for large i. Here, we create Mi
by attaching a solid torus to
 $S^3 \cdot M(K)$ along $\partial M(K) \cong T$, so

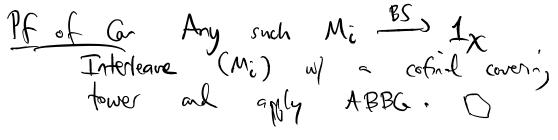
by attaching a solid toruc to

$$S^{*} \cdot N(K)$$
 along $\partial N(K) \cong T$, so
that the meridian of the solid
torus is glued to $m+i \ \ \in H_{1}(\partial N(K))$.
solid torus
meridian
 $N(K) = 0 \in H_{1}(S^{*} \cdot N(K)) \cong Z_{m}$.









The Prof of ABBG
let Mi be a BS-convegent seq of X-mills,

$$X \neq H_1^2$$
 H³. WTS $G_K(M_{\tilde{L}})/V_{01}(M_{C})$ converge.
let ETO be small, and set
this part-3 $(M_{\tilde{U}})_{ee} = \sum x e M_{\tilde{L}} \int \int M_{\tilde{U}} \int dx dx$
thick $\longrightarrow (M_{\tilde{U}})_{ee} = M \cap (M_{\tilde{U}})_{ee}$.

$$\operatorname{rank}_{\mu} X = 1$$
 The Maryelis Lemma
 \rightarrow each component of
the thin part is either a
 D^{n-1} - bundle our S' (n = dim X)
or a product $J = [0,\infty]$.

Etving an such a component to
the thick part charges the Bettier
by at most 1, and if dim
$$\neq 4$$
,
the number of components is
sullinear in volume.

So,
$$b_{\mu}((M_{i})_{2}\varepsilon)$$
 $b_{\mu}(M_{i})$
N/Mi $vol(M_{i})$

converge to same value.