Let
$$M^d = \begin{cases} connected, complete \\ pointed & Riem \\ d-monifold (M,p) \\ isometry \end{cases}$$

with the smooth topology, where
$$(M_{i,pi}) \longrightarrow (M_{i,p})$$

if $\exists F_{i} \rightarrow \infty$ and enleddings $\varphi_{i}: B_{M}(p, F_{i}) \longrightarrow M_{i}$
s.t. $\varphi_{i}(p) = p_{i}$ and if $g_{i,g}$ are the Frem
metrice then $p_{i}^{*}g_{i} \xrightarrow{C^{\infty}} g_{i}$.

Indicate a compatibility of
$$\mu$$
 and the free
measures with: the targets for a μ -radium
(M,1) are distributed in M according to why.
The random eff of a winnodular pat
measure on M^d $\dot{\nu}$ a unmodular radium
monitfold (UPM).
Ex Sine M is a finite with Riem d-mattd,
and let μ_{M} be the measure on M^d
obtained by puching to coard volge under
 $M \longrightarrow M^{d}$, $p \mapsto (M,p)$
Both sites of the MTP are = to
 $\int_{M \times M} f(M,pq) dwin, by Tubini. So, "Mequipped w/ a radium baseful μ and μ ."
More generally, if $\pi : N \rightarrow M$ is a
regular cover of a finite vol M, the
puchtorward of volge under
 $M \longrightarrow M^{d}$, $p \mapsto (N, \vec{p})$, $\vec{p} \in \pi(p)$.$

We'll consider the set B(Md) of pn2 measures on Md with the weak tripology. Unimodularity is a closed condition, so any weak lim.t of mimodular prol mequere is an another. In particular: Det Sjose Mi is a sequence of fin vol Rien d-mollo. We say (Mic) Benjamini-Schramm converges it the Mi/vol(Mi) converge weatly in mealines $\mathcal{O}(\mathcal{M}^{\lambda})$ patch together i mit volume blocks, all isometric huge round sphere, vol i BS

 \sim

where each B×2 is an open subset of m leaf. E.g.

Eq. veltor is locally the integral of
lebesgue avenue on leve against
lebesgue avenue in the orthogonal directori.
Prog IF
$$\mu$$
 is a finite confletely invet
measure on a Riem filicited space, the
leaf map (of through x
 $\chi \rightarrow Md = \chi \rightarrow (L_{\chi}, \chi)$)
is Borel and puble forward μ to
a variandular measure on Md .
The folicited structure of Md
The maps $M \stackrel{i}{=} SM_{\chi}^{\chi}$ $i(\mu) = (M, \mu)$,
where M is a Riem d-matrid, have
maye that alwayst form the leave of
 $= folicities of Md$, except that
 $i(M) \cong M/$

Which may not be a domafild. (IF
Ison (M) acts transitively, it's a pt.)
Desingularization Than
F a Rien folloofed space Bd s.d.
every unimodular measure on an Ud
if the publiconiand of some completely
invit measure or on Bd inder the
test may Dd Ad.
$$\times \longrightarrow (L_{X}, \times)$$

Iden
$$\mathcal{B}^d = \{(M, \eta, D) \mid D \in \mathcal{M} \text{ is locally} \}$$

nontrivial worn
 $f: \mathcal{M} \rightarrow \mathcal{M}, f(\mathcal{D}) = D$

$$p \text{ on } M^{d} \longrightarrow v = \int_{(M,p)}^{v} process \text{ on } M^{d} \mu$$
.

Cor (B-Paubault Y7) A URM
a.r. has either 0,1,2 or a
Cantar set of eaks.
(can also use this to classify
exactly which ty type of
surface appear in a URM
w/ bounded curvature, following Ghys)
Cor IF S is a UP hypedatic surface
w/ finitely genred TT, then a.r.
S has finite volume or in
$$\cong$$
 H2.
IF Hyp surfacer (FHP) w/ fin gen
TT_1 and \equiv -vol home a fin vol
"convex core" C(S),
C(S)

Then (Abert - P) Any UR by 3-match
in the finitely gen II is also either
1) finite vol
2) Atl³
3) a doubly degenerate byp
3-match homeo to
$$5 \times 1P$$
.
(1) 1111
extraveled by cogie of
S w bounded area.