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Floquet theory and experiment in many-body systems

dψ
dt

= −
i
ℏ

H(t)ψ
H(t + T ) = H(t)

Floquet quantum systems Time-Periodic Hamiltonian

Reviews: Bukov et al,. Adv. Phys. (2015); Oka et al., Ann. Rev. Condens. Matter Phys. (2019)

Jotzu et al. Nature (2014)

Cold-atom realization

Oka and Aoki, PRB (2009); Kitagawa, Oka et al. PRB (2011)

H(t) HFFloquet theory
effective Hamiltonianperiodic Hamiltonian

graphene + circ. pol. laser topological insulator

e.g. Effective topological effect by periodic drives



Effective Hamiltonian        in isolated many-body systems
For simplicity, we consider stroboscopic evolution (i.e., discrete times             )t = kT

Let U denote the one-cycle unitary:

e.g.

(high frequency = small T)

BCH series terminated at some order:

U ≈ UF = e−iHFT

HF = H0 −
T2

24 ⋅ 23
[[H2, H1], H1 + 2H2] + CT4 + DT6 + ⋯

U = e−iH1T/4e−iH2T/2e−iH1T/4

BCH (Magnus) expansion is an 
asymptotic series.

H0 HF

t
H1 = H0 + V

H0

1 period

T/4
3T/4

T 5T/4

…

Kuwahara, Mori, Saito, Ann. Phys.  (2016)

HF

H2 = H0 − V

+V

−V

Exact effective Hamiltonian　　Hex
F

=: e−iHex
F T

     is exact but complex (non-local) 

(high-frequency) effective Hamiltonian　　　　　　HF ( ≠ Hex
F )

U = e−iH1T/4e−iH2T/2e−iH1T/4

is approximate but local

Hex
F

HF



Floquet heating | Consequence of HF ≠ Hex
F

energy energy

heating

red
blue

Floquet Prethermalization & Thermalization

|Ψk⟩ = (e−iHex
F T)k |Ψ0⟩

|Ψk⟩ = (e−iHFT)k |Ψ0⟩
exact
approx.

slope = heating rate

prethermalization thermalization

Abanin et al., PRL (2015)
Kuwahara et al., Ann. Phys. (2016)

Questions and our answers

States during Floquet heating?

Can we obtain heating rates instead of their upper bounds?

FE survives FE broken?

e−β(t)HF /Zt FE survives at finite temperature

Yes by Fermi’s golden rule (FGR)

time
time

Lazarides et al. PRE (2014) 
D’Alessio et al. PRX (2014) 
Kim et al., PRE (2014) heating rate < e−O(ω)

Abanin et al., PRL (2015)
Kuwahara et al., Ann. Phys. (2016)

Upper bound WW Ho et al., Ann Phys (2023)



Review | (bare) FGR for small-amplitude drives
Mallayya and Rigol, PRL 123, 240603 (2019) 

Amplitude                            is small.

Energy increase rate based on time-dependent perturbation theory and Fermi’s golden rule (FGR)

where

Remaining issues
What about large amplitudes, for which               ? 
This case is relevant in the Floquet-engineering viewpoint.

State ansatz: Thermal state w.r.t.       with a single parameter (time-dependent temperature)   

P0
i (t) = ⟨E0

i |ρGE(t) |E0
i ⟩

Self-consistent evolutions for energy and temperature increases
=> well reproduce the direct simulation of Floquet heating dynamics

     is nonintegrable

How to deal with two effects (dressing                and heating )?

H(t) = H0 + g(t)V Assumptions g(t + T ) = g(t)
H0

·E(t) = 2π ∑
m>0

g2
m ∑

i, j

|⟨E0
f |V |E0

i ⟩ |2 (E0
f − E0

i )P0
i (t) g(t) = ∑

m>0

2gm sin(mωt)

H0

ρGE(t) = e−β(t)H0 /Z0
t

H0 → HF

HF ≠ H0



Outline of our results

FGR description generalized to strong (high-frequency) Floquet drives

Fermi’s Golden Rule = Floquet FGR

drive amplitude

weak drive

(Floquet FGR reduces to the previous work in the weak amplitude limit)

strong drive Future work

non-perturbative behavior

TNI, A. Polkovnikov, Phys. Rev. B 104, 134308 (2021).



Floquet Fermi’s golden rule (FGR)

State ansatz: diagonal in eigenbasis of

We assume           is non-integrable and further 
assume an effective temperature

HF

Pn(t) = e−β(t)En /Zt
HF

β(t)

Master equation among eigenstate populations（see our paper for derivation）

δU ≡ U†
FU = eiHex

F Te−iHFT ≠ I

Self-consistent equations for the increments for           and ⟨HF⟩tβ(t)

HF : obtained by high-frequency expansion terminated at some order

wm→n = 2π∑
l∈ℤ

δ(En − Em − lω) |⟨n |δU |m⟩ |2

(this reduces to the previous work [Mallayya and Rigol 2019] when amplitude is weak.)



Floquet heating in spin chains | weak drive
L-site spin chain, PBC,  initial state = thermal pure state, Krylov evolution method

Sugiura & Shimizu (2012)

t
H1 = H0 + V

H0

1 period

T/4
3T/4

T 5T/4

…

H2 = H0 − V

+V

−V

H0 = J∑
i

σz
i σz

i+1 + J′ ∑
i

σz
i σz

i+2 + hz ∑
i

σz
i + Jx ∑

i

σ x
i σ x

i+1

Machado et al. PRResearch (2020)

V = hx ∑
i

σ x
i =driving amplitudehx

Floquet heating simulation requires large L. L = 20 ⇔ D = 2L ≈ 106

Bare/Floquet FGR give same result for weak drive (hx=0.37).
FGR at small size (L=14) captures the thermodynamic limit.

HF is 6th order in T

(J = − 1, J′ = − 0.4, hz = 0.6, Jx = 0.75)



Floquet heating in spin chains | strong drive
L-site spin chain, PBC,  initial state = thermal pure state, Krylov evolution method

Sugiura & Shimizu (2012)

t
H1 = H0 + V

H0

1 period

T/4
3T/4

T 5T/4

…

H2 = H0 − V

+V

−V

H0 = J∑
i

σz
i σz

i+1 + J′ ∑
i

σz
i σz

i+2 + hz ∑
i

σz
i + Jx ∑

i

σ x
i σ x

i+1

Machado et al. PRResearch (2020)

V = hx ∑
i

σ x
i =driving amplitudehx

(J = − 1, J′ = − 0.4, hz = 0.6, Jx = 0.75)

HF is 6th order in T

Floquet FGR works unlike bare FGR for strong drive (hx=3.0).
Floquet FGR allows us to know thermodynamic limit only at L=14 calculations.
Slight overestimate could be improved by using higher-order approx. for HF



Importance of　　　 　｜non-monotonic heating rate 

Data points = heating rate extracted from least square fits

bare FGR

HF ≠ H0 ω = 2π/T = 16
slope = heating rate Smaller heating for larger amp.

∝ h2
x

Floquet FGR reproduces non-monotonic 
behavior when       is calculated up to     HF T4,

hx ≳ 6
ω = 16

Larger heating rate for larger amp.

-0.48

T6

BCH series for H_F does not work for               
(at               ). Need other approaches.  

cf. Das, PRB (2010); Haldar et al. PRB (2018)

see also Mori, PRL (2021)



Summary of Part 1

Outlook
Other ways to compute         used in Floquet FGR.
       has been assumed to be non-integrable. Generalizations to integrable ones?

- Floquet FGR tells us the TD limit at small-size calculations 

- Floquet engineering (FE) makes sense even after heating sets in (finite-temp. FE).

HF

HF

Floquet heating in many-body systems

ρ(t) = e−β(t)HF /Zt

Floquet FGR description

Instantaneous thermal state w.r.t. HF

Simple view of states during heating

TNI, A. Polkovnikov, Phys. Rev. B 104, 134308 (2021).

wm→n = 2π∑
l∈ℤ

δ(En − Em − lω) |⟨n |δU |m⟩ |2



Prerequisite for the Floquet FGR description

Another observation:

The ground state of the effective Hamiltonian could be much 
more robust against heating than expected from FGR.

waited for 10 cycles until relaxation happens

The initial state must be relaxed at high-enough temperature.



Possible Trotter transition in a nonintegrable model

t
H1

1 period

T/4
3T/4

T 5T/4

…

H2

T = 2τ
(J = g = h = 1)

Heyl et al. Sci. Adv. (2019)

non-heating heating

|ψ0⟩ = | ↑ ↑ ⋯ ↑ ⟩
Time(cycle)-averaged magnetization

driving period ~ 1/(driving frequency)

Implying robustness of effective ground state?

HF =
H1 + H2

2
+ O(τ2)

Initial-state dependence of heating?

⟨ψ0 |HF |ψ0⟩ = small

Questions
Consistency with Floquet ETH?

See also Prosen JPhysA 2007, 
D’Alessio et al. Ann Phys 2013 for 
non-Trotterized models



Method | Real-time evolution on quantum circuit simulator

Efficient circuit simulator (Qulacs): 
Suzuki et al. Quantum (2021).

|ψini⟩

Heyl et al. Sci. Adv. (2019)

T(τ) = ∏gates(τ)

obtained by

Faster than generic Krylov evolution.

Our robustness measure

One-cycle Floquet unitary = Trotter unit

T(τ)n |ψini⟩

Fidelity

Normalized ver. s = −
ln F(n, τ)

L

color = tau

Example data: L=30



Result | (Possible) Trotter transition for the ground state

L=24, initial state = ground state of 

 Average over  ~     stepsσ

normalized

color:      =100 to 10000σ

H(0)
F = (H1 + H2)/2



L=24

|ψini⟩ = |GS of H(0)
F ⟩

H(2)
F = H + V

V = −
τ2

24
[H1, [H1, H2]] −

τ2

12
[H2, [H1, H2]]

up to L=30

color:      =100 to 10000σ

    =5000σ

|ψini⟩ = |GS of H(2)
F ⟩

Conjecture
Trotter transition exists for 
the GS in the sense of

lim
σ→∞

lim
L→∞

Clearer Trotter transition for the effective ground state



Specialty of GS | Most of other states do not show a transition

|ψini⟩ = |Ej⟩
for all j

below transition

above transition

GS

GS

Most states

H(0)
F |Ej⟩ = Ej |Ej⟩



Scar-like Floquet eigenstates beyond convergence radius of HE

T(τ) |θα(τ)⟩ = e−iθα |θα(τ)⟩

L=14, k=0, p=+

T ≈ e−iHF⋅2τ

Short period

θn ≈ Enτ mod 2π

|θn⟩ ≈ |En⟩

(high frequency)

       convergence radius of high-
frequency expansion (HE)

O(L−1)

scar-like 
eigenstates Transition point O(1)

GS of HF has large 
overlap with these



Summary of Part 2 TNI, S. Sugiura, A. Polkovnikov, arXiv:2311.16217

-Unlike most states, the effective GS is robust against heating 
and exhibits possible transition between heating/non-heating.

-Using a circuit model and simulator, we 
numerically studied Floquet dynamics up to L=30.

- a possible counter example to “Every state will eventually heat up 
in generic nonintegrable Floquet models (Floquet ETH)”

Remaining Questions: (1) Its Mechanism (2) Other models (3) how many



Grand Summary | Quantum States under Floquet heating
Floquet heating in many-body systemsFloquet engineering

ρ(t) = e−β(t)HF /Zt

Floquet FGR description for finite temperature states

Instantaneous thermal state w.r.t. HF

Simple view of states during heating

wm→n = 2π∑
l∈ℤ

δ(En − Em − lω) |⟨n |δU |m⟩ |2

More roles of effective Hamiltonian        HF

PRB 104, 134308 (2021) arXiv:2311.16217

Robust effective ground state



Appendix



Derivation of Floquet FGR

transition prob. in N >> 1 cycles

sum of phases

U = U_F + (small)



Floquet FGR for 1d Hubbard chain

slope = driving amp. E0



Perturbation theory reproduces numerics
|θα⟩ = |Ekα

⟩ + ∑
l≠kα

ckα,l |El⟩ ckl = −
Vkl

Ek − El
V = O(τ2)

Time-averaged fidelity for the GS of H0: F0 = ∑
α

|⟨θα |E0⟩ |4 = |⟨θ0 |E0⟩ |4 + ∑
α≠0

|⟨θα |E0⟩ |4

negligible O(τ8)

According to perturbation theory, |⟨θ0 |E0⟩ |2 = 1 − ∑
l≠0

|V0l |
2

(E0 − El)2
+ O(V4)

F0 = 1 − 2∑
l≠0

|V0l |
2

(E0 − El)2
+ O(τ8)

log-log scale

same data in linear scale
prop. to tau^4
but L-dependence?

1 − F = cτ4eγLcf.



breakdown of FGR for GS



Weights on Floquet eigenstes



Tiny repulsions

L=16


