FUTURE TERRESTRIAL GRAVITATIONAL-WAVE OBSERVATORIES

B. S. Sathyaprakash Penn State and Cardiff University

FUTURE GRAVITATIONAL-WAVE OBSERVATORIES

Einstein Telescope

Site Selection

Currently two site candidates:

• Sardinia

50Mio€ ETIC

+ 350Mio€ for construction by local
Sardinian government
+ financial support by Italian
government for the construction

EU Regio Meuse-Rhine/Limburg
 42Mio€ preparation
 +870MEUR construction

Geologial properties and underground seismic being investigated.

Triangle vs. two L

Best configuration for ET is being evaluated:

- two L configuration (as LIGO, Cosmic Explorer)
- or triangle in one location •
- \rightarrow maximize the science return and reduce risks

Since 2011 (CDS, triangle configuration) the situation drastically changed: first detections, GTWC-3 catalog \rightarrow BH population \rightarrow new SF and evolution models;

- science case developed;
- know-how with advanced (L) detectors; •
- international scenario (+ Cosmic Explorer in US);
- two candidate sites strongly supported (and a potential third site...).

WHAT'S COSMIC EXPLORER

- Cosmic Explorer is the US concept for a next-gen gravitationalwave observatory
 - 40 km and 20 km L-shaped surface observatories (act)
 - roughly 10x sensitivity of today's observatories (a)
- CE is as envisioned an NSF-funded Project
 - Horizon Study completed in 2021, arXiv:<u>2109.09882</u> Set.
- Currently in Conceptual Design Study:
 - "Launching the Cosmic Explorer Conceptual Design"
 - "Collaborative Research: Identifying and Evaluating Sites for CE"
 - "Cosmic Explorer Optical Design"
 - "Enabling Megawatt Optical Power in Cosmic Explorer"
 - XG Mock Data Challenge
 - 'Local Gravity Disturbances and Next-GenerationGW Astrophysics." Sec.
 - "CE: Research and Conceptual Designs for Scattered-Light Mitigation."

A Horizon Study for

Cosmic Explorer

Science, Observatories, and Community

NEXT-GENERATION GRAVITATIONAL-WAVE SUBCOMMITTEE

- ngGW was established by the NSF
 - Committee home page with membership: (a) https://www.nsf.gov/mps/phy/nggw.jsp
- Charge:
 - "... Based on this survey, a recommended list of GW detection network configurations that will deliver a detector with sensitivity an order of magnitude greater than the LIGO A+ design...."
 - https://www.nsf.gov/mps/advisory/ subcommittee_charges/mpsac-nggwcharge_signed.pdf
 - Preliminary Report: Oct 2024 / Final Report: Jan 2024

A Submission to the NSF MPSAC ngGW Subcommittee

arXiv:2306.13745

Total Binary Mass $[M_{\odot}]$

100 1000

т. т., г. г. г. т. **Г** I I I I

Primordial Black Holes

Pop III Black Holes

SNIP

11-20

SNR

1000

★ GW190521

♣ GW150914

CMB

Big Bang

Dark Ages

20 Myr

of Universe

Age

Reionization

500 Myr

Peak Star Formation

5.9 Gyr

12.5 Gyr

SCIENCE CAPABILITIES OF FUTURE OBSERVATORY

Key Idea: Black hole binaries with higher modes break the distance-inclination degeneracy

RESOLVE THE HUBBLE TENSION

LOCALIZATION WITH FUTURE OBSERVATORIES

GW190814-like event

Gupta+ (2023)

GW190412-like event

PROSPECT FOR MEASURING H_0 WITH FUTURE OBSERVATORIES

Gupta+ (2023), arXiv: 2307.10421

Networks

CONSTRAIN WIMP DARK MATTER FROM GRAVITATIONAL WAVE OBSERVATIONS

Key Idea: Black holes have zero tidal deformability

DARK MATTER INDUCED IMPLOSION OF NEUTRON STARS

19

MEASURING WIMPS IN NEUTRON STARS

OBSERVE PRIMORDIAL AND POP-III BLACK HOLES

Key Idea: Observe black hole binary mergers at z>20 by decisively measuring their redshift

-					
		_			
_					
	_				
_					
-					
-					
Ì					
ĺ		_			
_					
5	50				
)	U				

PHYSICS BEYOND THE STANDARD MODEL

- Black hole horizons, quantum gravity, information paradox
 - black hole spectroscopy, multipolar structure, quantum modifications at horizon scales
- Corrections to general relativity
 - additional fields, modifications of inspiral radiation
 - Is black hole uniqueness theorems and exotic compact objects
- Probing dark matter
 - primordial black holes, dark matter, ultralight boson clouds
- Gravitational-wave propagation and graviton mass
 - constraints on Lorentz violation in the gravitational sector, graviton mass, extra dimensions, parity violation

ormation paradox ructure, quantum

al radiation

