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Quantum gases

A gas of interacting bosons can be realized in cold atom systems.

Analytically tractable models for correlated bosonic gases are very rare.
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Lieb-Liniger model (1963): H = - 2 Z 5(x-—xj).
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- The solution can be written in the form of a Bethe ansatz.

- However, the presence of an external trap breaks integrabillity.
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Often used to describe the collective behavior of a weakly interacting Bose gas.
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Gross-Pitaevskii equation: 7

- Exact solutions are hard to come by except for V(7) = 0 (free particles).



Motivation

* There is a paucity of analytically tractable models of strongly correlated
quantum gases.

* Even if a solution can be found in some cases (e.g., in the Lieb-Liniger
model without external potential), analytical calculations of various
observables, such as the extreme/order statistics, the full counting
statistics, etc., are very difficult.

 Thus, there is a growing need to engineer analytically tractable models of
correlated quantum gases, which are also experimentally feasible.



Noninteracting bosons in a harmonic trap
subjected to stochastic resetting

(1) Prepare the system in the ground state |, of the
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2m 2 / Ema) (x+a) . —mwo*(x — a)
Jj=1 :
|W(1)) = e WWHL | "‘ Initial state
(2) Instantaneously quench to a new Hamiltonian ' | o) ,
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(3) Evolve unitarily | P(7)) = e #17 | ¥,) = \ .
for a random time 7 drawn from p (t) = re™"" N\
X
—d +a
(4) Reset: |W(7)) — |Y¥Y,y) instantaneously.

Reset at a rate r

(5) Repeat steps (2)—(4)

The system evolving by this protocol approaches a NESS at long times.



The quantum JPDF with resetting
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e During unitary evolution: |W(7)) = e 7
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 The density matrix: o(¢) = | W(¢) (W (?) |

* |n the presence of resetting:
[

0(t) = e " o(t) + rJ dre™""o(7)
0

 The quantum joint probability density function (JPDF) is the matrix
element: P,(X|, %5, ..., Xns 1) = (X5 X5 ..oy X | () | X5 Xy« v vy Xp)



Stationary joint probability density function

In the limit # = o00: P (X{, X, ..., Xy, 1) = Py (X{, %, ..., Xy)
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CIID structure —Biroli, Larralde, Majumdar, Schehr (2023, 2024):
Biroli, Kulkarni, Majumdar, Schehr (2024); Sabhapandit, Majumdar (2024) —
makes the models analytically tractable.



Micro and Macro observables

&
Average density profile: p(x) = { — o(x — Xx.
g y p p(x) < v Z} ( l)>

Correlation function: Cl-,j = (Xixj> — (X;) <xj>

Extreme value statistics and order statistics: e.g., M| = max(x;, x,, ..., Xy)

Spacing/gap distribution (between successive positions)

Full counting statistics: # particles in a given interval, e.g., in [—L, L]



Correlation function
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Order statistics

We first arrange the positions {x;, x,, ..., Xy} in descending order
{Ml > M2 > eee > MN} SUCh that

M, = max{x;, Xy, ..., Xy}, My =min{x;,x,,...,XxXy}, and
M, represents the position of the k-th particle from the right.

k
cerfc '(2a) when — = a ~ O(1)
Prob.|[M, = w] ~ h(w — [) where [, =~ N

o\/In N when k ~ O(1)



Order statistics for the
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Gap statistics

Prob.(d, = g) = [OO du h(u) Prob . (Mk(u) - M, (u) = g)
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Ay (@) Prob. (dy)
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Full Counting Statistics (FCS)

« P(N;, N) = probability distribution of the number of particles /V; in the
region [—L, L]

 Forlarge N and V, , it has the scaling form

P(N,,N) L (2L where 2 — e [ ]
, N — —_— wnereg —m = K Kmin’KmX
= N \N N :

withk . >0and k. < I.

» The scaling function H(x) depends on the system via /(u).
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K — Kmin

Kk — k* from below/left

k — k* from above/right

max



FCS for bosons
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Conclusions

 \We have engineered a strongly correlated quantum gas, where the
correlations between noninteracting particles emerge dynamically.

* The joint probability density function has a special form
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P (X1 X o X)) = j du h(w) [T p0s | w)
j=1
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 The conditional IID structure of the JPDF allows the analytical computation of
several observables in a strongly correlated system.



