Estimating parameters by fitting correlation functions of continuous quantum measurement

Pierre Guilmin, Pierre Rouchon, Antoine Tilloy

1. Introduction Experimental QEC with superconducting circuits

2. Today's solution Typical workflow for characterising superconducting circuits

3. A simple method Fitting correlation functions of continuous measurement

4. Three numerical examples Does the method actually work?

1. Introduction

Experimental QEC with superconducting circuits

2. Today's solution

Typical workflow for characterising superconducting circuits

3. A simple method

Fitting correlation functions of continuous measurement

4. Three numerical examples

Does the method actually work?

Building a fault-tolerant quantum computer

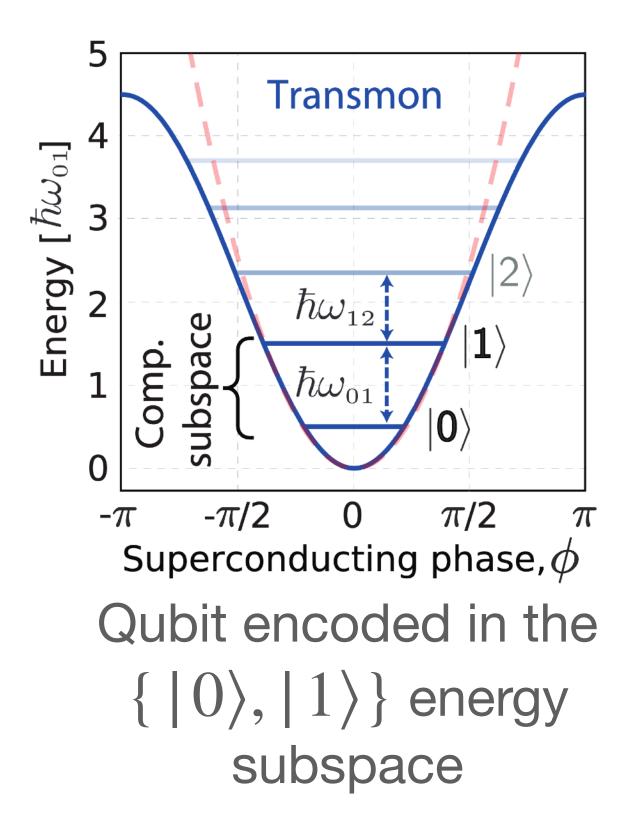
- Qubits suffer from errors: bit-flips and phase-flips.
- The solution: quantum error correction (QEC).
- Use a larger Hilbert space to protect from uncorrelated local errors → delocalize the information.

Building a fault-tolerant quantum computer

- Qubits suffer from errors: bit-flips and phase-flips.
- The solution: quantum error correction (QEC).
- Use a larger Hilbert space to protect from uncorrelated local errors → delocalize the information.
- Two examples using superconducting circuits.
 - Example 1: qubit + surface code.
 - Example 2: bosonic code (choose an encoding) + simpler code.
 - → Errors are local in phase-space.

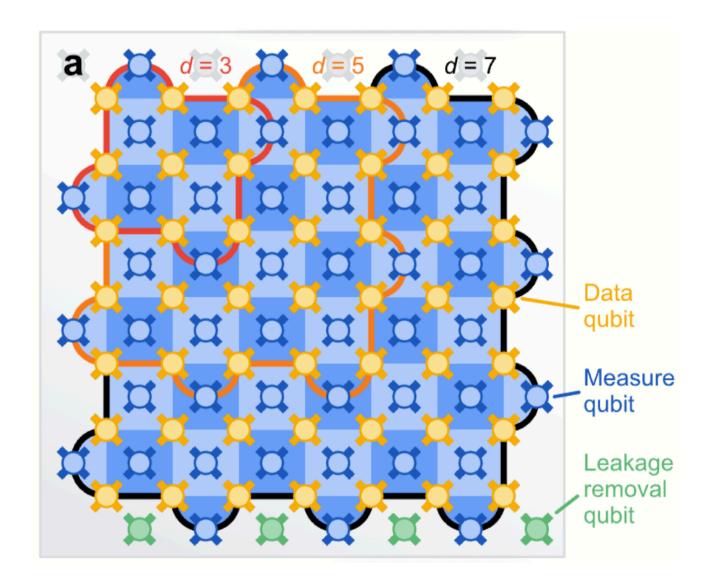
Example 1: surface code with transmon qubits

The qubit



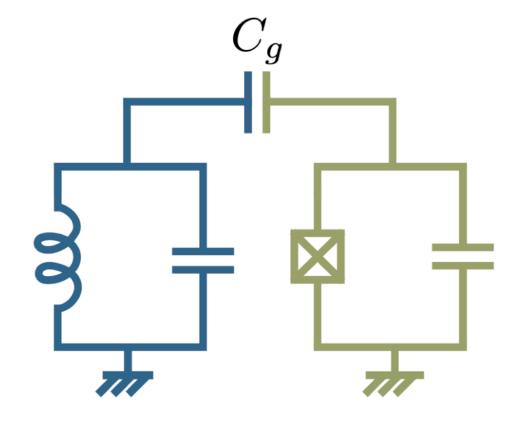
The code

(correct bit and phase flips)



 $n \approx 1000$ for one logical qubit

In practice



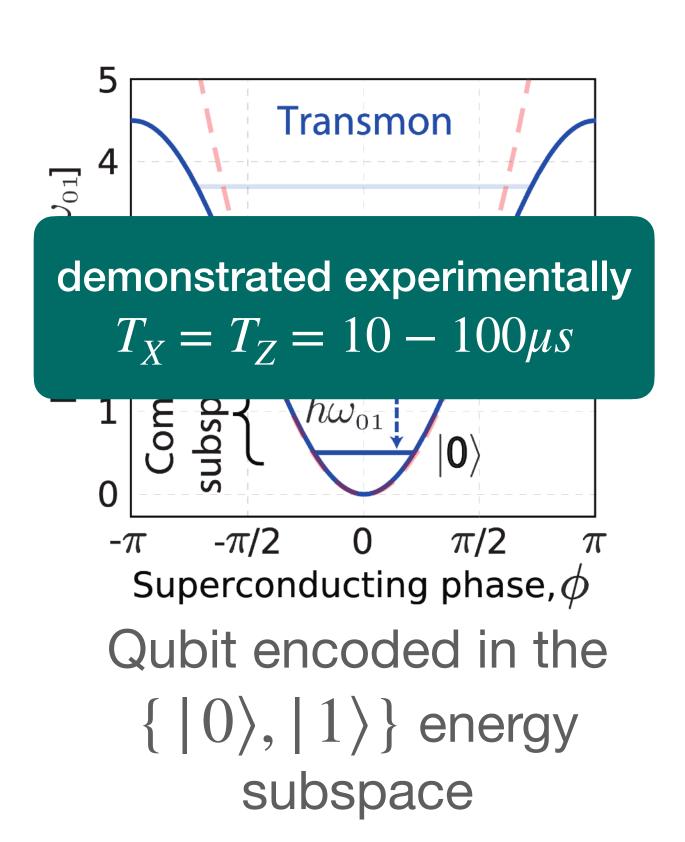
$$\hat{H} = 4E_C(\hat{n} + \hat{n}_r)^2 - E_J \cos \hat{\varphi}$$
$$-\sum_m \hbar \omega_m \hat{a}_m^{\dagger} \hat{a}_m$$

$$\hat{H}_{\text{disp}} \approx \hbar \omega_r' \hat{a}^{\dagger} \hat{a} + \frac{\hbar \omega_q'}{2} \hat{\sigma}_z + \hbar \chi \hat{a}^{\dagger} \hat{a} \hat{\sigma}_z$$

$$L = \sqrt{\gamma} \sigma_- \quad L_{\varphi} = \sqrt{\gamma} \sigma_z$$

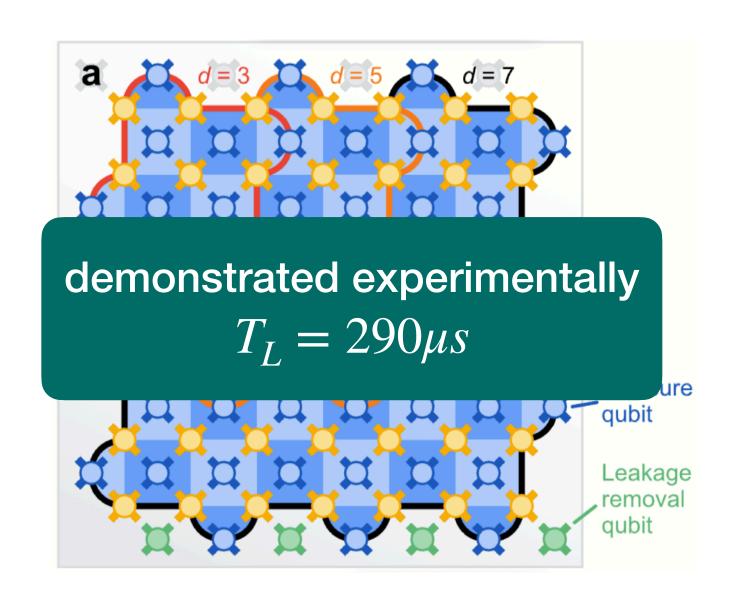
Example 1: surface code with transmon qubits

The qubit



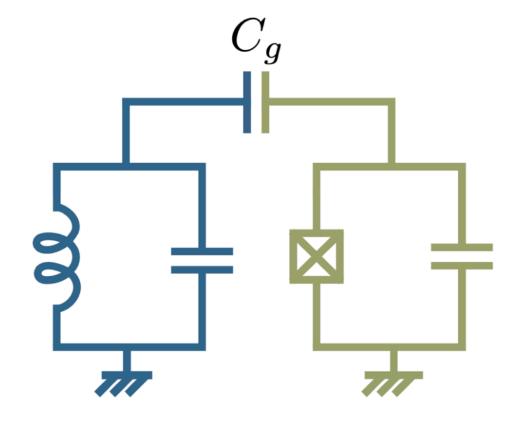
The code

(correct bit and phase flips)



 $n \approx 1000$ for one logical qubit

In practice



$$\hat{H} = 4E_C(\hat{n} + \hat{n}_r)^2 - E_J \cos \hat{\varphi}$$
$$-\sum_m \hbar \omega_m \hat{a}_m^{\dagger} \hat{a}_m$$

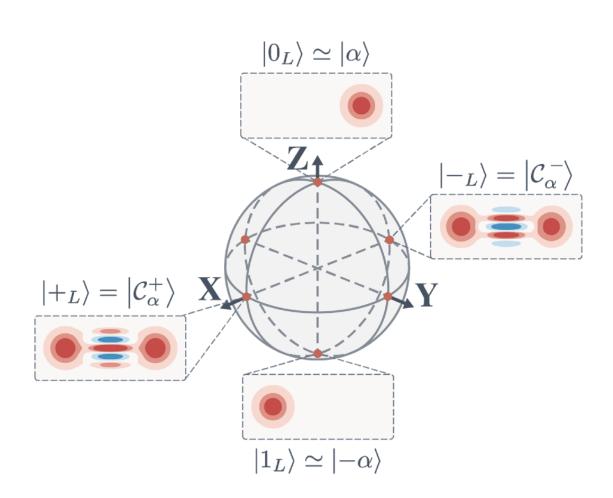
$$\hat{H}_{\text{disp}} \approx \hbar \omega_r' \hat{a}^{\dagger} \hat{a} + \frac{\hbar \omega_q'}{2} \hat{\sigma}_z + \hbar \chi \hat{a}^{\dagger} \hat{a} \hat{\sigma}_z$$

$$L = \sqrt{\gamma} \sigma_- \quad L_{\varphi} = \sqrt{\gamma}_{\varphi} \sigma_z$$

Example 2: repetition code with cat qubits

The qubit

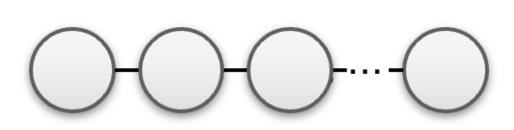
(correct bit flips)



Qubit encoded in the $\{ |-\alpha\rangle, |+\alpha\rangle \}$ subspace

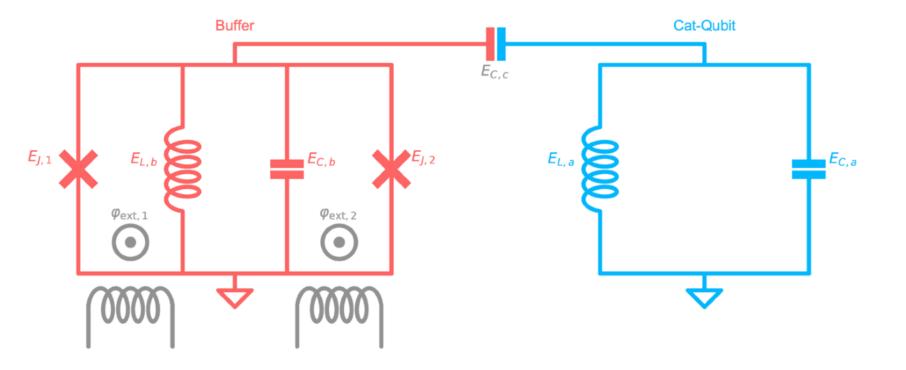
The code

(correct phase flips)



 $n \approx 15$ for one logical qubit (with LDPC code)

In practice



$$U(\varphi) = \frac{1}{2} E_{L,b} \varphi^2 - E_{J,1} \cos(\varphi + \varphi_{\text{ext},1})$$
$$- E_{J,2} \cos(\varphi - \varphi_{\text{ext},2})$$

approximations

$$H = 0$$

$$L_1 = \sqrt{\kappa_1} a$$

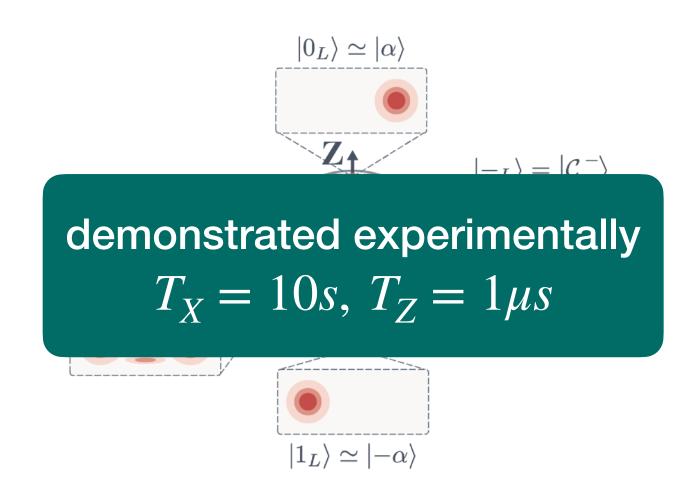
$$L_2 = \sqrt{\kappa_2} (a^2 - \alpha^2)$$

Guillaud, Jérémie, and Mazyar Mirrahimi. "Repetition cat qubits for fault-tolerant quantum computation." Physical Review X 9.4 (2019): 041053. Lescanne, Raphaël, et al. "Exponential suppression of bit-flips in a qubit encoded in an oscillator." Nature Physics 16.5 (2020): 509-513. Ruiz, Diego, et al. "LDPC-cat codes for low-overhead quantum computing in 2D." arXiv preprint arXiv:2401.09541 (2024). Réglade, Ulysse, et al. "Quantum control of a cat qubit with bit-flip times exceeding ten seconds." Nature (2024): 1-6.

Example 2: repetition code with cat qubits

The qubit

(correct bit flips)



Qubit encoded in the $\{ |-\alpha\rangle, |+\alpha\rangle \}$ subspace

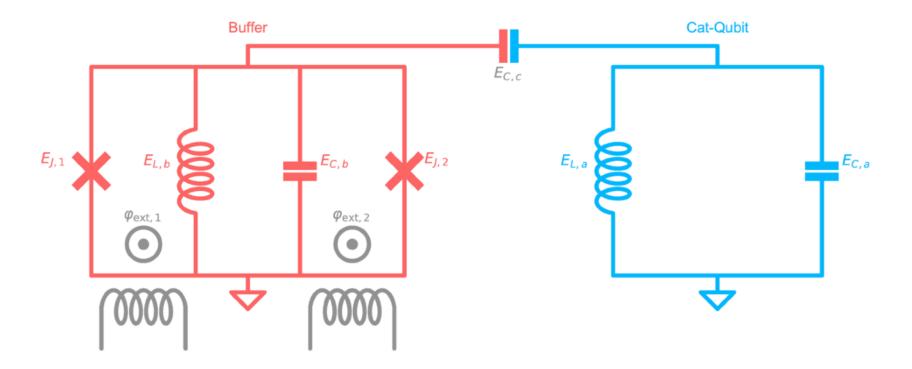
The code

(correct phase flips)

work in progress

 $n \approx 15$ for one logical qubit (with LDPC code)

In practice



$$U(\varphi) = \frac{1}{2} E_{L,b} \varphi^2 - E_{J,1} \cos(\varphi + \varphi_{\text{ext},1})$$
$$- E_{J,2} \cos(\varphi - \varphi_{\text{ext},2})$$

approximations

$$H = 0$$

$$L_1 = \sqrt{\kappa_1} a$$

$$L_2 = \sqrt{\kappa_2} (a^2 - \alpha^2)$$

Guillaud, Jérémie, and Mazyar Mirrahimi. "Repetition cat qubits for fault-tolerant quantum computation." Physical Review X 9.4 (2019): 041053. Lescanne, Raphaël, et al. "Exponential suppression of bit-flips in a qubit encoded in an oscillator." Nature Physics 16.5 (2020): 509-513. Ruiz, Diego, et al. "LDPC-cat codes for low-overhead quantum computing in 2D." arXiv preprint arXiv:2401.09541 (2024). Réglade, Ulysse, et al. "Quantum control of a cat qubit with bit-flip times exceeding ten seconds." Nature (2024): 1-6.

*with superconducting circuits

- 1. Choose a target dynamics for your qubit (a specific Liouvillian \mathscr{L}).
- 2. Find a circuit that implement this dynamics.
- 3. Build the circuit.
- 4. Measure all the system parameters.
- 5. Implement physical gates (e.g. X gate, CNOT gate).
- 6. Implement QEC and logical gates.
- 7. (optional) Break bitcoin, become rich and famous.

*with superconducting circuits

- 1. Choose a target dynamics for your qubit (a specific Liouvillian \mathscr{L}).
- 2. Find a circuit that implement this dynamics.
- 3. Build the circuit.
- 4. Measure all the system parameters → this talk focuses on this step.
- 5. Implement physical gates (e.g. X gate, CNOT gate).
- 6. Implement QEC and logical gates.
- 7. (optional) Break bitcoin, become rich and famous.

*with superconducting circuits

- 1. Choose a target dynamics for your qubit (a specific Liouvillian \mathscr{L}).
- 2. Find a circuit that implement this dynamics.
- 3. Build the circuit.
- 4. Measure all the system parameters → this talk focuses on this step.

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}(\rho) = -i[H,\rho] + \sum_{k} \left(L_{k}\rho L_{k}^{\dagger} - \frac{1}{2}L_{k}^{\dagger}L_{k}\rho - \frac{1}{2}\rho L_{k}^{\dagger}L_{k} \right)$$
 parameterised Liouvillian $\mathcal{L}(\theta)$ with parameters $\theta = (\theta_{1}, \dots, \theta_{p}) \in \mathbb{R}^{p}$

Goal of the characterisation: estimate θ

*with superconducting circuits

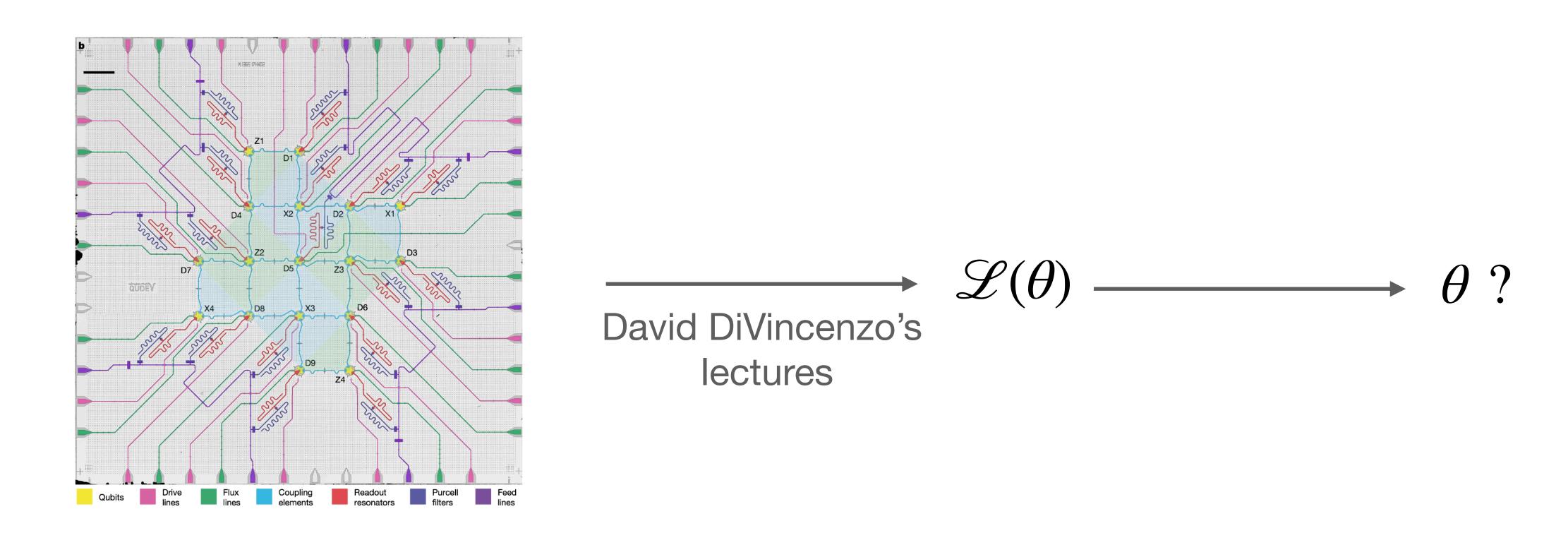
- 1. Choose a target dynamics for your qubit (a specific Liouvillian \mathscr{L}).
- 2. Find a circuit that implement this dynamics.
- 3. Build the circuit.
- 4. Measure all the system parameters → this talk focuses on this step.

Goal of the characterisation: estimate θ

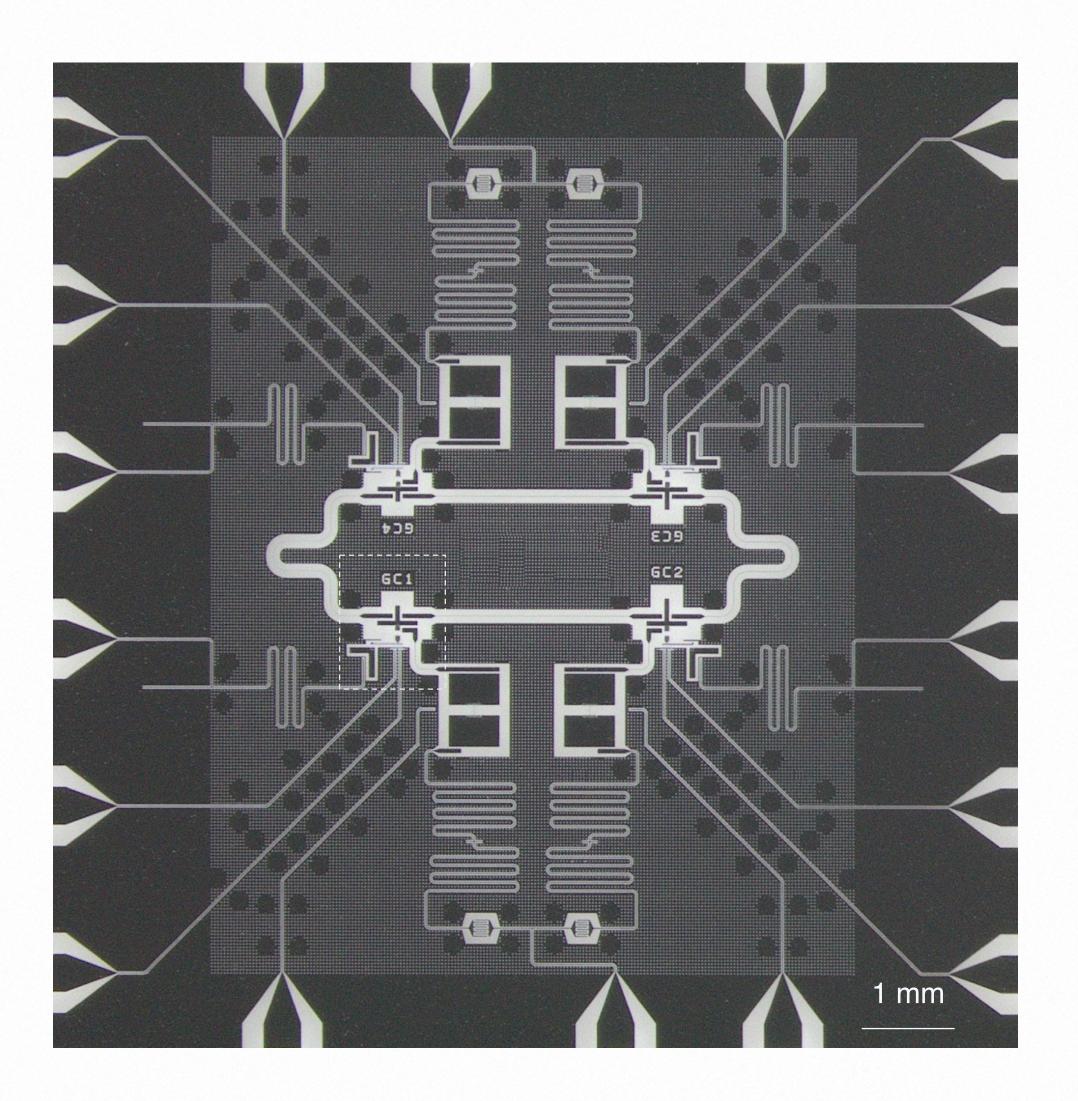
- Fit the simplified qubit- $\theta = (\omega_r, \omega_q, \chi, \gamma, \gamma_{\varphi}, \dots)$
- Fit the full circuit model

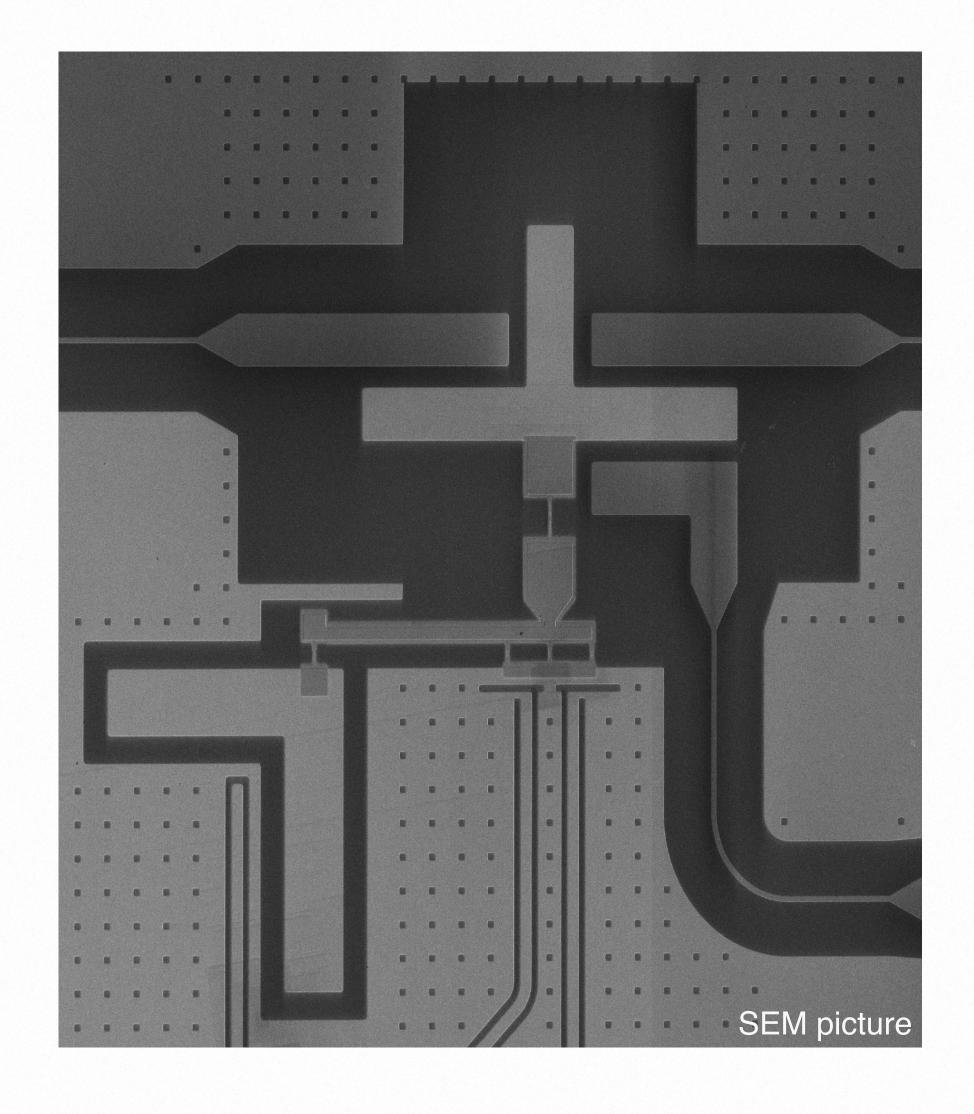
$$\theta = (E_J, E_C, \omega_m, \ldots)$$

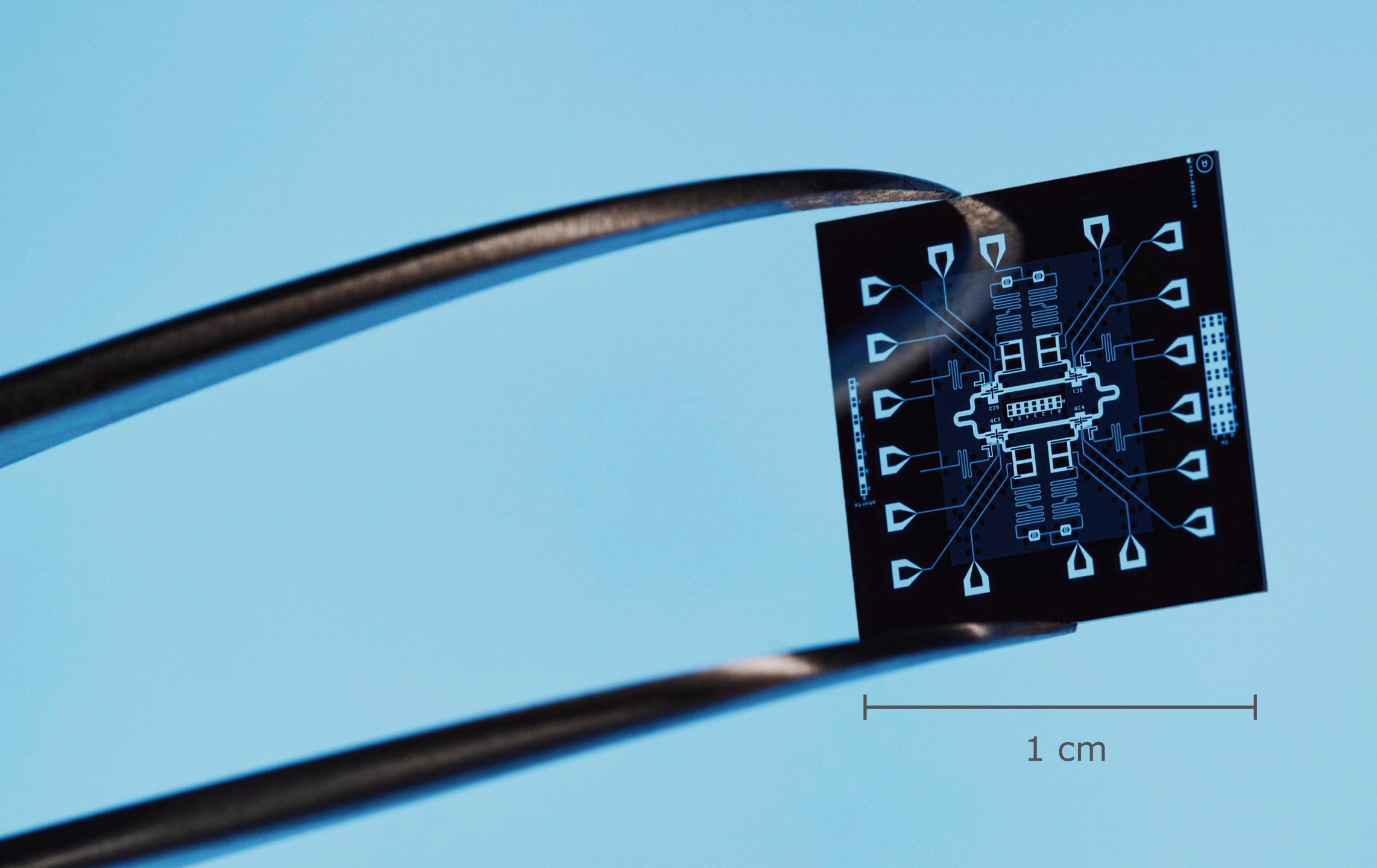
Characterising superconducting circuits

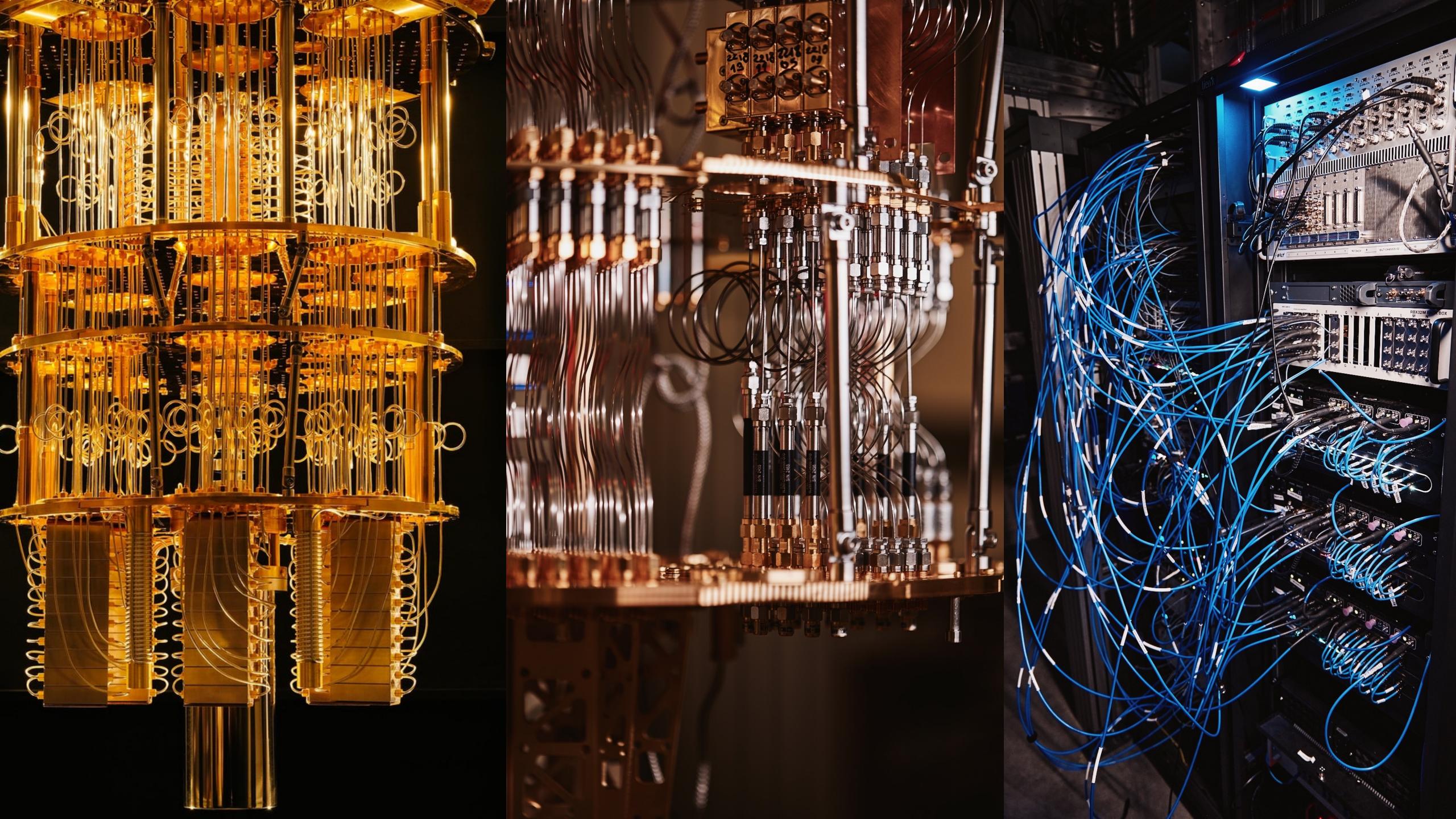


Why do we need to characterise anything if we designed the circuit?

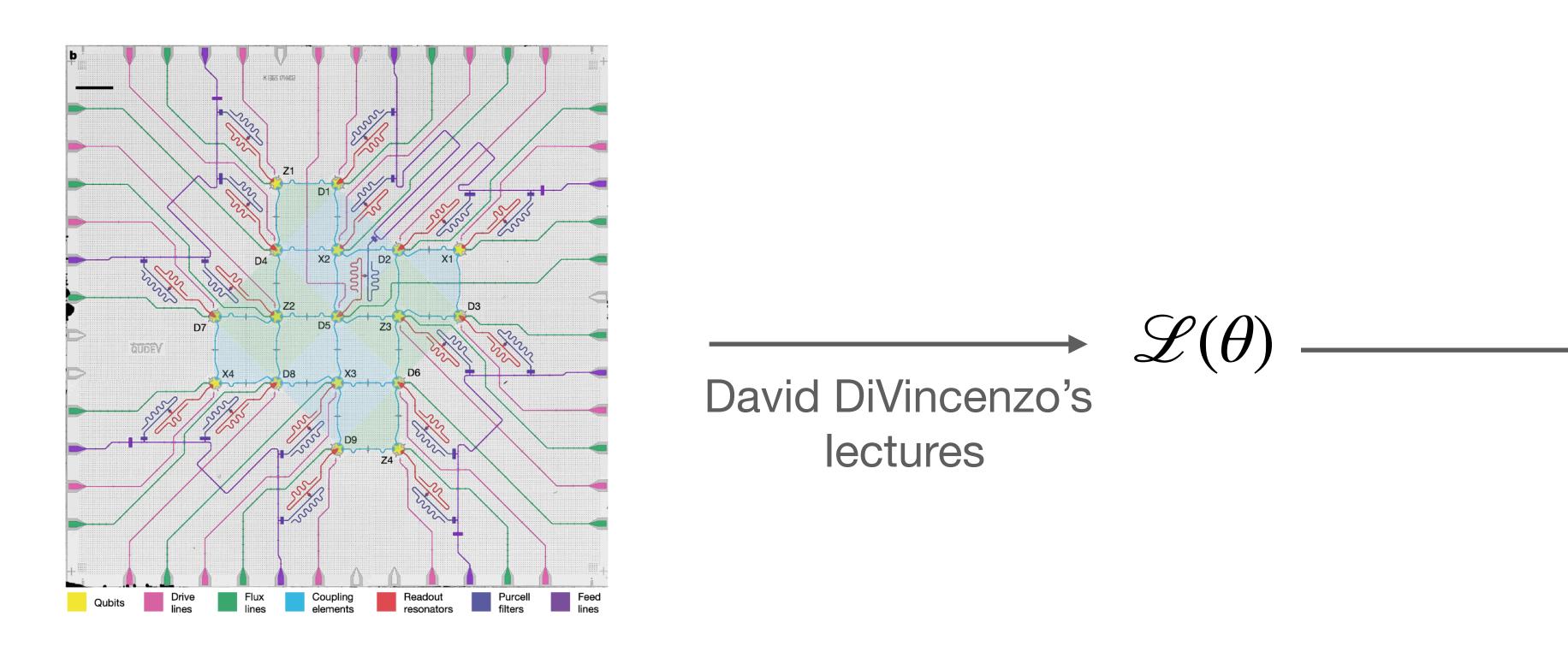




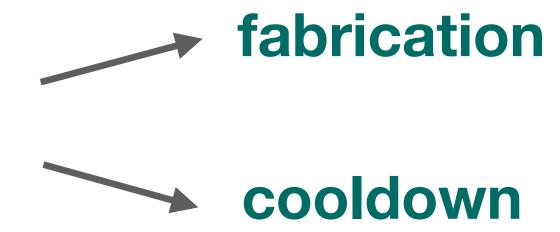




Characterising superconducting circuits



Why do we need to characterise anything if we designed the circuit?



The challenge

- A double-edged sword X: you can choose the dynamics you want, but...
 - Many parameters to estimate (~10-20 for a single qubit).
 - Large Hilbert space dimensions (not qubits).
 - New parameters for every new fabricated chip (not like an atom energy levels).
 - Parameters drift over time (need frequent recalibration).
 - Physics not well described in some regimes (because of all the approximations).

The challenge

- A double-edged sword X: you can choose the dynamics you want, but...
 - Many parameters to estimate (~10-20 for a single qubit).
 - Large Hilbert space dimensions (not qubits).
 - New parameters for every new fabricated chip (not like an atom energy levels).
 - Parameters drift over time (need frequent recalibration).
 - Physics not well described in some regimes (because of all the approximations).
- We are moving towards larger and more complex systems.
 - First applications start at ~100 logical qubits (~105 transmons, ~1500 cats).
 - New modeling issues, unexpected effects and more parameters to estimate.

1. Introduction

Experimental QEC with superconducting circuits

2. Today's solution

Typical workflow for characterising superconducting circuits

3. A simple method

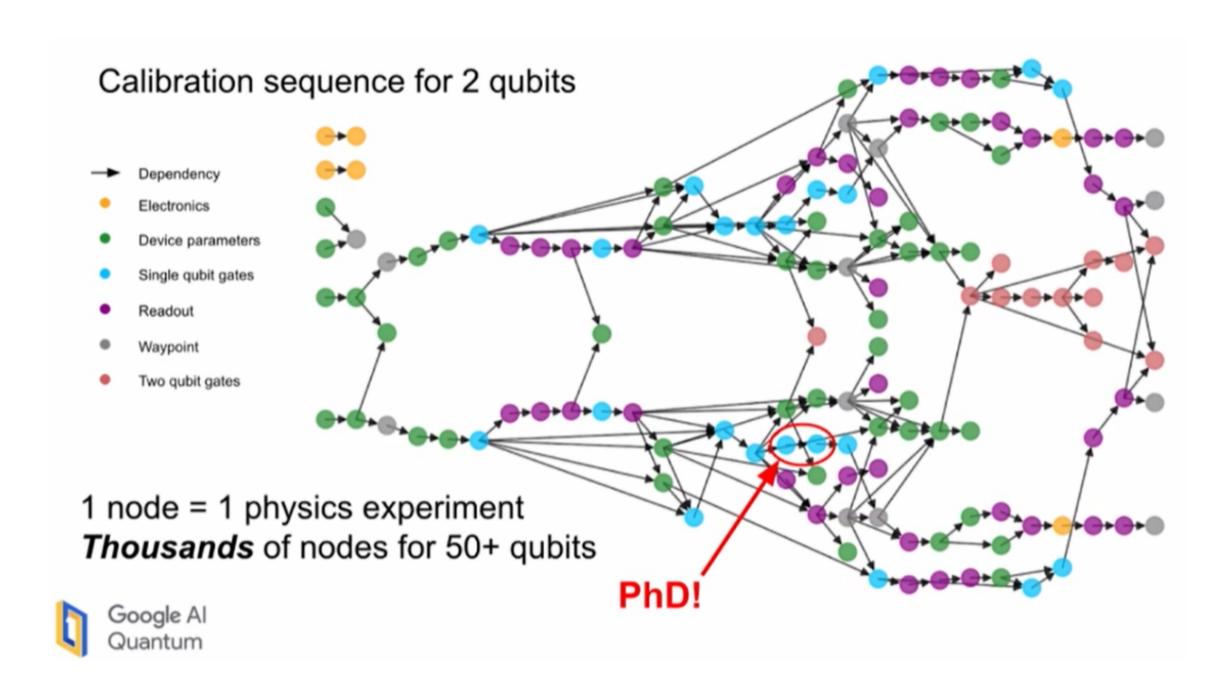
Fitting correlation functions of continuous measurement

4. Three numerical examples

Does the method actually work?

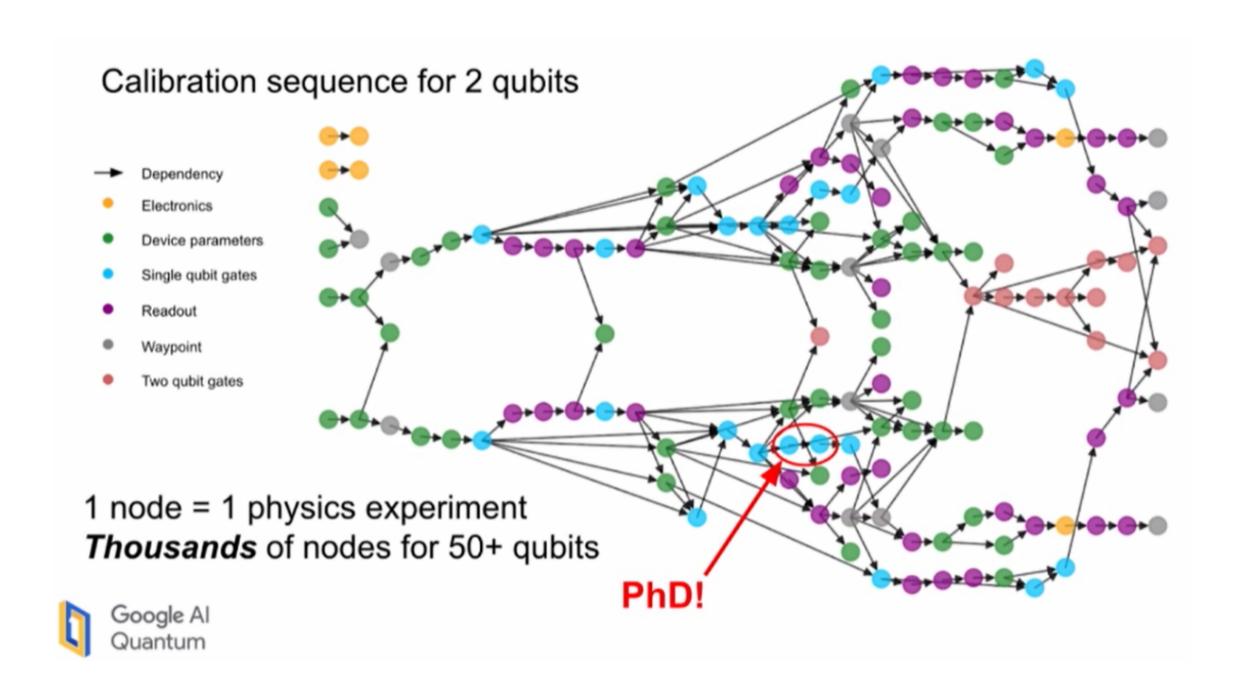
The measurement graph

- One measurement handcrafted for each parameter to estimate
- Based on physical intuition.
- Data = observables expectation value: $\langle O_k \rangle = \text{Tr}[O_k \rho]$.



The measurement graph

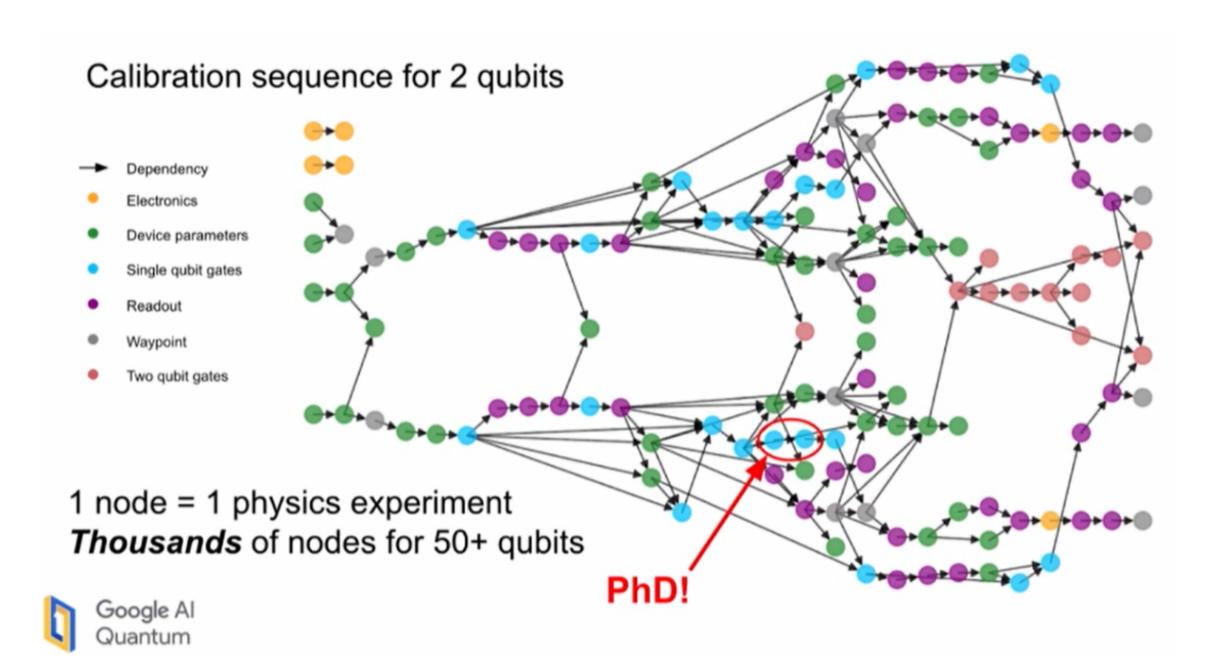
- One measurement handcrafted for each parameter to estimate
- Based on physical intuition.
- Data = observables expectation value: $\langle O_k \rangle = \text{Tr}[O_k \rho]$.



- X Data intensive.
- X Automation is hard.
- Restrict experiments to regions where the physics is well-understood.

The measurement graph

- One measurement handcrafted for each parameter to estimate
- Based on physical intuition.
- Data = observables expectation value: $\langle O_k \rangle = \text{Tr}[O_k \rho]$.



- X Data intensive.
- X Automation is hard.
- Restrict experiments to regions where the physics is well-understood.

We need more automated methods to scale to larger devices.

And for this, we need more expressive data.

Projective measurements in superconducting circuits

time-averaged continuous measurements

Measurements in superconducting circuits

- Typically: heterodyne detection of a field averaged over long times.
- Readout devices = amazing probes, but only used to measure σ_z projectively.
- Can sample lots of trajectories (e.g. $1\mu s$ measurement $\rightarrow 10^6$ trajectories in 1s).
- SME formalism: how the state ρ_t depends on the signal $I_t=\mathrm{d}Y_t/\mathrm{d}t$:

average Lindblad evolution + measurement back-action

$$\mathrm{d}\rho_t = \mathscr{L}(\rho_t)\,\mathrm{d}t + \mathscr{M}(\rho_t,\mathrm{d}Y_t)$$
 expression depends on jump or diffusive

Measurements in superconducting circuits

- Typically: heterodyne detection of a field averaged over long times.
- Readout devices = amazing probes, but only used to measure σ_z projectively.
- Can sample lots of trajectories (e.g. $1\mu s$ measurement $\rightarrow 10^6$ trajectories in 1s).
- SME formalism: how the state ρ_t depends on the signal $I_t = \mathrm{d}Y_t/\mathrm{d}t$:

average Lindblad evolution + measurement back-action

$$\mathrm{d}\rho_t = \mathcal{L}(\rho_t)\,\mathrm{d}t + \mathcal{M}(\rho_t,\mathrm{d}Y_t)$$
 expression depends on jump or diffusive

The data:

$$Y = \left\{ \{I_t^{(1)}\}, \{I_t^{(2)}\}, \dots, \{I_t^{(n_{exp})}\} \right\}_{t \in [0, T]}$$

Measurements in superconducting circuits

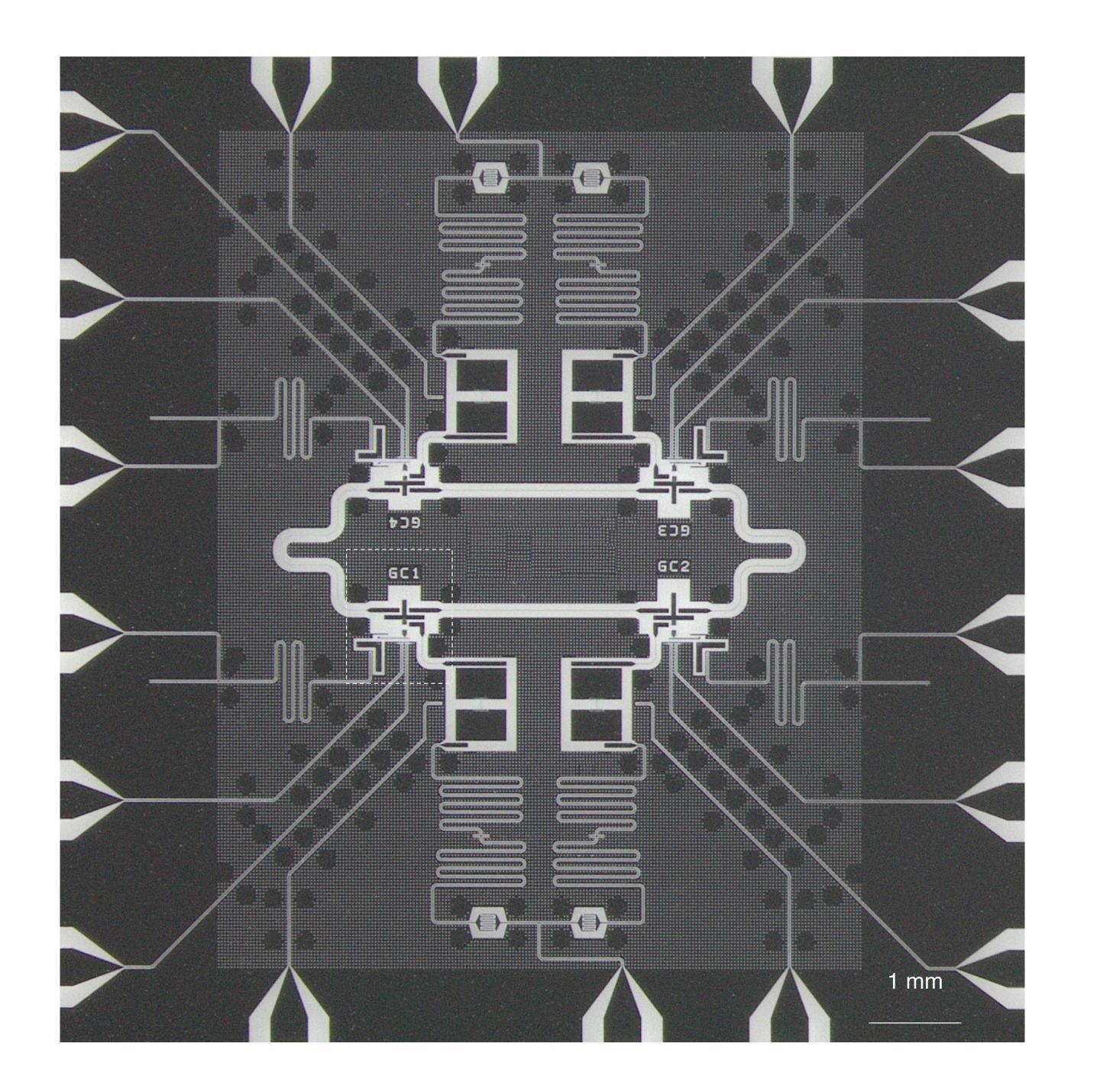
- Typically: heterodyne detection of a field averaged over long times.
- Readout devices = amazing probes, but only used to measure σ_z projectively.
- Can sample lots of trajectories (e.g. $1\mu s$ measurement $\rightarrow 10^6$ trajectories in 1s).
- SME formalism: how the state ρ_t depends on the signal $I_t = \mathrm{d}Y_t/\mathrm{d}t$:

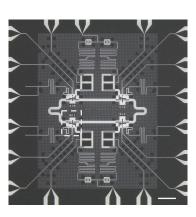
average Lindblad evolution + measurement back-action

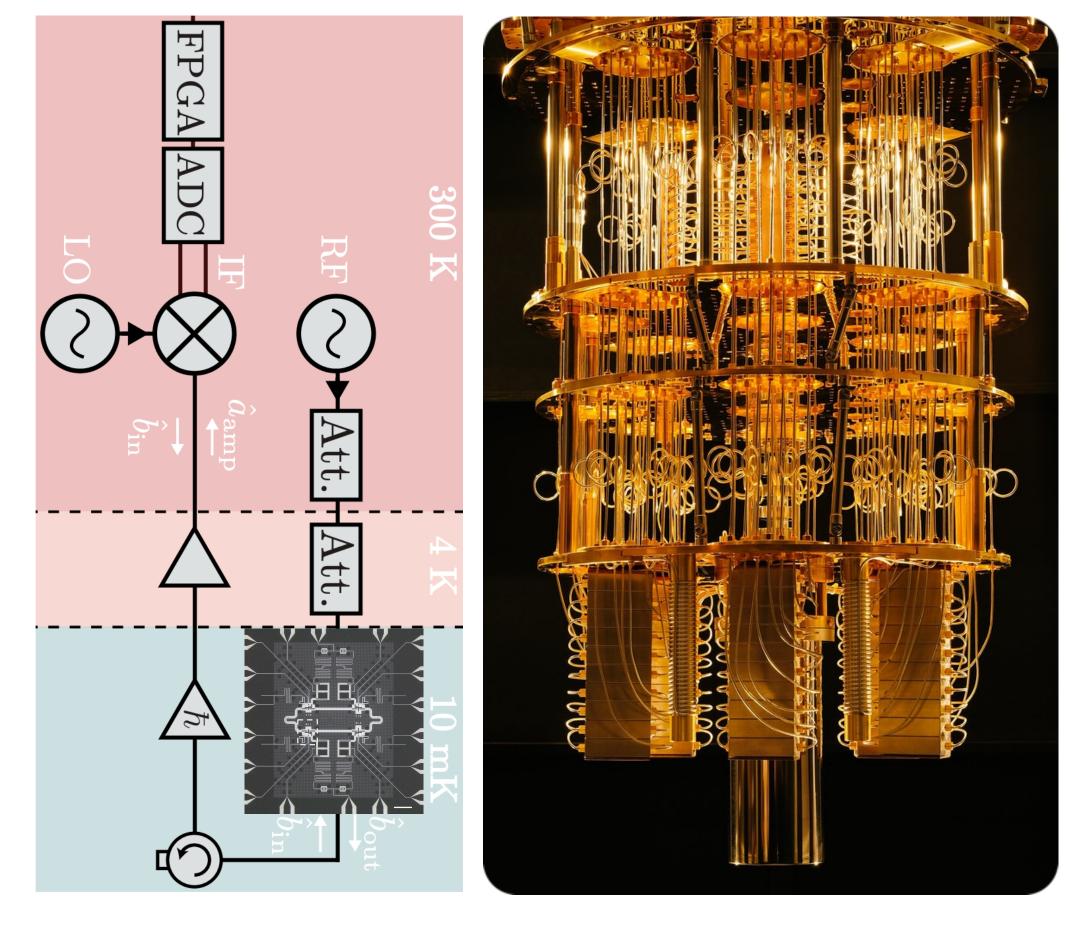
$$\mathrm{d}\rho_t = \mathcal{L}(\rho_t)\,\mathrm{d}t + \mathcal{M}(\rho_t,\mathrm{d}Y_t)$$
 expression depend on jump or diffusive

The data:

$$Y = \left\{ \{I_t^{(1)}\}, \{I_t^{(2)}\}, \dots, \{I_t^{(n_{exp})}\} \right\}_{t \in [0, T]}$$







Signal gen.

◯IQ Mixer

© Circulator

Att. Attenuator

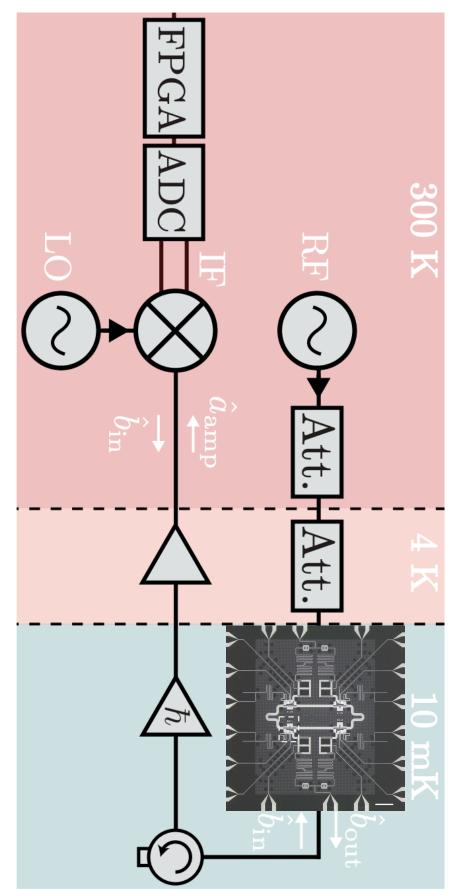
HEMT amp.

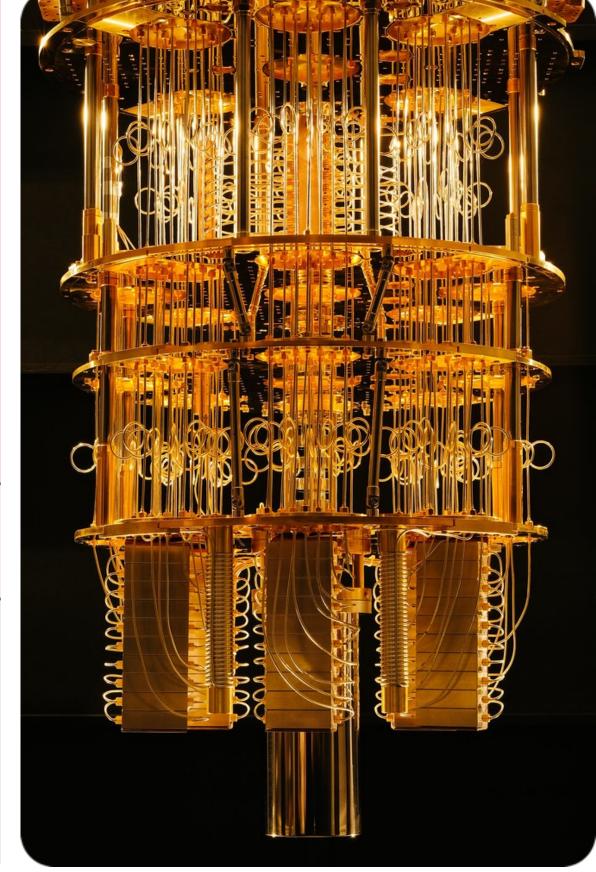
Delimited amp.

The actual experimental data

• I_t is not a measurable quantity.

. Filtered signal:
$$I_f = \int f_t \; I_t \, \mathrm{d}t$$
. impulse response of the acquisition chain





Signal gen.

◯IQ Mixer

© Circulator

Att. Attenuator

HEMT amp.

\$\bar{h}\$ Q-limited amp.

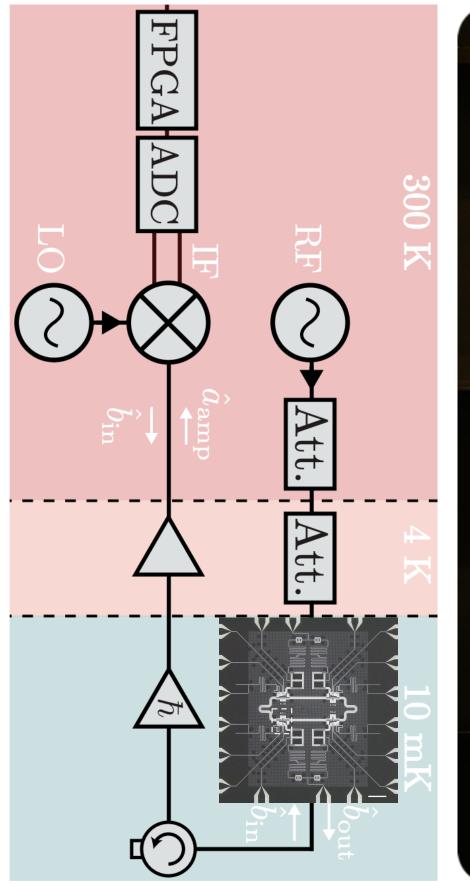
The actual experimental data

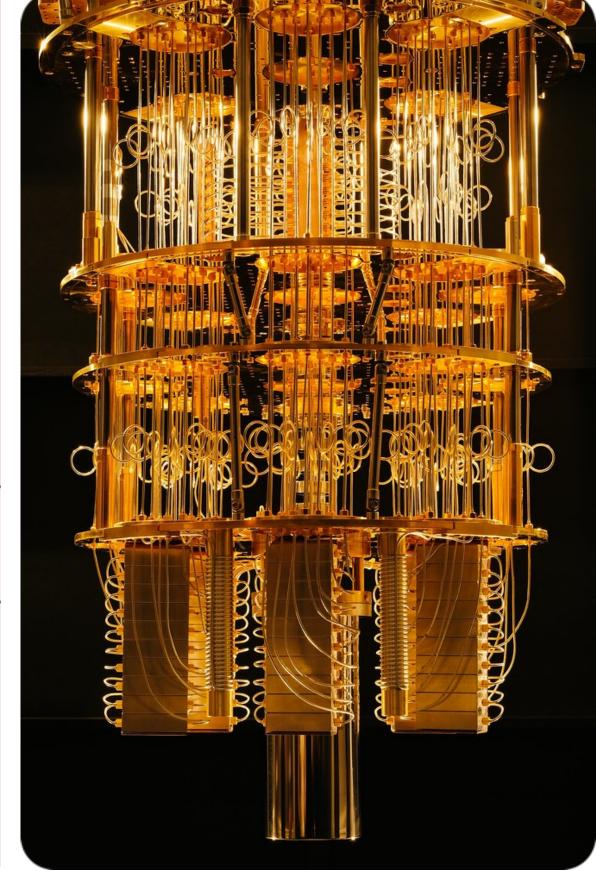
- I_t is not a measurable quantity.
- . Filtered signal: $I_f = \int f_t \; I_t \, \mathrm{d}t$. impulse response of the acquisition chain
- ADC \rightarrow digitised signal I_k .
- The actual data is a discrete-time record:

$$Y = \left\{ (I_0^{(j)}, I_1^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}}$$

Jump: $\{(0,0,0,0,0,1,0,0,1,0,\dots),\dots\}$

Diffusive: $\{(0.2, -0.44, 0.3, 1.2, ...), ...\}$





Signal gen.

◯ IQ Mixer

© Circulator

Att. Attenuator

HEMT amp.

Delimited amp.

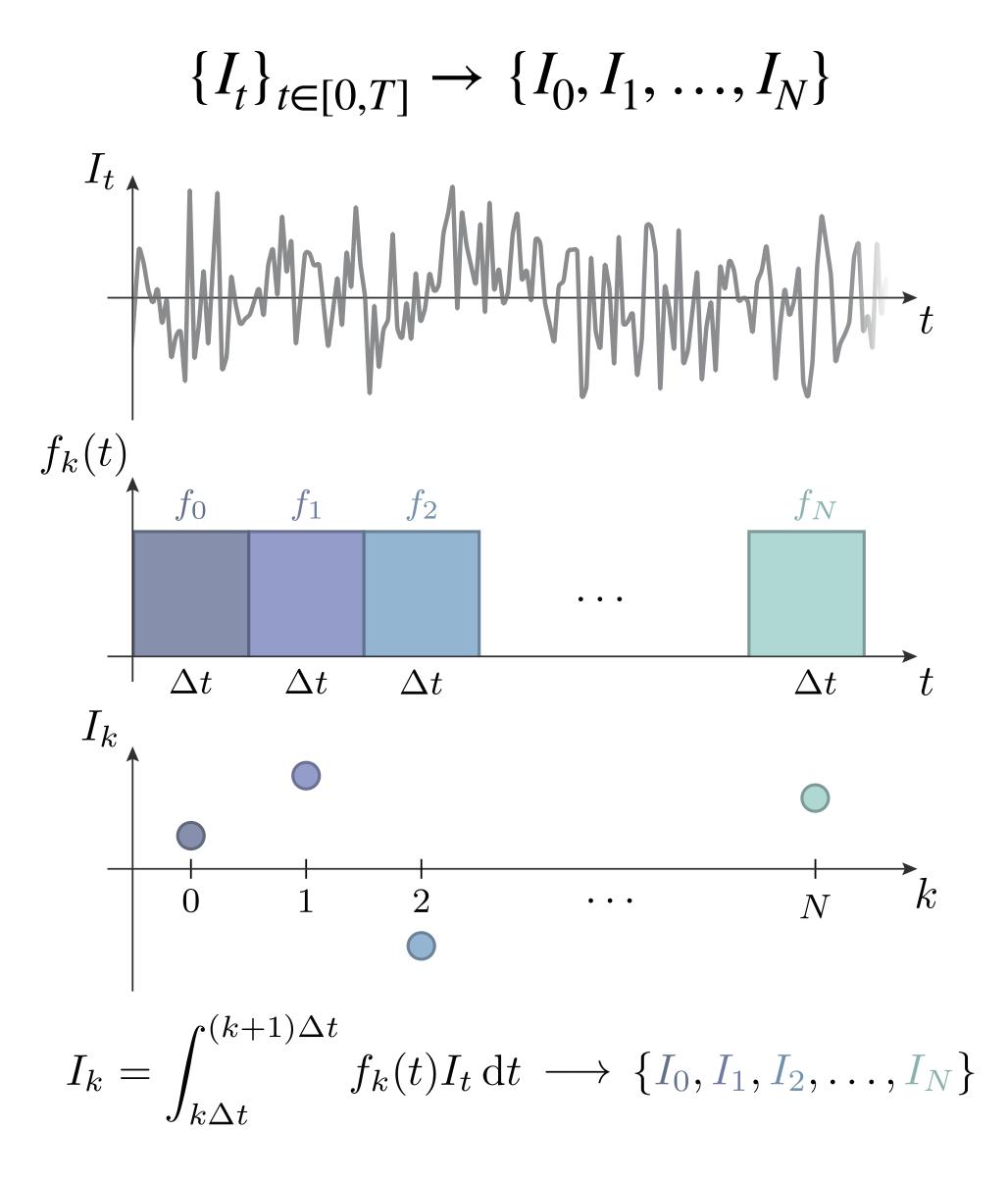
The actual experimental data

- I_t is not a measurable quantity.
- . Filtered signal: $I_f = \int f_t \; I_t \, \mathrm{d}t$. impulse response of the acquisition chain
- ADC \rightarrow digitised signal I_k .
- The actual data is a discrete-time record:

$$Y = \left\{ (I_0^{(j)}, I_1^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}}$$

Jump:
$$\{(0,0,0,0,0,1,0,0,1,0,\dots),\dots\}$$

Diffusive: $\{(0.2, -0.44, 0.3, 1.2, ...), ...\}$



How to estimate the system parameters from this data?

$$Y = \left\{ (I_1^{(j)}, I_2^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}} \xrightarrow{?} \theta$$

Two existing methods

$$Y = \left\{ (I_1^{(j)}, I_2^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \theta$$

Bayesian inference

Find the parameters that maximise the likelihood of the data Y:

$$\theta = \operatorname{argmax}_{\theta} \mathbb{P}[Y | \theta]$$

- Optimal use of the information.
- X Exponential cost in the number of parameters.
- X Doesn't take filtering into account.

Two existing methods

$$Y = \left\{ (I_1^{(j)}, I_2^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \theta$$

Bayesian inference

Find the parameters that maximise the likelihood of the data Y:

$$\theta = \operatorname{argmax}_{\theta} \mathbb{P}[Y | \theta]$$

- Optimal use of the information.
- X Exponential cost in the number of parameters.
- X Doesn't take filtering into account.

Machine Learning

Supervised

Learn to solve the Learn to solve the direct inverse problem $Y \to \theta$. problem $Y \to \rho_T$.

Self-supervised

- Quite general + handle non-Markovianity.
- X Large training set required.
- Adapt and test the architecture for each new model.

Two existing methods

$$Y = \left\{ (I_1^{(j)}, I_2^{(j)}, \dots, I_n^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \theta$$

Bayesian inference

Find the parameters that maximise the likelihood of the data Y:

$$\theta = \operatorname{argmax}_{\theta} \mathbb{P}[Y | \theta]$$

- Optimal use of the information.
- X Exponential cost in the number of parameters.
- X Doesn't take filtering into account.

Machine Learning

Supervised

Learn to solve the Lear inverse problem $Y \to \theta$.

Self-supervised

Learn to solve the direct problem $Y \to \rho_T$.

- Quite general + handle non-Markovianity.
- X Large training set required.
- Adapt and test the architecture for each new model.

Shared drawback: lack of interpretability

⇒ difficult to debug and hard to trust

Let's do something simpler.

1. Introduction

Experimental QEC with superconducting circuits

2. Today's solution

Typical workflow for characterising superconducting circuits

3. A simple method

Fitting correlation functions of continuous measurement

4. Three numerical examples

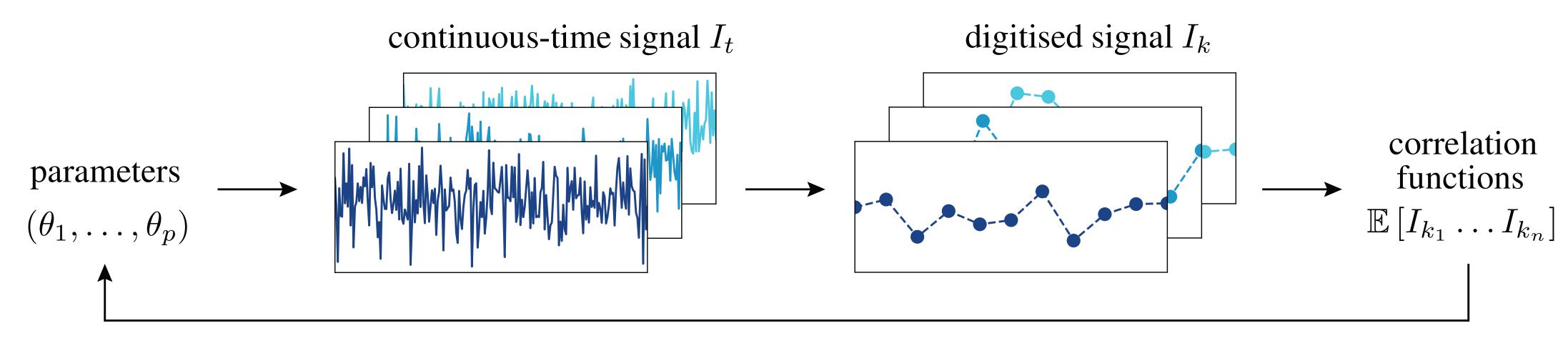
Does the method actually work?

A new method

• What is hard? A practical gap between what is **predicted by the theory** and what is **observed experimentally**.

A new method

- What is hard? A practical gap between what is predicted by the theory and what is observed experimentally.
- Proposition: fit correlation functions $\mathbb{E}[I_{k_1}...I_{k_n}]$ of the signal with an exact formula.

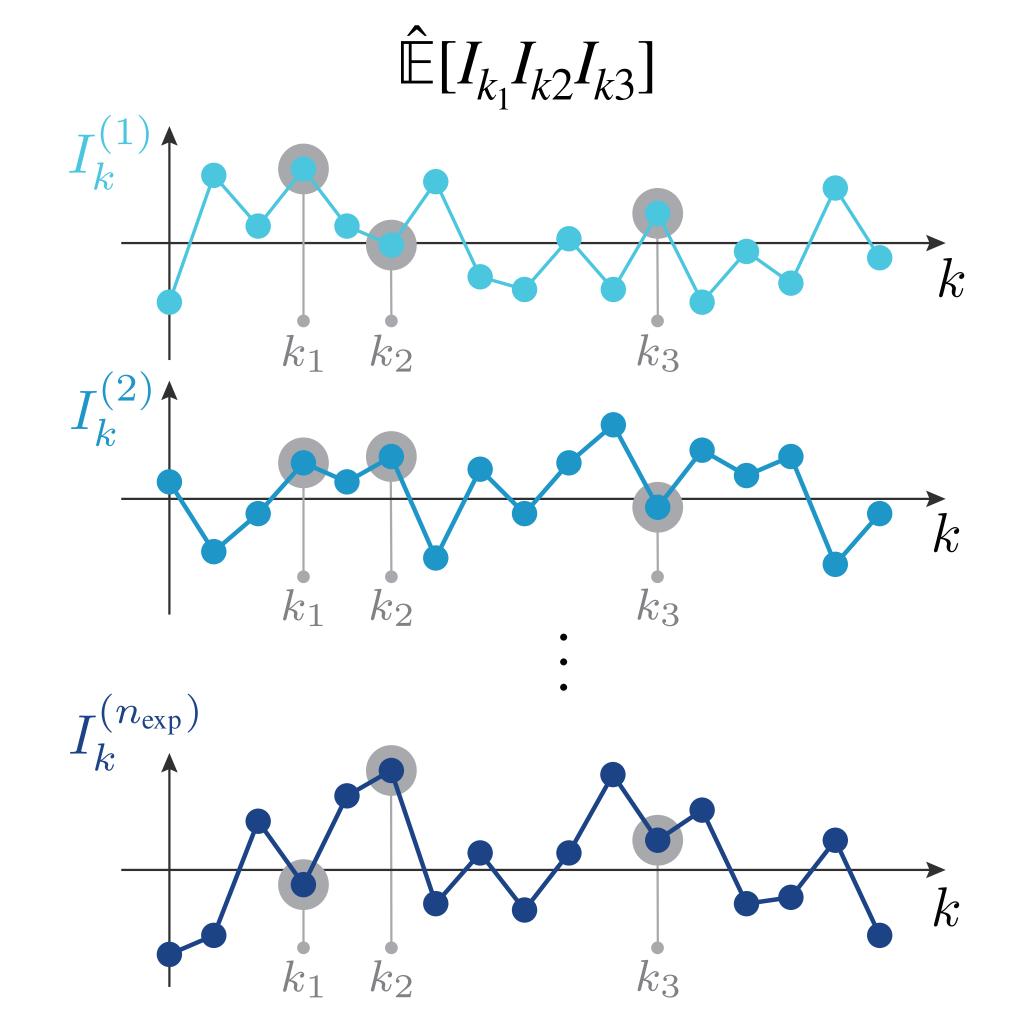


least-squares fit

$$\mathbb{E}[I_{k_1}...I_{k_n}] = f(\theta)$$

- A random variable X is fully characterized by its moments $\mathbb{E}[X^n]$.
- A stochastic process I_t is fully characterized by its correlation functions $\mathbb{E}[I_{t_1}...I_{t_n}]$.

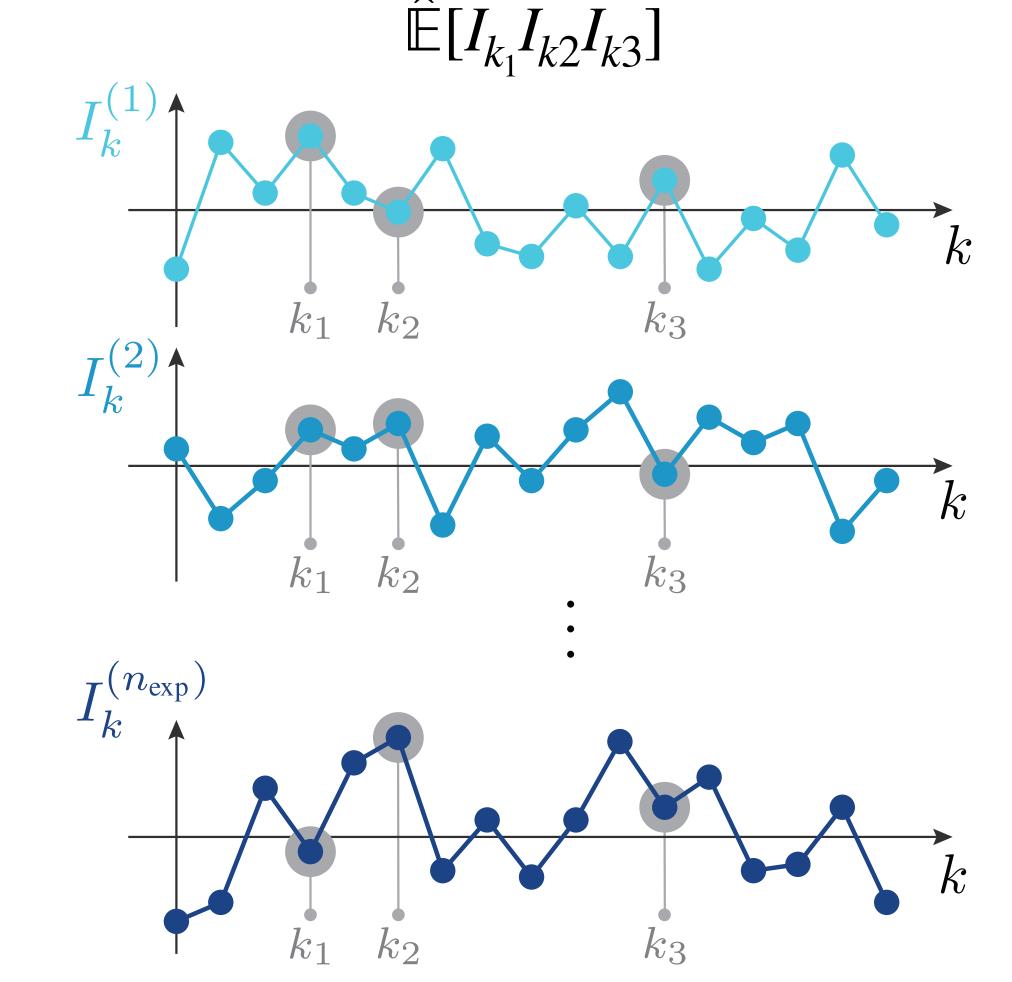
E is the average over all quantum trajectories(⇔ over all measurement records)



- A random variable X is fully characterized by its moments $\mathbb{E}[X^n]$.
- A stochastic process I_t is fully characterized by its correlation functions $\mathbb{E}[I_{t_1}...I_{t_n}]$.

E is the average over all quantum trajectories(⇔ over all measurement records)

Reduced data:



$$Y = \left\{ (I_1^{(j)}, \dots, I_N^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \tilde{Y} = E[I_{k1} \dots I_{k_n}]$$

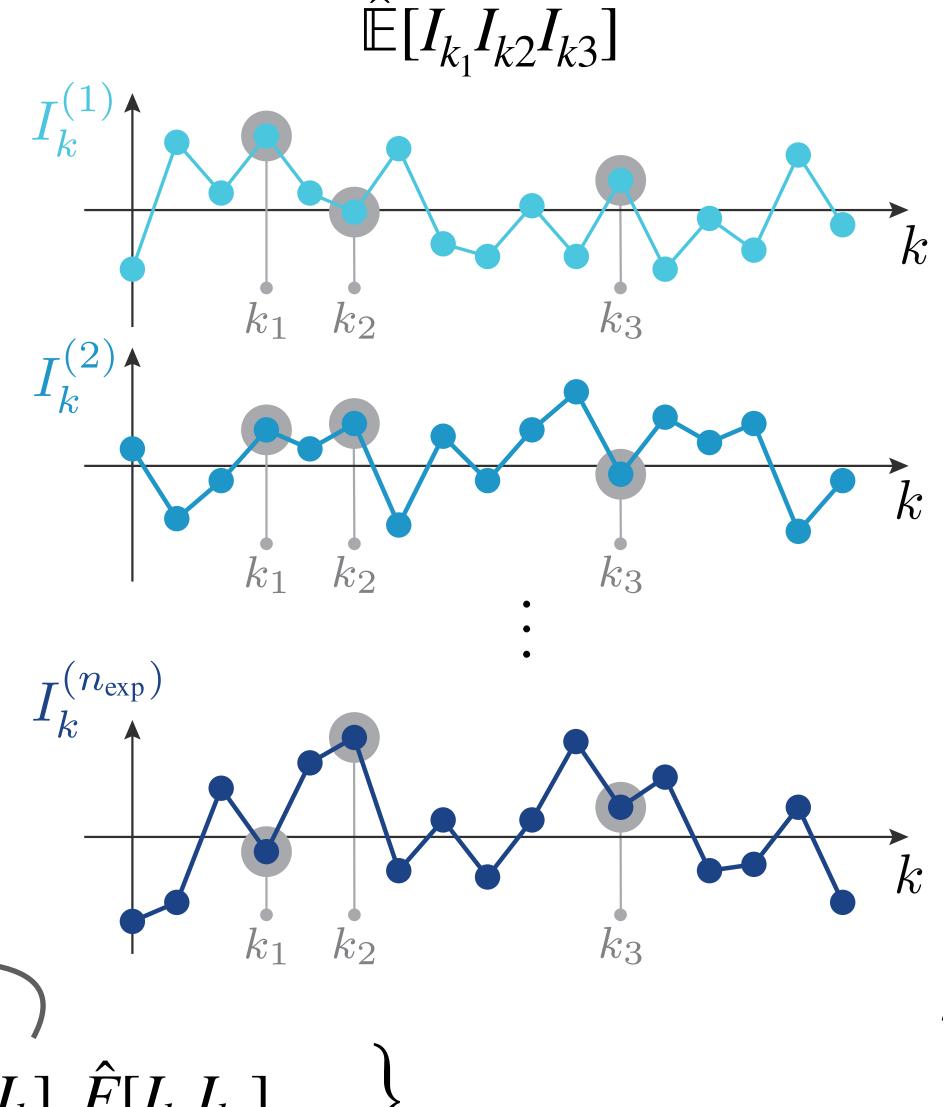
- A random variable X is fully characterized by its moments $\mathbb{E}[X^n]$.
- A stochastic process I_t is fully characterized by its correlation functions $\mathbb{E}[I_{t_1}...I_{t_n}]$.

E is the average over all quantum trajectories(⇔ over all measurement records)

Reduced data:

- multiple correlators
- estimates: $\mathbb{E} \to \hat{\mathbb{E}}$

$$Y = \left\{ (I_1^{(j)}, \dots, I_N^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \tilde{Y} = \left\{ \hat{E}[I_k], \hat{E}[I_{k_1}I_{k_2}], \dots \right\}_{1 \le k, k_1, k_2, \dots \le N}$$



- A random variable X is fully characterized by its moments $\mathbb{E}[X^n]$.
- A stochastic process I_t is fully characterized by its correlation functions $\mathbb{E}[I_{t_1}...I_{t_n}]$.

E is the average over all quantum trajectories(⇔ over all measurement records)

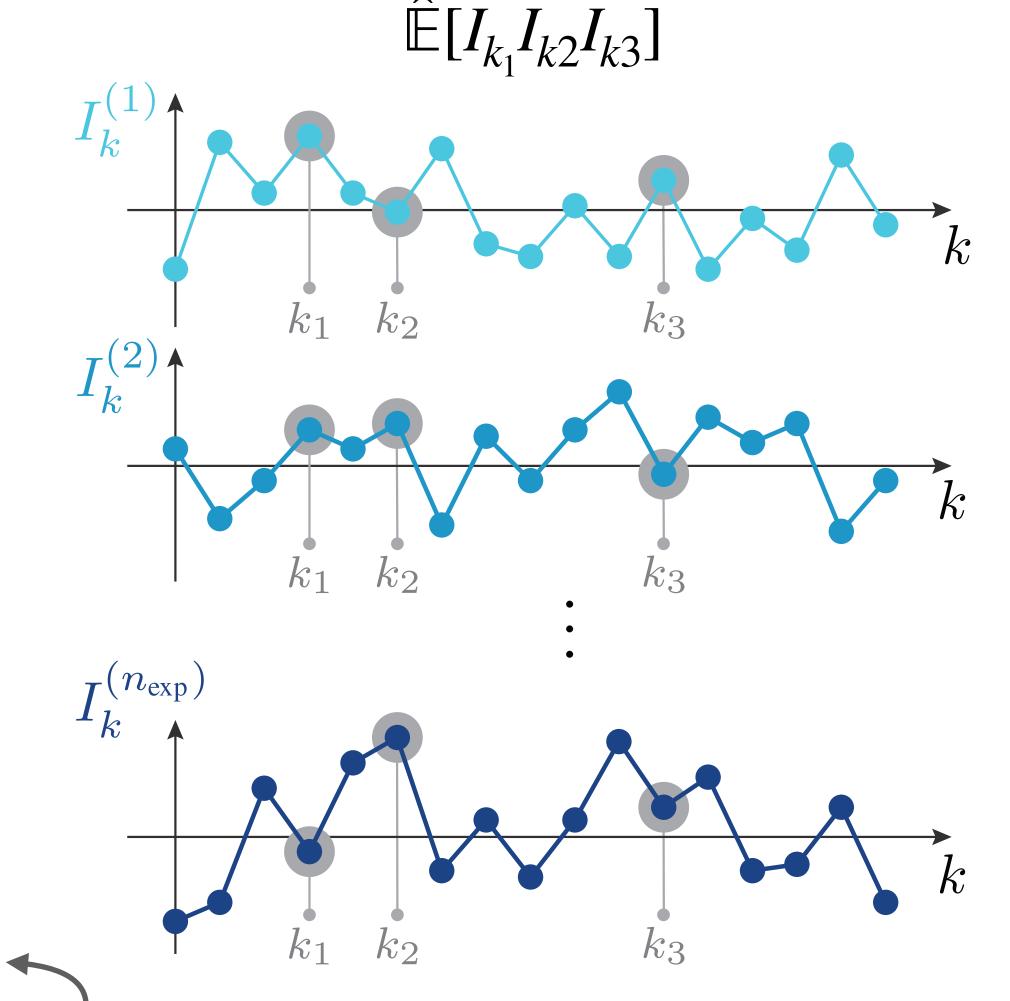
Reduced data:

- multiple correlators
- estimates: $\mathbb{E} \to \hat{\mathbb{E}}$

$$Y = \left\{ (I_1^{(j)}, \dots, I_N^{(j)}) \right\}_{1 \le j \le n_{exp}} \longrightarrow \tilde{Y} = \left\{ \hat{E}[I_k], \hat{E}[I_{k_1}I_{k_2}], \dots \right\}_{1 \le k, k_1, k_2, \dots \le N}$$

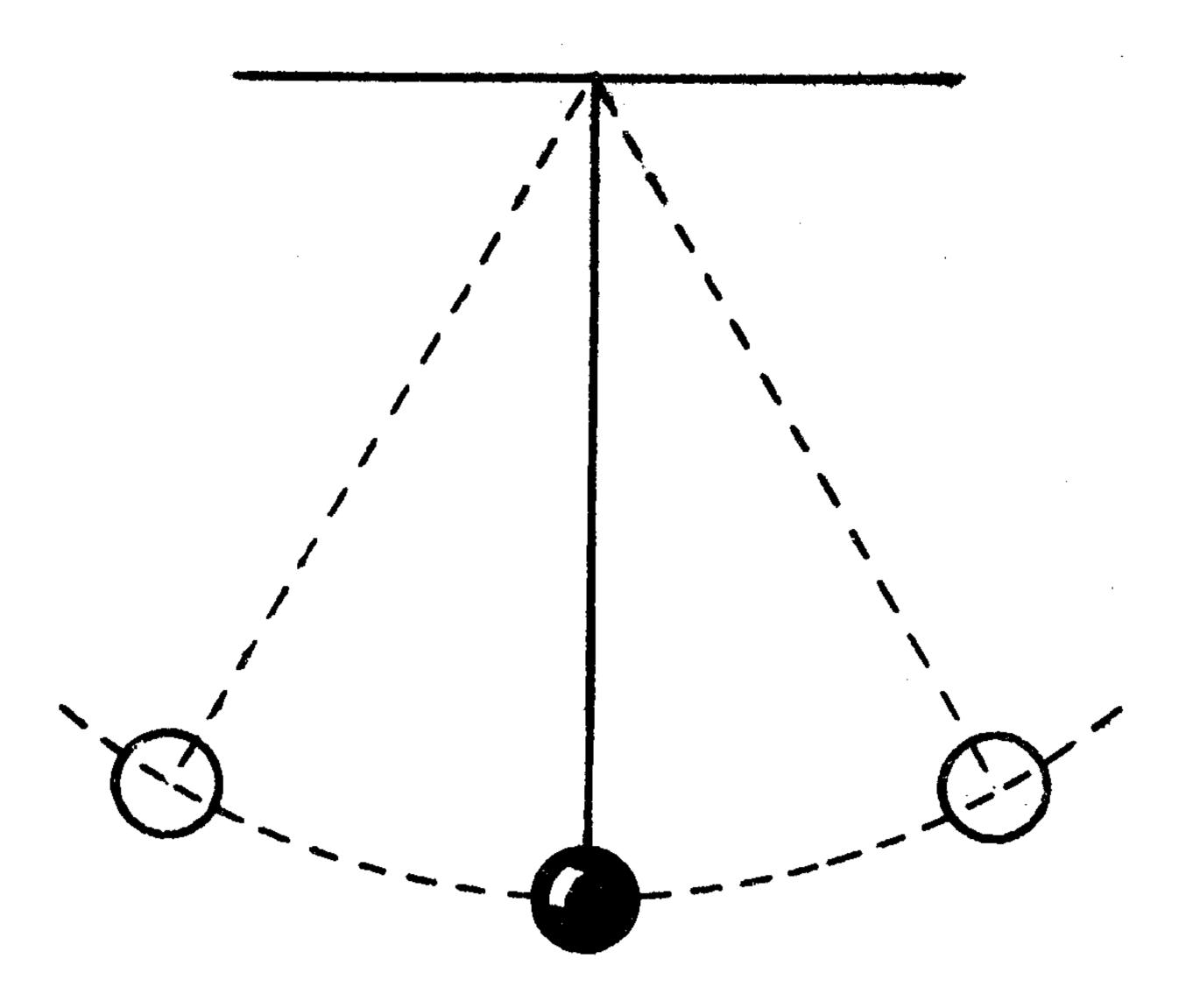
$$N = 250, \ n_{exp} = 10^6 \qquad \text{1-point } + \text{2-point } (k_1 = 0)$$

$$\Rightarrow 250 \times 10^6 \text{ data points} \qquad \Rightarrow 500 \text{ data points}$$



The pendulum analogy

The pendulum analogy



Theory 1/3 (history)

- Naïve way to compute correlation functions: simulate the SME → expensive and imprecise.
- There is an exact formula for $\mathbb{E}[I_{k_1}...I_{k_n}]$ that only depends on the SME and the initial state!

Theory 1/3 (history)

- Naïve way to compute correlation functions: simulate the SME → expensive and imprecise.
- There is an exact formula for $\mathbb{E}[I_{k_1}...I_{k_n}]$ that only depends on the SME and the initial state!
- History:
 - 2018: paper by Antoine Tilloy
 - → First proof in the diffusive case (linear SME + Girsanov's theorem).
 - 2023: paper by Pierre² and Antoine
 - → Simpler proof (in discrete-time) for both jump and diffusive + efficient numerics.
 - 2024: paper by Pierre² and Antoine
 - → Shorter proof (using Itô's lemma) + demonstration on numerical examples.

Theory 2/3 (formulas)

$$C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$$
 for the jump SME,
 $C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$ for the diffusive SME.

Sharp signal I_t

• Lindblad evolution interspersed with the correlation superoperator C_L .

$$\mathbb{E}[I_{t_1} \dots I_{t_n}] = \text{Tr}\left[\mathcal{C}_L e^{(t_n - t_{n-1})\mathcal{L}} \dots \mathcal{C}_L e^{t_1 \mathcal{L}}(\rho_0)\right]$$
for $t_1 < \dots < t_n$ and $\mathcal{L}_t = \mathcal{L}$

Theory 2/3 (formulas)

$$C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$$
 for the jump SME,
 $C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$ for the diffusive SME.

Sharp signal I_t

• Lindblad evolution interspersed with the correlation superoperator C_L .

$$\mathbb{E}[I_{t_1} \dots I_{t_n}] = \text{Tr} \Big[\mathcal{C}_L e^{(t_n - t_{n-1})\mathcal{L}} \dots \mathcal{C}_L e^{t_1 \mathcal{L}}(\rho_0) \Big]$$
for $t_1 < \dots < t_n$ and $\mathcal{L}_t = \mathcal{L}$

Filtered signal I_f

- Solve a system of coupled linear ODEs with an augmented state.
- Lindblad with additional source terms.
- Numerical cost = solving Lindblad! And cheap gradient $\nabla_{\theta} \mathbb{E}[I_{k_1}...I_{k_n}]!$ (bwd. diff. in $\mathcal{O}(1)$ w.r.t p)

$$\mathbb{E}[I_{f_1}I_{f_2}] = \text{Tr}[\rho_T^{12}]$$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\rho}^{1} \\ \dot{\rho}^{2} \\ \dot{\rho}^{12} \end{bmatrix} = \begin{bmatrix} \mathcal{L} & 0 & 0 & 0 \\ f_{1} \mathcal{C}_{L} & \mathcal{L} & 0 & 0 \\ f_{2} \mathcal{C}_{L} & 0 & \mathcal{L} & 0 \\ f_{1} f_{2} & f_{2} \mathcal{C}_{L} & f_{1} \mathcal{C}_{L} & \mathcal{L} \end{bmatrix} \begin{bmatrix} \rho \\ \rho^{1} \\ \rho^{2} \\ \rho^{12} \end{bmatrix}$$

for
$$T$$
 s.t. $\forall t \ge T, f_1(t) = f_2(t) = 0$
and $(\rho_0, \rho_0^1, \rho_0^2, \rho_0^{12}) = (\rho_0, 0, 0, 0)$

Theory 2/3 (formulas)

$$C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$$
 for the jump SME,
 $C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$ for the diffusive SME.

Sharp signal I_t

• Lindblad evolution interspersed with the correlation superoperator C_L .

$$\mathbb{E}[I_{t_1} \dots I_{t_n}] = \text{Tr}\left[\mathcal{C}_L e^{(t_n - t_{n-1})\mathcal{L}} \dots \mathcal{C}_L e^{t_1 \mathcal{L}}(\rho_0)\right]$$
for $t_1 < \dots < t_n$ and $\mathcal{L}_t = \mathcal{L}$

Filtered signal I_f

- Solve a system of coupled linear ODEs with an augmented state.
- Lindblad with additional source terms.
- Numerical cost = solving Lindblad! And cheap gradient $\nabla_{\theta} \mathbb{E}[I_{k_1}...I_{k_n}]!$ (bwd. diff. in $\mathcal{O}(1)$ w.r.t p)

$$\mathbb{E}[I_{f_1}I_{f_2}] = \text{Tr}[\rho_T^{12}]$$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\rho}^{1} \\ \dot{\rho}^{2} \\ \dot{\rho}^{12} \end{bmatrix} = \begin{bmatrix} \mathcal{L} & 0 & 0 & 0 \\ f_{1} \mathcal{C}_{L} & \mathcal{L} & 0 & 0 \\ f_{2} \mathcal{C}_{L} & 0 & \mathcal{L} & 0 \\ f_{1} f_{2} & f_{2} \mathcal{C}_{L} & f_{1} \mathcal{C}_{L} & \mathcal{L} \end{bmatrix} \begin{bmatrix} \rho \\ \rho^{1} \\ \rho^{2} \\ \rho^{12} \end{bmatrix}$$

for
$$T$$
 s.t. $\forall t \ge T$, $f_1(t) = f_2(t) = 0$
and $(\rho_0, \rho_0^1, \rho_0^2, \rho_0^{12}) = (\rho_0, 0, 0, 0)$

Bridges the gap!

$$C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$$
 for the jump SME,
 $C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$ for the diffusive SME.

• Moment-generating function for
$$X$$
. $\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} Z(t) \bigg|_{t=0}$ $Z(t) = \mathbb{E}[e^{tX}]$

$$C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$$
 for the jump SME,

$$C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$$
 for the diffusive SME.

- Theory 3/3 (proof bits)
- Moment-generating function for X. $\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} Z(t)$ $Z(t) = \mathbb{E}[e^{tX}]$
- Generating functional for I_t or I_{f^*} $\mathbb{E}[I_{t_1}\dots I_{t_n}] = \frac{\delta''\mathcal{Z}}{\delta j_{t_1}\dots\delta j_{t_m}}\Big|_{j=0}$

$$\mathcal{Z}(j) = \mathbb{E}\left[\exp\left(\int_0^\infty j_t I_t \,\mathrm{d}t\right)\right] \qquad \mathbb{E}[I_{f_1} \dots I_{f_n}] = \frac{\partial^n \mathcal{Z}}{\partial \alpha_1 \dots \partial \alpha_n} \Big|_{\alpha_1, \dots, \alpha_n = 0} \text{ for } j = \alpha_1 f_1 + \dots + \alpha_n f_n$$

$$)= heta ullet + \eta L$$

 $C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$ for the jump SME,

$$C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$$
 for the diffusive SME.

- Theory 3/3 (proof bits)
- Moment-generating function for X. $\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} Z(t)$ $Z(t) = \mathbb{E}[e^{tX}]$
- Generating functional for I_t or I_{f^*} $\mathbb{E}[I_{t_1}\dots I_{t_n}] = \frac{\delta''\mathcal{L}}{\delta j_{t_1}\dots\delta j_{t_m}}\Big|_{j=0}$

$$\mathcal{Z}(j) = \mathbb{E}\left[\exp\left(\int_0^\infty j_t I_t \,\mathrm{d}t\right)\right] \qquad \mathbb{E}[I_{f_1} \dots I_{f_n}] = \frac{\partial^n \mathcal{Z}}{\partial \alpha_1 \dots \partial \alpha_n} \Big|_{\alpha_1, \dots, \alpha_n = 0} \text{ for } j = \alpha_1 f_1 + \dots + \alpha_n f_n$$

• Observe that $\mathcal{Z}(j)=\mathrm{Tr}[
ho_\infty^j]$ and apply Itô's lemma to find that ho_t^J obeys a simple linear differential equation!

$$\rho_t^j = \mathbb{E}\left[\exp\left(\int_0^t j_s \, \mathrm{d}Y_s\right) \rho_t\right] \qquad \frac{\mathrm{d}\rho_t^j}{\mathrm{d}t} = \mathcal{L}_t^j(\rho_t^j) \qquad \frac{\mathcal{L}_t^j = \mathcal{L}_t + (e^{j_t} - 1)\,\mathcal{C}_L \quad \text{for the jump SME,}}{\mathcal{L}_t^j = \mathcal{L}_t + j_t\,\mathcal{C}_L + \frac{j_t^2}{2}} \quad \text{for the diffusive SME.}$$

$$\mathcal{C}_L(\bullet) = \theta \bullet + \eta I$$

 $C_L(\bullet) = \theta \bullet + \eta L \bullet L^{\dagger}$ for the jump SME,

$$C_L(\bullet) = \sqrt{\eta}(L \bullet + \bullet L^{\dagger})$$
 for the diffusive SME.

- Theory 3/3 (proof bits)
- Moment-generating function for X. $\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} Z(t)$ $Z(t) = \mathbb{E}[e^{tX}]$
- Generating functional for I_t or I_{f^*} $\mathbb{E}[I_{t_1}\dots I_{t_n}] = \frac{\delta''\mathcal{L}}{\delta j_{t_1}\dots\delta j_{t_m}}\Big|_{j=0}$

$$\mathcal{Z}(j) = \mathbb{E}\left[\exp\left(\int_0^\infty j_t I_t \,\mathrm{d}t\right)\right] \qquad \mathbb{E}[I_{f_1} \dots I_{f_n}] = \frac{\partial^n \mathcal{Z}}{\partial \alpha_1 \dots \partial \alpha_n} \Big|_{\substack{\alpha_1, \dots, \alpha_n = 0}} \text{ for } j = \alpha_1 f_1 + \dots + \alpha_n f_n$$

• Observe that $\mathcal{Z}(j)=\mathrm{Tr}[
ho_\infty^j]$ and apply Itô's lemma to find that ho_t^J obeys a simple linear differential equation!

$$\rho_t^j = \mathbb{E}\left[\exp\left(\int_0^t j_s \, \mathrm{d}Y_s\right) \rho_t\right] \qquad \frac{\mathrm{d}\rho_t^j}{\mathrm{d}t} = \mathcal{L}_t^j(\rho_t^j) \qquad \frac{\mathcal{L}_t^j = \mathcal{L}_t + (e^{j_t} - 1)\,\mathcal{C}_L}{\mathcal{L}_t^j = \mathcal{L}_t + j_t\,\mathcal{C}_L + \frac{j_t^2}{2}} \quad \text{for the diffusive SME.}$$

$$\Longrightarrow \quad \mathcal{Z}(j) = \text{Tr} \left[\mathscr{T} \exp \left(\int_0^\infty \mathcal{L}_t^j \, dt \right) (\rho_0) \right]$$

1. Introduction

Experimental QEC with superconducting circuits

2. Today's solution

Typical workflow for characterising superconducting circuits

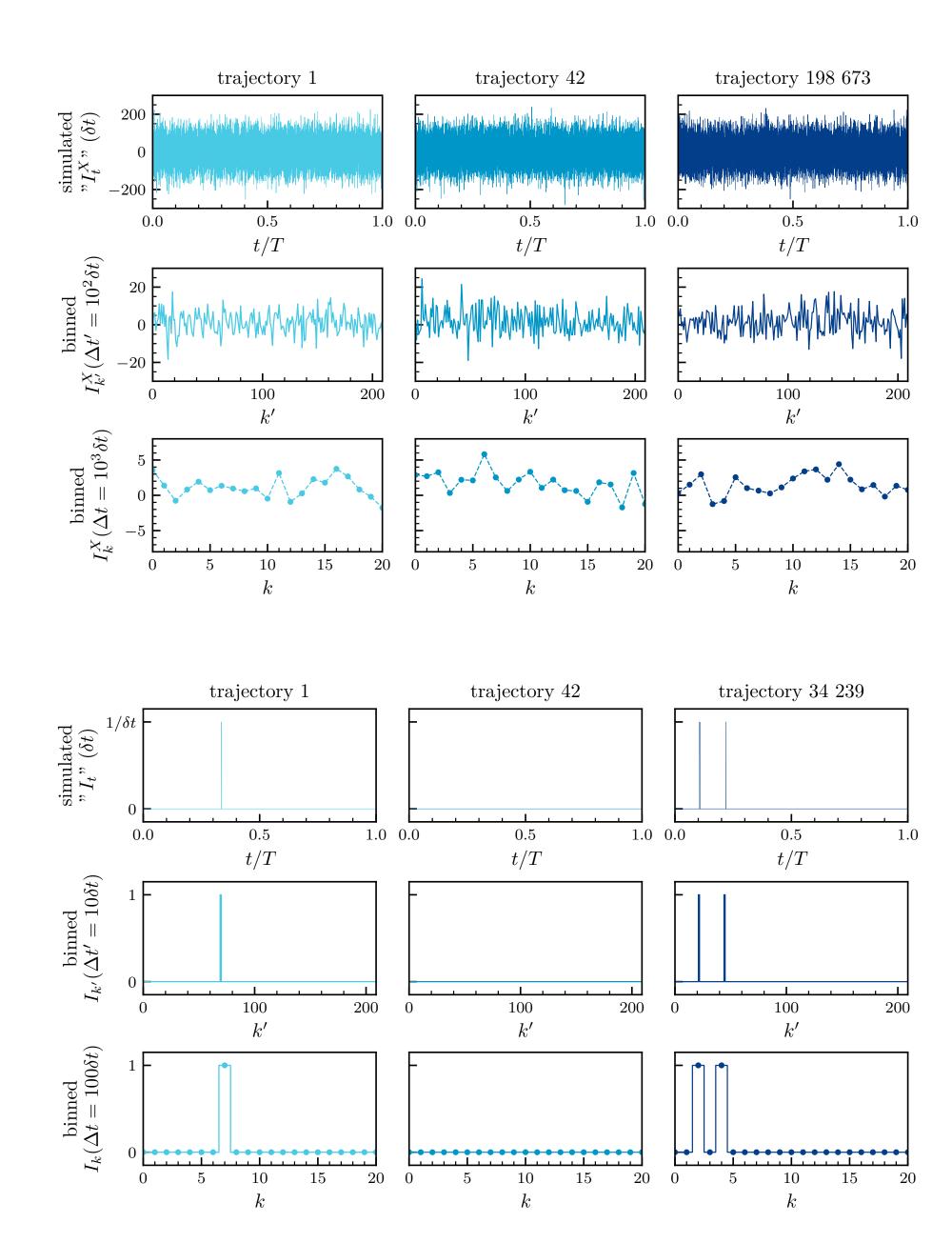
3. A simple method

Fitting correlation functions of continuous measurement

4. Three numerical examples

Does it really work?

- Three examples.
- Generate fake experimental data by simulating the SME for 10^5 or 10^6 trajectories.
- Simulate with a small δt and average the signal on $\Delta t = 10^3 \delta t$.
- Least-squares fit (with SciPy).
 - Less than a minute on a regular CPU.



Numerical results — example 1/3

Driven anharmonic oscillator:

$$H = -K/2 a^{\dagger 2} a^2 + \epsilon^* a + \epsilon a^{\dagger},$$

$$L = \sqrt{\kappa} a.$$

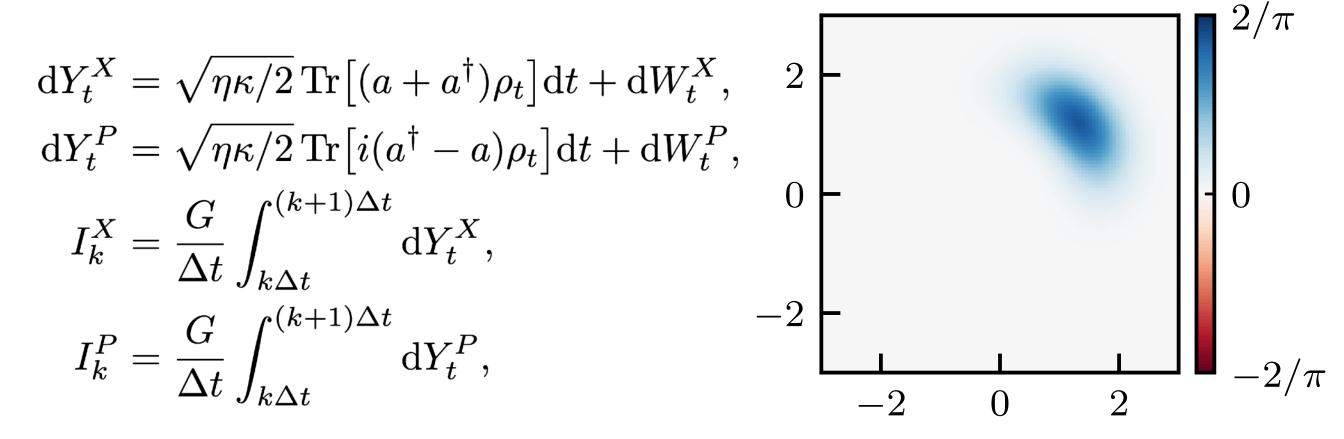
Numerical results — example 1/3

Driven anharmonic oscillator:

$$H = -K/2 a^{\dagger 2} a^2 + \epsilon^* a + \epsilon a^{\dagger},$$

$$L = \sqrt{\kappa} a.$$

• Heterodyne measurement gives two digitised signals I_k^X and I_k^P :



- In the steady state ρ_{∞} (fitted as well).
- Which experiments would *you* do to estimate $\theta = (K, \epsilon_x, \epsilon_y, \eta)$?

Numerical results — example 1/3

Driven anharmonic oscillator:

$$H = -K/2 a^{\dagger 2} a^2 + \epsilon^* a + \epsilon a^{\dagger},$$

$$L = \sqrt{\kappa} a.$$

• Heterodyne measurement gives two digitised signals I_k^X and I_k^P :

$$dY_t^X = \sqrt{\eta \kappa/2} \operatorname{Tr} \left[(a+a^{\dagger})\rho_t \right] dt + dW_t^X, \quad 2$$

$$dY_t^P = \sqrt{\eta \kappa/2} \operatorname{Tr} \left[i(a^{\dagger} - a)\rho_t \right] dt + dW_t^P,$$

$$I_k^X = \frac{G}{\Delta t} \int_{k\Delta t}^{(k+1)\Delta t} dY_t^X,$$

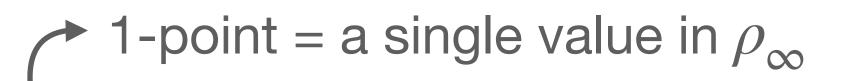
$$I_k^P = \frac{G}{\Delta t} \int_{k\Delta t}^{(k+1)\Delta t} dY_t^P,$$

$$-2$$

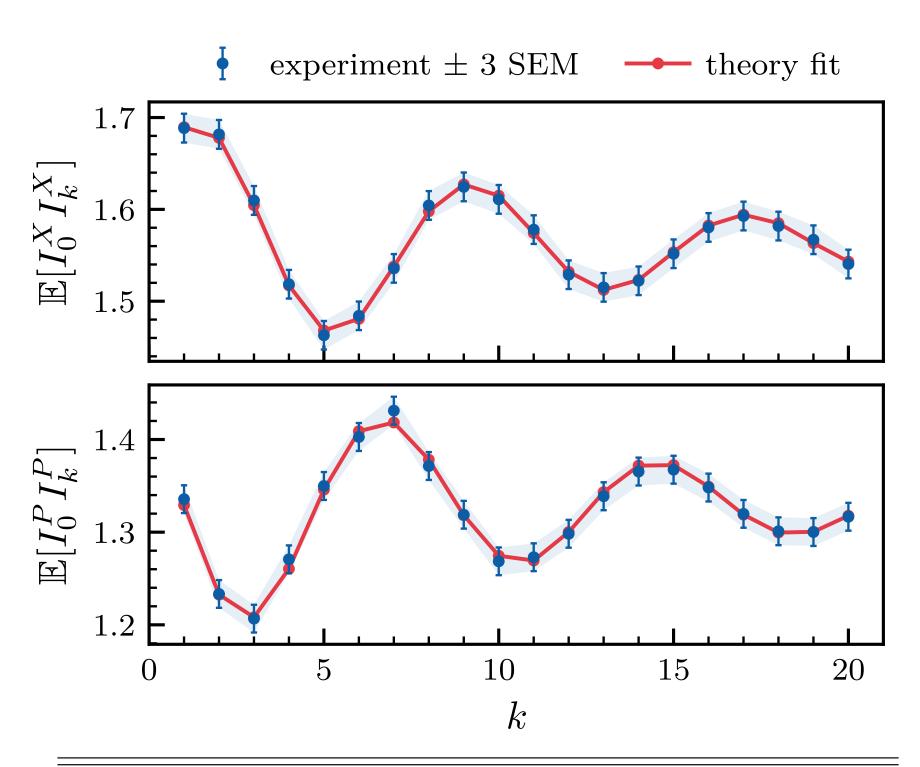
$$-2$$

$$-2/\pi$$

- In the steady state ρ_{∞} (fitted as well).
- Which experiments would *you* do to estimate $\theta = (K, \epsilon_x, \epsilon_y, \eta)$?



Just one by fitting the 2-point!



	Parameter	Value	Estimated
$K/(2\pi)$	self-Kerr	$100~\mathrm{kHz}$	$100 \pm 1 \mathrm{kHz}$
$\epsilon_x/(2\pi)$	drive (real)	$300~\mathrm{kHz}$	$299~\pm~2~\mathrm{kHz}$
$\epsilon_y/(2\pi)$	drive (imaginary)	$400~\mathrm{kHz}$	$398~\pm~2~\mathrm{kHz}$
$\kappa/(2\pi)$	photon loss rate	$100~\mathrm{kHz}$	_
η	efficiency	0.8	0.80 ± 0.01

Numerical results — example 2/3

Driven two-level system:

$$H = \Delta \sigma_z + \Omega \sigma_x,$$

$$L = \sqrt{\gamma} \, \sigma_{-}.$$

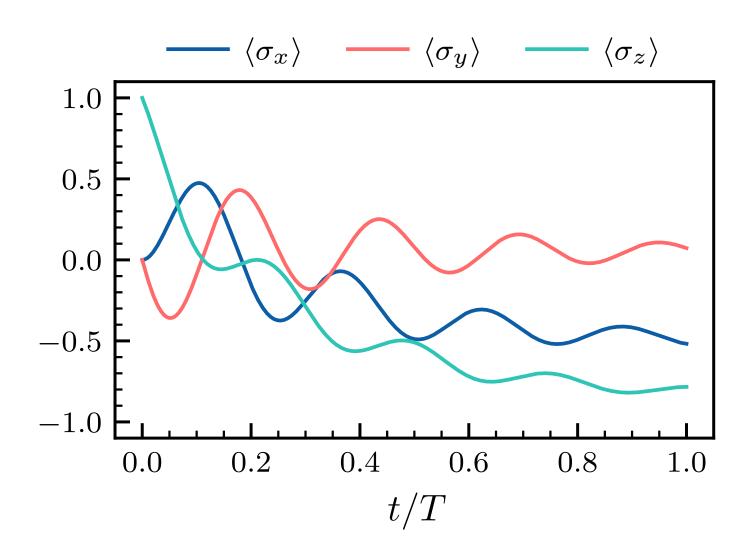
Numerical results — example 2/3

Driven two-level system:

$$H = \Delta \sigma_z + \Omega \sigma_x,$$
$$L = \sqrt{\gamma} \, \sigma_-.$$

- Jump measurement gives a digitised signal I_k .

• Starting from
$$ho=|e\rangle\langle e|$$
.
$$I_k=\int_{k\Delta t}^{(k+1)\Delta t}\mathrm{d}N_t$$



Which experiments would you do to estimate

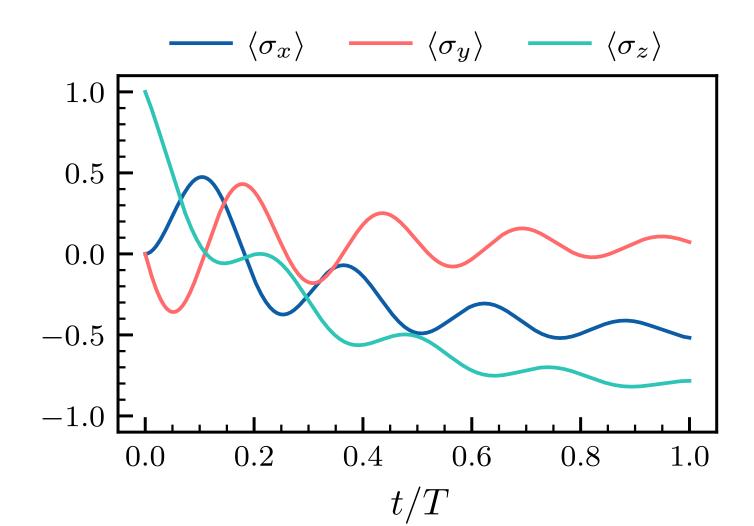
$$\theta = (\Delta, \Omega, \gamma, \theta, \eta)$$
?

Numerical results — example 2/3

Driven two-level system:

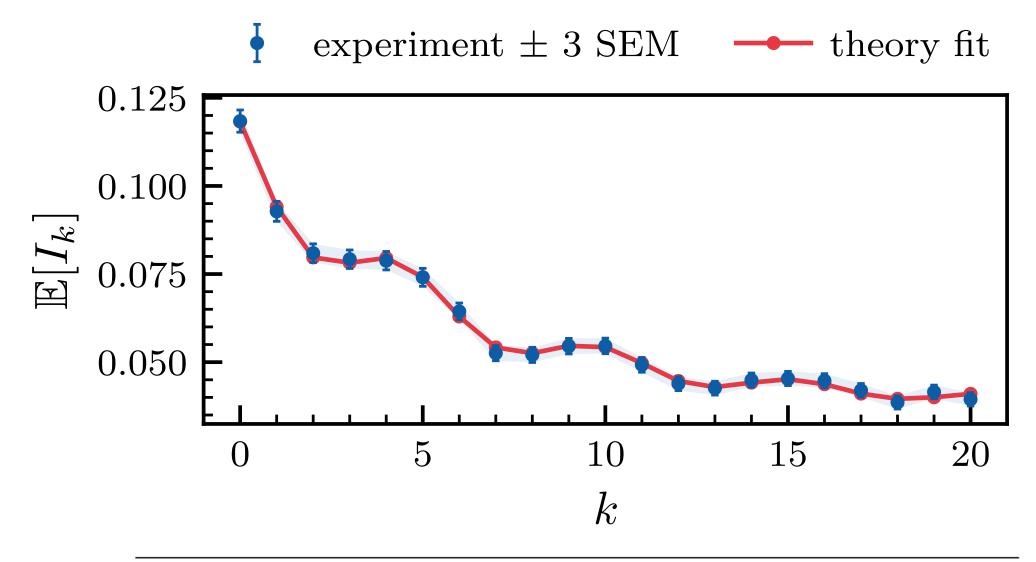
$$H = \Delta \sigma_z + \Omega \sigma_x,$$
$$L = \sqrt{\gamma} \, \sigma_-.$$

- Jump measurement gives a digitised signal I_k .
- Starting from $\rho = |e\rangle\langle e|$.



$$I_k = \int_{k\Delta t}^{(k+1)\Delta t} \mathrm{d}N_t \stackrel{\text{if } 0.100}{\cong} 0.075$$

Just one by fitting the 1-point!



	Parameter	Value	Estimated
$\Delta/(2\pi)$	detuning	$5~\mathrm{kHz}$	$5.04~\pm~0.03~\mathrm{kHz}$
$\Omega/(2\pi)$	drive	$3~\mathrm{kHz}$	$2.99~\pm~0.05~\mathrm{kHz}$
$\gamma/(2\pi)$	loss rate	$2~\mathrm{kHz}$	$2.03~\pm~0.06~\mathrm{kHz}$
$ heta/(2\pi)$	dark count rate	$300~\mathrm{Hz}$	$307~\pm~7~\mathrm{Hz}$
η	efficiency	0.5	0.49 ± 0.01

• Which experiments would *you* do to estimate $\theta = (\Delta, \Omega, \gamma, \theta, \eta)$?

Error bars by subsampling.

Numerical results — example 3/3

- Inspired by C. Berdou et al, One Hundred Second Bit-Flip Time in a Two-Photon Dissipative Oscillator (PRXQ, 2023).
- Dissipative cat qubit: H=0, $L_1=\sqrt{\kappa_1}\,a,$ $L_2=\sqrt{\kappa_2}\,(a^2-\alpha_2^2).$

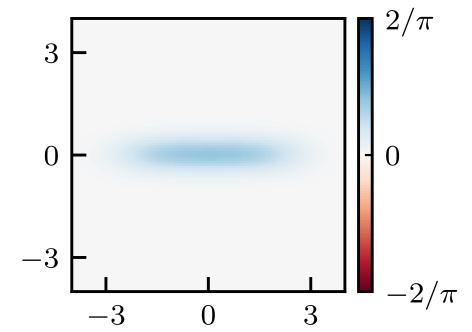
Numerical results — example 3/3

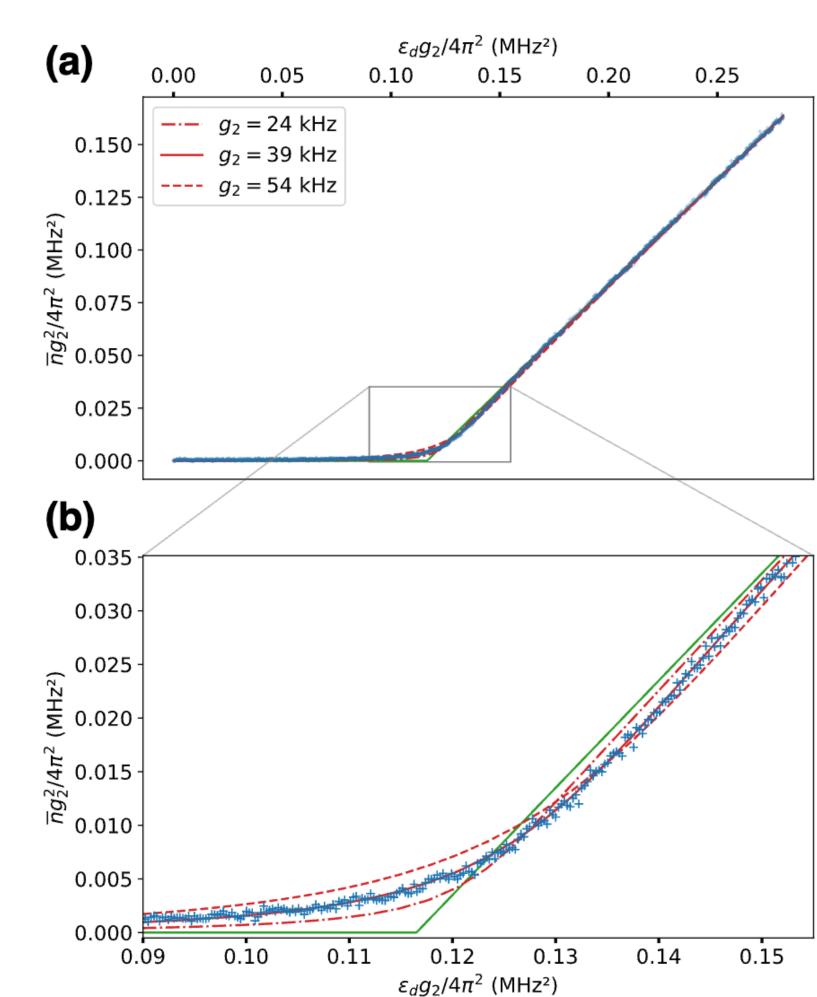
- Inspired by C. Berdou et al, One Hundred Second Bit-Flip Time in a Two-Photon Dissipative Oscillator (PRXQ, 2023).
- Dissipative cat qubit: H=0, $L_1=\sqrt{\kappa_1}\,a,$ $L_2=\sqrt{\kappa_2}\,(a^2-\alpha_2^2).$
- Homodyne measurement gives a binned signal I_k :

$$dY_t = \sqrt{\eta \kappa_1/2} \operatorname{Tr} \left[(a + a^{\dagger}) \rho_t \right] dt + dW_t,$$

$$I_k = \frac{G}{\Delta t} \int_{k\Delta t}^{(k+1)\Delta t} dY_t.$$

- In the steady state ρ_{∞} .
- Estimated $\theta = (\kappa_2, \alpha_2, \eta)$ with >10% uncertainty.
 - \hookrightarrow Multiple experiments including fitting $\mathbb{E}[I_k^2]$ for various α_2 .
 - Gain confidence by fabricating, cooling down, and measuring another superconducting chip.





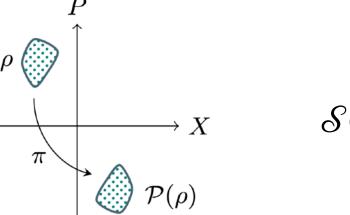
Difficult case:

System symmetry ⇒ all odd-order correlation functions are null.

Difficult case:

System symmetry ⇒ all odd-order correlation functions are null.

General result: if $[\mathcal{L}, \mathcal{S}] = 0$ and $\rho_0 = \mathcal{S}(\rho_0)$ and $\{\mathcal{C}_I, \mathcal{S}\} = 0$ then $\mathbb{P}[I_t] = \mathbb{P}[-I_t]$.

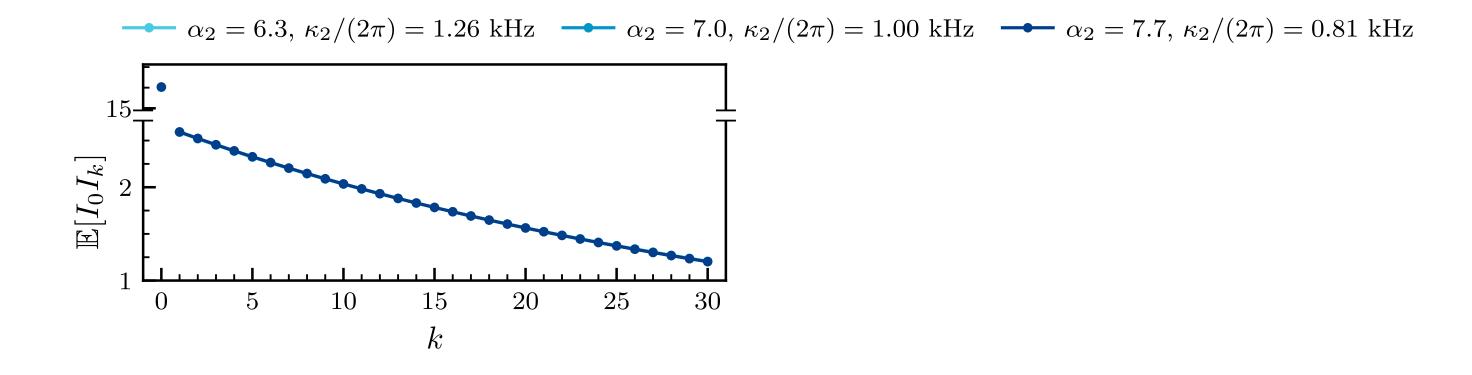


$$\mathcal{S}(\rho) = \mathcal{P}(\rho) = e^{i\pi a^{\dagger}a} \rho e^{-i\pi a^{\dagger}a}$$

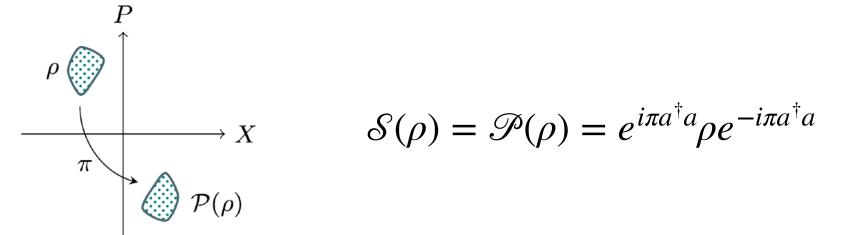
Difficult case:

System symmetry ⇒ all odd-order correlation functions are null.

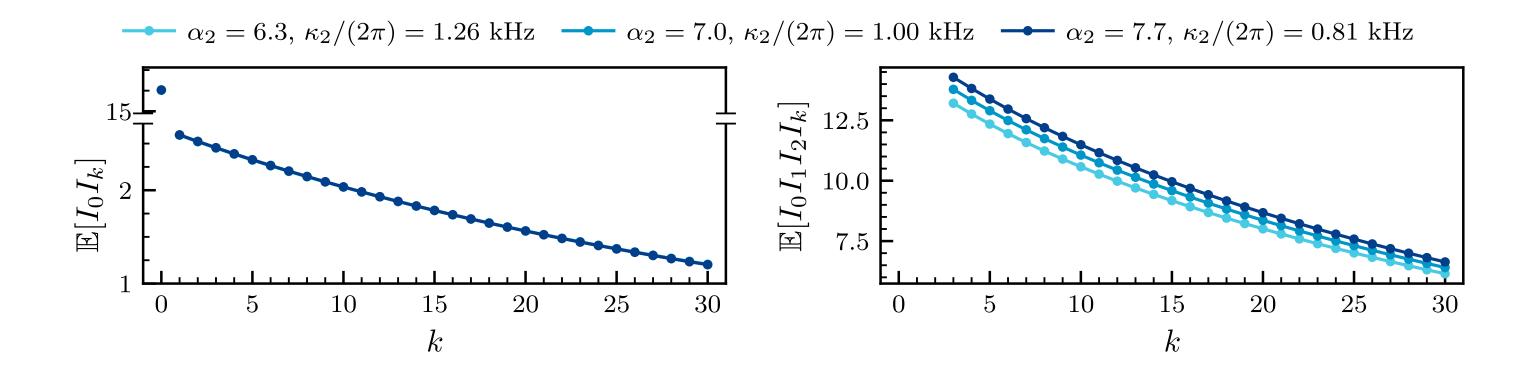
The 2-pt function is degenerate.



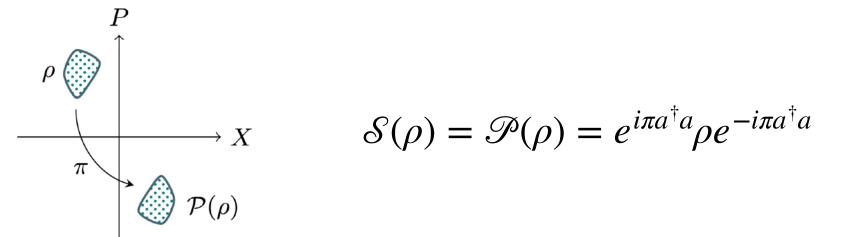
General result: if $[\mathcal{L}, \mathcal{S}] = 0$ and $\rho_0 = \mathcal{S}(\rho_0)$ and $\{\mathcal{C}_L, \mathcal{S}\} = 0$ then $\mathbb{P}[I_t] = \mathbb{P}[-I_t]$.



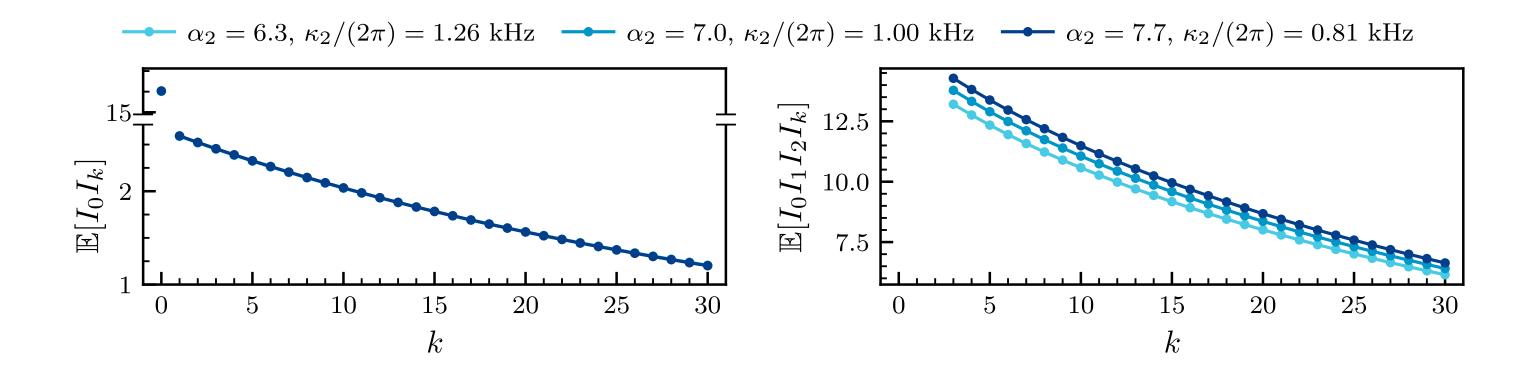
- Difficult case:
 - System symmetry ⇒ all odd-order correlation functions are null.
 - The 2-pt function is degenerate.
- Two solutions
 - → Use higher-order correlation functions (4-pt).



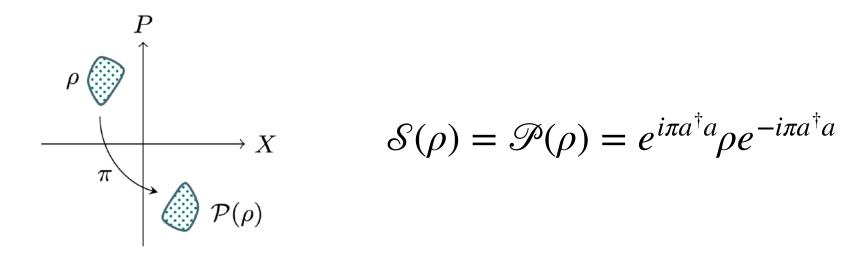
General result: if $[\mathcal{L}, \mathcal{S}] = 0$ and $\rho_0 = \mathcal{S}(\rho_0)$ and $\{\mathcal{C}_L, \mathcal{S}\} = 0$ then $\mathbb{P}[I_t] = \mathbb{P}[-I_t]$.

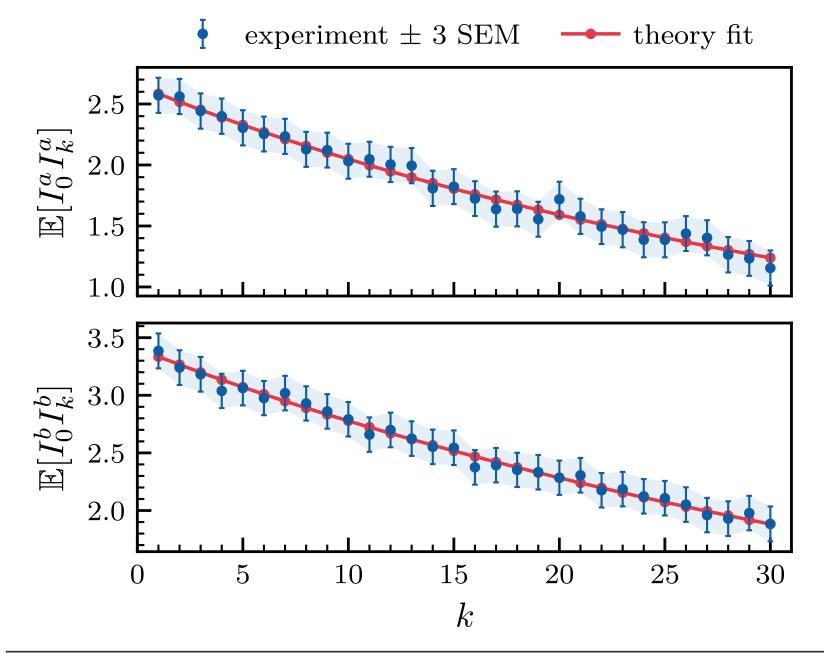


- Difficult case:
 - System symmetry ⇒ all odd-order correlation functions are null.
 - The 2-pt function is degenerate.
- Two solutions
 - → Use higher-order correlation functions (4-pt).
 - \hookrightarrow Vary one of the system parameters (here α_2).



General result: if $[\mathcal{L}, \mathcal{S}] = 0$ and $\rho_0 = \mathcal{S}(\rho_0)$ and $\{\mathcal{C}_L, \mathcal{S}\} = 0$ then $\mathbb{P}[I_t] = \mathbb{P}[-I_t]$.





	Parameter	Value	Estimated
$\kappa_1/(2\pi)$	1-photon loss rate	$100~\mathrm{kHz}$	_
$\kappa_2/(2\pi)$	2-photon loss rate	$1~\mathrm{kHz}$	$1.007~\pm~0.004~\mathrm{kHz}$
$lpha_2$	amplitude	7	$7.002~\pm~0.005$
η	efficiency	0.1	0.095 ± 0.002

Limitations and advantages

X Limitations

- Need a parameterised model → OK if missing an important term: incorrect fit rather than biased fit.
- Not optimal (data is averaged) → OK if efficiency is low.
- No theoretical guarantees (estimator bias, convergence, comparison with Bayesian, etc.).

Limitations and advantages

X Limitations

- Need a parameterised model → OK if missing an important term: incorrect fit rather than biased fit.
- Not optimal (data is averaged) → OK if efficiency is low.
- No theoretical guarantees (estimator bias, convergence, comparison with Bayesian, etc.).

Advantages

- General: any SME, detector imperfections, arbitrary filtering.
- Simple: theoretically (directly models experimental data), experimentally, numerically.
- Efficient: numerical cost = solving Lindblad, doesn't depend on the nb. of parameters.
- Interpretable: intuition about the fit + visual goodness of fit.
 - ⇒ Build confidence in the result + test candidate model + validate model correctness.

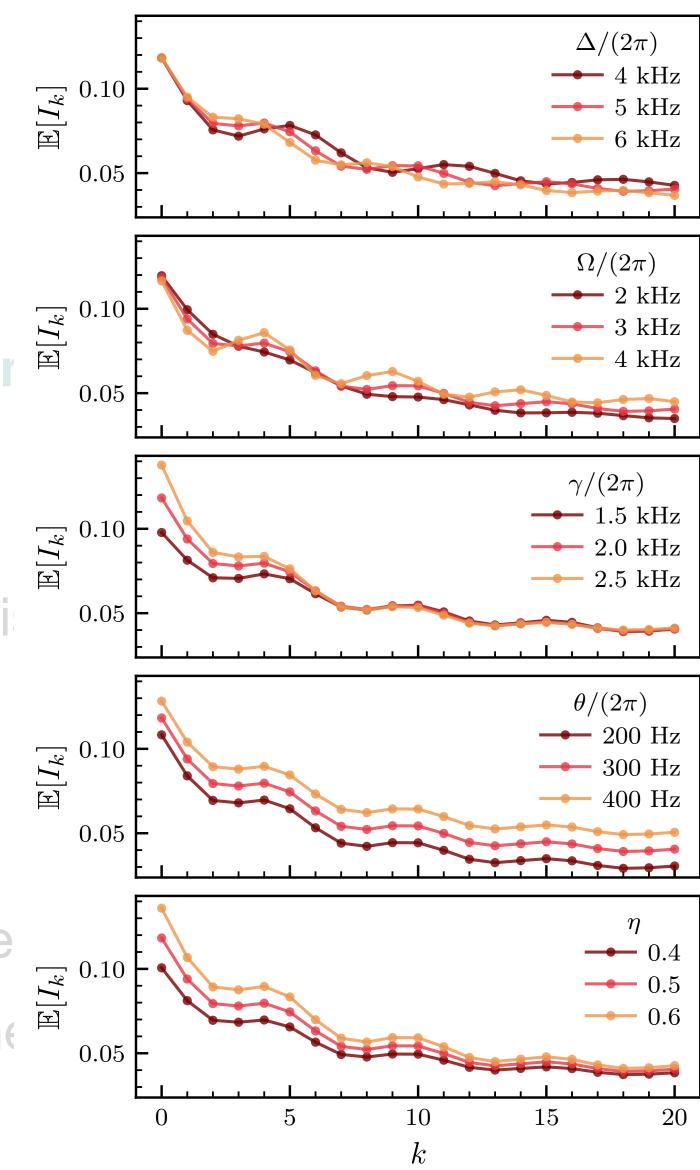
Limitations and advantages

X Limitations

- Need a parameterised model \rightarrow OK if missing an important term: ir $\stackrel{\frac{1}{2}}{\boxtimes}^{0.16}$ biased fit.
- Not optimal (data is averaged) → OK if efficiency is low.
- · No theoretical guarantees (estimator bias, convergence, comparis

Advantages

- General: any SME, detector imperfections, arbitrary filtering.
- Simple: theoretically (directly models experimental data), experime
- Efficient: numerical cost = solving Lindblad, doesn't depend on the
- Interpretable: intuition about the fit + visual goodness of fit.
 - ⇒ Build confidence in the result + test candidate model + validate model correctness.

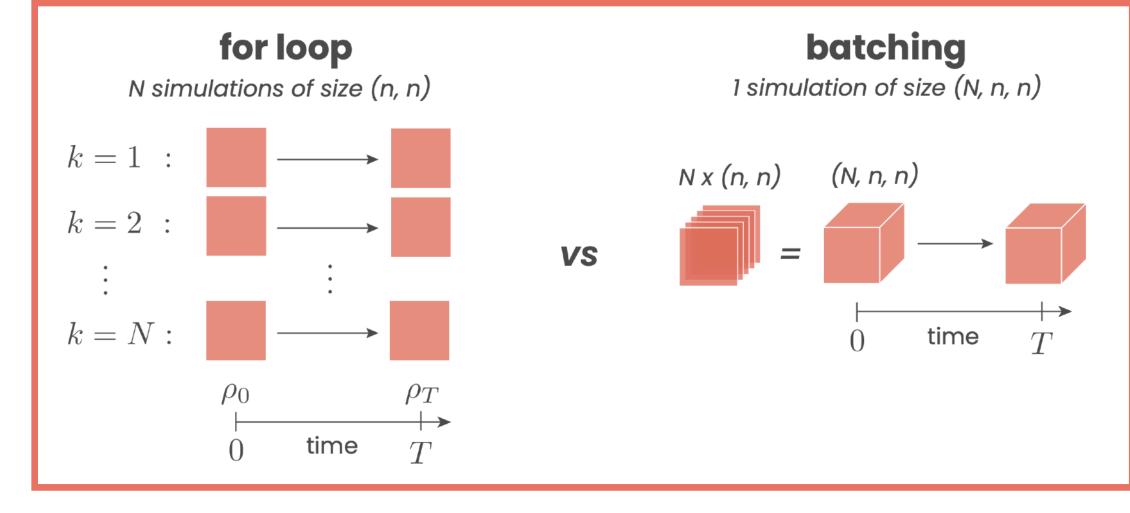


Teasers and conclusion

Three teasers

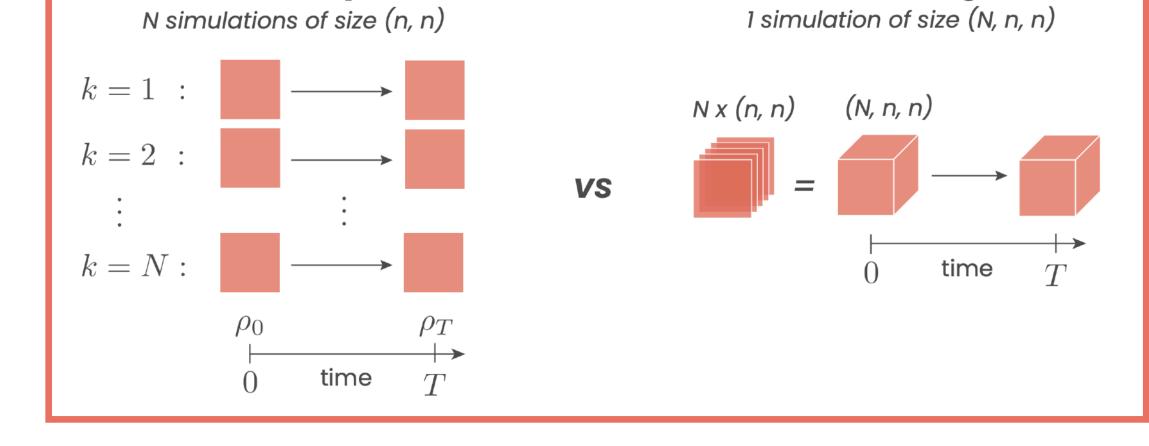
- [poster] The **ODynamiqs** library.
 - $\hookrightarrow 10^6$ trajectories in a few seconds for a qubit, a few minutes for a bosonic mode.

→ How? → GPU + vectorized-array computation + sparse DIA format + CPTP solvers.



Three teasers

- [poster] The **Opinamiqs** library.
 - $\hookrightarrow 10^6$ trajectories in a few seconds for a qubit, a few minutes for a bosonic mode.



batching

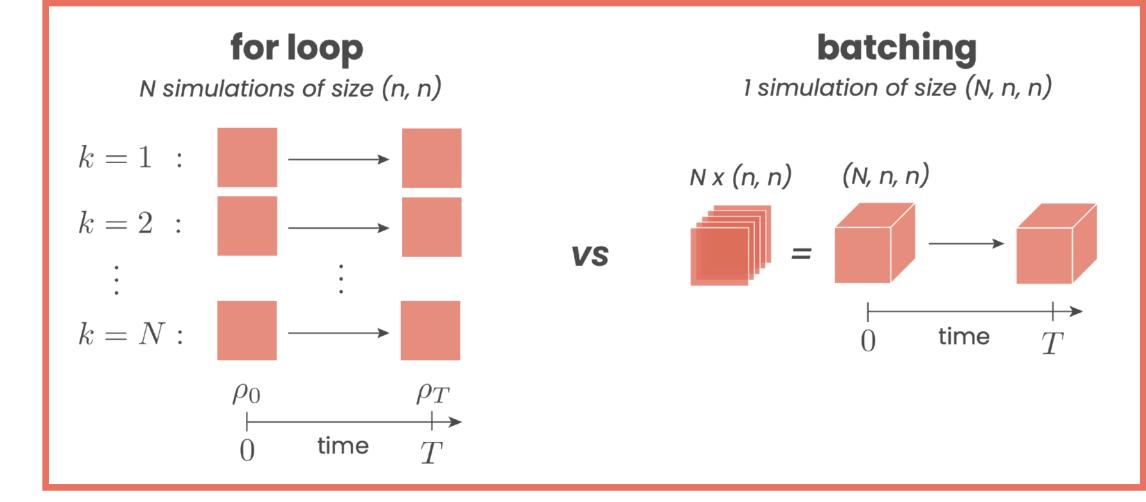
for loop

- → How? → GPU + vectorized-array computation + sparse DIA format + CPTP solvers.
- [Howard Wiseman lecture] **Same formula** for jump and diffusive SME correlation functions → a hint that led to a **new formulation** of SME.

$$\mathbb{E}[I_{t_1} \dots I_{t_n}] = \text{Tr}\Big[\mathcal{C}_L e^{(t_n - t_{n-1})\mathcal{L}} \dots \mathcal{C}_L e^{t_1 \mathcal{L}}(\rho_0)\Big]$$

Three teasers

- [poster] The **ODynamiqs** library.
 - $\hookrightarrow 10^6$ trajectories in a few seconds for a qubit, a few minutes for a bosonic mode.



- → How? → GPU + vectorized-array computation + sparse DIA format + CPTP solvers.
- [Howard Wiseman lecture] **Same formula** for jump and diffusive SME correlation functions → a hint that led to a **new formulation** of SME.

$$\mathbb{E}[I_{t_1} \dots I_{t_n}] = \text{Tr}\Big[\mathcal{C}_L e^{(t_n - t_{n-1})\mathcal{L}} \dots \mathcal{C}_L e^{t_1 \mathcal{L}}(\rho_0)\Big]$$

- [Antoine Tilloy talk] We partially bridged the gap → what about the state?
 - → State reconstruction, Bayesian estimation, state-based feedback (etc.) with digitised signal.

Complete information

$$\{I_t\}_{t\in[0,T]} \to \rho_t$$
SME

Time-averaged information

$$\{I_k\}_{0 \le k \le N} \to \overline{\rho}_k = ?$$

No information

$$\emptyset \to \overline{\rho}_t = \mathbb{E}[\rho_t]$$

Lindblad

We need new characterisation methods to build a FTQC with superconducting circuits.

Let's fit correlation functions!

Pierre Guilmin, Pierre Rouchon, Antoine Tilloy, Parameters estimation by fitting correlation functions of continuous quantum measurement, arXiv:2410.11955 (2024).