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Domains

Pillar type oscillating domain with strong contrasting composites

High conductive
N Jnsulator type

Reference cell

Figure: Pillar type oscillating domain

Reference: A. K. Nandakumaran and A. Sufian, Strong contrasting
diffusivity in general oscillating domains: Homogenization of optimal

control problems, Journal of Differential Equations, 291(2021) 57-89.
https://doi.org/10.1016/j.jde.2021.04.031
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More general oscillating domain with strong contrasting composites

Figure: Typical example of reference cells
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Some References

e We have developed certain new unfolding operators relevant to such
general oscillating domains. We exploit this in our present study.
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Concentration phenomena, Vanishing energies

e The lack of strong convergence can be due to the concentration
phenomena, vanishing energies

L) <
fatw) = | e (i) tlel <1/m

0, otherwise

i fa(2) = f(z —n)
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Figure: mollifiers; vanishing-functions
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e u, — u in L?(Q) strongly if ||u, — ul| = 0
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— Strong convergence implies the convergence of energy, that is
[[unll = flul
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Strong and Weak Convergence

e u, — u in L?(Q) strongly if ||u, — ul| = 0

— Strong convergence implies the convergence of energy, that is
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o u, — u in L?(Q) weakly if (u,,v) — (u,v) for all v € L?(1).
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o u, — u in L?(Q) weakly if (u,,v) — (u,v) for all v € L?(1).

e Under weak convergence, we loose lot of information contained in the
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— it does not give the convergence in energy or norm;
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o u, — u in L?(Q) weakly if (u,,v) — (u,v) for all v € L?(1).

e Under weak convergence, we loose lot of information contained in the
sequence. For example

— it does not give the convergence in energy or norm;

— how to pass the limit in the product (u,,v,), nonlinearity;
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Strong and Weak Convergence

e u, — u in L?(Q) strongly if ||u, — ul| = 0

— Strong convergence implies the convergence of energy, that is
[[unll = flul

o u, — u in L?(Q) weakly if (u,,v) — (u,v) for all v € L?(1).

e Under weak convergence, we loose lot of information contained in the
sequence. For example

— it does not give the convergence in energy or norm;

— how to pass the limit in the product (u,,v,), nonlinearity;

— hence difficulties in dealing with the problems of interest.
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Two Scale Convergence

e Let () be an open domain in R™ and Y be the unit cell in R™ which
will take care of the oscillating fast scale.
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Two Scale Convergence

e Let () be an open domain in R™ and Y be the unit cell in R™ which
will take care of the oscillating fast scale.

Definition (two-scale convergence)

A sequence of functions {v.} in L?(€)) is said to two-scale converge to a
limit v € L?(2 x Y) (denoted as v- = v) if

/Qvegs (g; g) dx—>/9/yv(a:7y)¢>(x,y)dydx

for all ¢ € L2[Q; Cper(Y)].

27/
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Two Scale Convergence

e it can be proved that any purely oscillatory function f¢(z) = f (%)
obtained from a periodic function f converges in two-scale to f(y);
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Two Scale Convergence

e it can be proved that any purely oscillatory function f¢(z) = f (%)
obtained from a periodic function f converges in two-scale to f(y);

e more generally f (m, %) two-scale converges to f(x,y);

. . . 2s .
in particular sinnz = sin y.
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Two Scale Convergence

e it can be proved that any purely oscillatory function f°(z) = f (%)
obtained from a periodic function f converges in two-scale to f(y);

e more generally f (m, é) two-scale converges to f(x,y);

. . . 2s .
in particular sinnz = sin y.

Theorem (Compactness)

For any bounded sequence v- in L?()), there exists a subsequence and
v e L*(Q xY) such that, v. two-scale converges to v along the
subsequence.
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Two Scale Convergence

e it can be proved that any purely oscillatory function f°(z) = f (%)
obtained from a periodic function f converges in two-scale to f(y);

x

e more generally f (m, g) two-scale converges to f(x,y);

. . . 2s .
in particular sinnz = sin y.

Theorem (Compactness)

For any bounded sequence v- in L?()), there exists a subsequence and
v e L*(Q xY) such that, v. two-scale converges to v along the
subsequence.

Also, if v. is bounded in H'(Q), then v is independent of y and is in
H'(Q), and there exists a v1 € L*[; H,, (Y] such that, up to a
subsequence, Vv, two-scale converges to Vv + V, v1.
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Properties

e If u. converges to u in L? (strong), then u. Y
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Properties

e If u. converges to u in L? (strong), then u. Y

o If u, =5 u(zx,y), then u. — u(z) = / u(z,y)dy in L? weak.
Y
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Properties

e If u. converges to u in L? (strong), then u. Y
o If u, =5 u(zx,y), then u. — u(z) = / u(z,y)dy in L? weak.
Y

o Let {u.} two-scale converges to u and « is the weak limit. Then

lim mf {[ue||2) 2 [JullL2(@)-
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Properties

e If u. converges to u in L? (strong), then u. Y
o If u, =5 u(zx,y), then u. — u(z) = / u(z,y)dy in L? weak.
Y

o Let {u.} two-scale converges to u and « is the weak limit. Then

lim mf {[ue||2) 2 [JullL2(@)-

1i§1j§fﬂus\|L2(sz) > [ullz2@xyy = lallz2@)-
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Properties

e If u. converges to u in L? (strong), then u. Y
o If u. 2% u(zx,y), then u. — u(z) = / u(z,y)dy in L? weak.
Y

e Let {u.} two-scale converges to u and u is the weak limit. Then

lim mf {[ue||2) 2 [JullL2(@)-

1ig§fﬂua\|L2(sz) > [ullz2@xyy = lallz2@)-

We say u. strongly two-scale converges to u = u(x,y) in L*(Q),
stro%fle

denoted by wu. w if u- 22y and lim [[ue|| 20y = [|ull2(@xy)-
e—0

14
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Passage to limit in the product

e For smooth v, 9 (x, %) , converges strong two-scale to ¢)(z,y). In
fact,
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Passage to limit in the product

e For smooth 9, v (.7:, g) , converges strong two-scale to ¢)(z,y). In
fact,

Theorem

Let u. and v. be two sequences in LQ(Q) such that u. strongly two-scale
converges to u in L*(Q) and v. two-scale converges to v in L*(S), then
the product

) = /Y w(z, Yo, v)dy

in D'(Q), that is in distribution. Further, if u € L*(Q; Cx(Y)), then

ue(x) —u (J f)‘

€

lim
e—0

= 0.
L2(Q)

Ed
+5

Multi-scale Analysis ICTS-Bangalore 0 AK.N/IISc 37
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Unfolding Operators

e In two-scale convergence, we obtained the fast scale y = . We would
like to go one-step further and introduce the fast scale in the sequence
itself.
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Unfolding Operators

e In two-scale convergence, we obtained the fast scale y = . We would
like to go one-step further and introduce the fast scale in the sequence
itself.

e In other words, unfold the second hidden scale in the given sequence.
This is done via the notion of scale decomposition of R"™.
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Domains Mu le Con.
[ee]e]e] Telelele)

Unfolding Operators

e In two-scale convergence, we obtained the fast scale y = . We would
like to go one-step further and introduce the fast scale in the sequence
itself.

e In other words, unfold the second hidden scale in the given sequence.
This is done via the notion of scale decomposition of R"™.

e Finally, understand the topology of two-scale convergence.
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Unfolding Method: scale decomposition

eLetY =[0,1)",V, =Y +k ke Z then R" = | Y.
kezn
e For any x € R", we can write x = N(x) + R(x), where N(z) and

R(x) are the integer and fractional parts, respectively.

Figure: P = N(z)
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Unfolding Method: scale decomposition

e Also decompose R" with ¢ — cells as R" = |4 &Y}, where
kezmr
€Yy = eY + ek. For any € > 0, we may write

z=¢[N(2)+ R(%)] for any x € R".

o |

)

Fﬁgurcsf’::eﬁJ(g) and x ::5[DJ(§) +,};(§)J

19 /
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Unfolding Operator

e Two-scale composition function: Define S: : R"” x Y — R" as

Se(z,y) =eN (g) + ey.
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Unfolding Operator

e Two-scale composition function: Define S: : R"” x Y — R" as

Se(z,y) =eN (g) + ey.

e Clearly S:(z,y) = x + (y — R(%£)) — z uniformly in R" x Y.

Definition (Unfolding Operator)

Let u € L'(R™). The e-unfolding of u is defined as

T (u)(z,y) = uoS:(z,y) = u (5]\7 (g) + €y> (1)
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Unfolding Operator

e Two-scale composition function: Define S: : R"” x Y — R" as

Se(z,y) =eN (g) + ey.

e Clearly S:(z,y) = x + (y — R(%£)) — z uniformly in R" x Y.

Definition (Unfolding Operator)

Let u € L'(R™). The e-unfolding of u is defined as

T*(u)(z,y) = uoSe(z,y) = u (eN (Z) +ey) (1)

| \

Theorem

Let {u.} be a bounded sequence in L*(X2), then T.-(u.) converges to
w(z,y) weakly in L?(Q x Y) if and only if u. 28 . 20
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HighContract Problem
@00000

Pillar type oscillating domain with strong contrasting composites

High conductive
N Jnsulator type

Reference cell

Figure: Pillar type oscillating domain

Reference: A. K. Nandakumaran and A. Sufian, Strong contrasting
diffusivity in general oscillating domains: Homogenization of optimal

control problems, Journal of Differential Equations, 291(2021) 57-89.
https://doi.org/10.1016/j.jde.2021.04.031
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Variational Problem

o Consider the ¢ dependent variational problem, for all ¢ € H'(€).),
where f € L?(Q):
find u. € H' () such that
/ (xa- + Xc. +&%x1.) VuVe +/ Ue) = / [,
Q Qe Qe

€

(2)

e There is no uniform ellipticity leading to non-uniform estimates.
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Q Qe Qe
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e There is no uniform ellipticity leading to non-uniform estimates.

e Instead of Laplacian, one can consider more general elliptic
operators.
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Variational Problem

o Consider the ¢ dependent variational problem, for all ¢ € H'(€).),
where f € L?(Q):
find u. € H' () such that
/ (xa- + Xc. +&%x1.) VuVe +/ Ue) = / [,
Q Qe Qe

€

(2)

e There is no uniform ellipticity leading to non-uniform estimates.

e Instead of Laplacian, one can consider more general elliptic
operators.

e One can also consider o2 instead of the coefficient 2 and
limiting problem may depend on the limit of %=.
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Estimates

o We get the estimates in a standard way as

||Xc;rVU€HL2(Qj) + ‘SHX];'vu€HL2(Q:‘) + Vel L2 (0-y (3)

+ [Juell 2.y < 1 llz2(0.)

23 /
Multi-scale Analysis ICTS-Bangalore ) AK.N/IISc 37



HighContract Problem
[e]e] lelele]

Estimates

o We get the estimates in a standard way as
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+ [Juell 2.y < 1 llz2(0.)
@ Observe that
”VUa”L?(cj) <k, HvueHm(]j) < keila

where k is a generic constant.
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o We get the estimates in a standard way as

||Xc;rVUEHL2(Qj) + ‘SHX];"V’MEHLQ(Q:‘) + Vel L2 (0-y (3)

+ [Juell 2.y < 1 llz2(0.)
@ Observe that
”VUa”p(cj) <k, HvueHm(]j) < k5717
where k is a generic constant.

@ In essence, we do not have the uniform bound on the gradient,
which is not surprising as the bound inversely depends on the
ellipticity constant.
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z,y1) = (n,m2), 2(x,41) = (21,22) € (L*(Q"))? such that, weakly
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z,y1) = (n,m2), 2(x,41) = (21,22) € (L*(Q"))? such that, weakly

eu. —u” in HY(Q)
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z, ) = (m,m2), z(z,y1) = (21, 22) € (L*(Q2%))? such that, weakly

eu. —u” in HY(Q)

o T¢(ul) — wup(z,y1) in L2(Q¥)
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z, ) = (m,m2), z(z,y1) = (21, 22) € (L*(Q2%))? such that, weakly

eu. —u” in HY(Q)
o T¢(ul) — wup(z,y1) in L2(Q¥)

o T°(xo# (Vue)) = To(Vue) = xo(y1, 22)(m, n2) in (L2 (Q%))?
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z, ) = (m,m2), z(z,y1) = (21, 22) € (L*(Q2%))? such that, weakly

eu. —u” in HY(Q)
o T¢(ul) — wup(z,y1) in L2(Q¥)
o T°(xr (Vue)) = Ta(Vue) = xe(y1,22)(m,72) in (L*(28))?

o T°(ex;+ Vue) = xr(y1,22)2(x,y1) = x1(y1, x2) (21, 22) in (L*(Q))
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e By the properties of unfolding operator and weak compactness of
HY(Q7) and L?(Q%) there exist

u” € HYQ7), wuo(z,y1) € L2(QY),
n(z, ) = (m,m2), z(z,y1) = (21, 22) € (L*(Q2%))? such that, weakly

eu. —u” in HY(Q)

o T¢(uf) — wup(z,y1) in L?(Q¥)

o T°(xo# (Vue)) = To(Vue) = xo(y1, 22)(m, n2) in (L2 (Q%))?

o T¢(exy+ Vue) = x1(y1,22)2(z,y1) = x1(y1,22)(21, 22) in (L*(Q4))>.

We need to identify ug, 1,12, 21, 22 and get properties enjoyed by these
functions. This is the technical aspects.
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/Qﬂyc@”amaxz* (>*¢+/ u” ¢
+/Q ViV = / f¢>+/ 16,

for all ¢ € H(Q).

25 /
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for all ¢ € H(Q2).Here a(x) = (\Y(:rg) / ( )5dy1>,
Y (22
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HighContract Problem

0000e0

/Qﬂyc@”amaxz* (>*¢+/ u” ¢
+/Q ViV = / f¢>+/ 16,

for all ¢ € H(Q2).Here a(x) = (\Y(:rg) — / §dy1> ,where
Yi(z2)

&(xa, ) € V2

0&(z2,y1) Ow(y1) i
/Y(;Lz) oy o1 +/Y(w2) E(@2, y1)w(yr) = /Y(:rz) w(y1),

for all w € V*2,
25/
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Convergence Theorem

HC OCP

Theorem
We have the following Convergences: as € — 0

u — u~ weakly in H'(Q7),

N O IR e
Yi(22)
out out ou™
= oY —
Xc. axl 07 Xec. 8372 ‘ C(xQ) 8!E2
oud / o€ oud
+ OUe + L Dls
€ = (f—wu —dy;, € —0
Xre 0y (f ) Yi(zs) OU1 = Xre O
weakly in L*(QF)

Multi-scale Analysis ICTS-Bangalore ) AK.N/IISc

26/
37



HighContract Problem HC OC

00000000000

Optimal Control Problems
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Control on

For 0. € L*(C.) consider the cost functional

1
Jg(ug,es):2/ |u5—ud|2+§/c AR

28/
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Control on

For 0. € L*(C.) consider the cost functional

1
Je(ue0) =2 [ fue—wal?+ 2 [ 0.2
2 Ja. 2 Je.

where wu. is the unique solution of the following variational problem:

for f € L*(Q)
find u. € H' () such that

/Q (Xa- + Xo. +x.) VeV + up = /Q fo+ /Q o
for all ¢ € H(£2.). i

28/
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For 0. € L*(C.) consider the cost functional

1
Tuesb) =3 [ fue=ud+ 5 [l

where wu. is the unique solution of the following variational problem:
for f € L*(Q)

find u. € H'(Q.) such that
| (o xe. + ) VuTotud = [ fo+ [ xees
for all ¢ € H(£2.). i

The optimal control problem is to find (i, 0.) € H*(Q.) x L*(C.) such
that

Jo(Te, 0.) = inf{J-(ue, 0.)}. (4)
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Two-scale limit control problem

For controls 6 € L*(QF), consider the following L? cost functional

1 1
J(u,u1,9)22/ﬂ |U++U1—Ud|2+2/Q |u_—ud|2+§/9u 10)2,
C
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For controls 6 € L*(QF), consider the following L? cost functional

1 1
J(u,ul,t9):2/Q |U++U1—Ud|2+2/Q |u_—ud|2+§/9u 10)2,
C

where (u,uq) € H() x V(Q) satisfies the micro-macro system
find (u,u1) € H(Q) x V() such that

out 99 N Ouy 091

- +/ ut +ur)(p+ d1) + Vu~Vo
J Y, Oxy Oxy | Qy y1 Oy su( 2 J JQ-

[ wo= [ (+xelmmd@+on+ [ fo
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HC OCP
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For controls 6 € L*(QF), consider the following L? cost functional

1 1
J(u,ul,t9):2/Q |U++U1—Ud|2+2/Q |u_—ud|2+§/9u 10)2,
C

where (u,uq) € H() x V(Q) satisfies the micro-macro system
find (u,u1) € H(Q) x V() such that

out 99 N Ouy 091

- +/ ut +ur)(p+ d1) + Vu~Vo
J Y, Oxy Oxy | Qy y1 Oy su( 2 J JQ-

[ wo= [ (+xelmmd@+on+ [ fo

Optimal control problem: find (u,@1,0) € H(Q) x V(Q) x L*(Q)

J(u,uy,0) = inf{J(u,u1,0)}.
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Separation of scales - Homogenized system

Scale separated cost functional:

1 1 _
sy =g [ 0ot e g [

5 [ WemloP

30 /
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Scale separated cost functional:

1 1 _
o) =5 [ [ ja-gutse—ul 45 [ -l
2 Ja+ Jy(z2) 2 Jo-
+5 [ WeCelioP
O+
Scale separated limit state equation:

find w € H(R?), such that,

S+
/ Yo@) 22 22 | [ a@puter / O T
O+

6.7,'2 8.732 Q+ - Q-

= [ a@so+ [ o+ [ Ietwmios
Jart JQ- Ja+

for all p € H(Q).
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Control on

For . € L?(I.), consider the following L*-cost functional

1
T8 =5 [ fue—ual + 5 [ 16217
=
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Control on

For . € L?(I.), consider the following L*-cost functional

1
R0 =5 [ e —ual + 5 [ 1

where u. is the unique solution of the following variational problem:
for f € L?(Q)

find u. € H' () such that
)
(- +xe. + ) VueVo+wo= [ fo+ [ s, @
Qe Qe Qe

for all ¢ € H ().
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For . € L?(I.), consider the following L*-cost functional

1
Ja(uaaea) = 2/ ’ _ud‘Q / ’9 |2

where u. is the unique solution of the following variational problem:
for f € L?(Q)

find u. € H' () such that

)
(o = Xon + 00, ) Veia V) + g = / o+ / b8, O
Q. Qe Qe

for all p € H 1(Q.). The optimal control problem is to find
(e, 0:) € H' () x L?(I.) such that

Je(te, 0.) = inf{J.(ue, 0:) : (ue,0.) satisfies (5)}. (6)
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Two-scale limit optimal control problem

e For the source term f € L?(2) and control (0, 01) € L*(Q1) x L?(QY)
(or one can think 0; € L?(Q%) with ¢; = 0 a.e. in Q%), the limit
L?-cost functional is

1
J(U,U1,9,91) - 2/

+§ 0+ 6;)>
2 Qit

(ut + ug — ug)? +/ (u™ — ug)?

U
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e Here (u,u1) € H(QQ) x V() satisfies

8u+ 6¢ 8u1 8(]51 / +
e T U+ u L
o 8:]02 83:2 o 81/1 3y1 u( 1)(¢ ¢1)

+ [ (uvorug) = [ (F+nlmm)@+o)@+o)+ [ fo

Qu

for all (¢, 1) € H(Q) x V().
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00000080000

e Here (u,u1) € H(QQ) x V() satisfies

8u+ 6¢ 8u1 8(]51 / +
e T U+ u L
o 8:]02 83:2 o 81/1 3y1 u( 1)(¢ ¢1)

+ [ (uvorug) = [ (F+nlmm)@+o)@+o)+ [ fo

Qu
for all (¢, 1) € H(Q) x V().

e Now the optimal control problem is to find
(a,u1,0,01) € H(Q) x V(Q) x L2(QF) x L*(QY) such that

J(ﬂ, ﬂ],é, é]) = inf{J(u, u1, 0, 91)}
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Partial scale separation

e A complete scale separation is not available
Reduced cost functional: The L?-cost functional reduces to

J(u,u11,0,61) = / / (1= &u™ +&f +urr — ua)?
Qt (z2)

—i—/(u_—ud)2—|—§/Q+ /Y(m)(ﬁ—i-GI)Q
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HC OCP
00000008000

Partial scale separation

e A complete scale separation is not available
Reduced cost functional: The L?-cost functional reduces to

J(u,u11,0,61) = / / (1= &u™ +&f +urr — ua)?
Qt (z2)

—i—/(u‘—ud) +§/&2+/}/(12)<9+01)2

Reduced state equation: (u,u;1) € H(2) x V(Q) satisfies
du™ d¢™ P— e _
| etz g+ [ at@tet+ [ vuve+ [ uo
[/ <<1s>f+<1£><e+el>>¢++/9 fo,

QO+ JY (22)

Ou11 01 / /
— 11101 = 0+6 ,
. O O + u7111¢1 _u( + 61)¢1,

34/
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