Multi-scale Convergence in PDEs and Application to a High-Contrast Optimal Control problem

A. K. Nandakumaran

Department of Mathematics Indian Institute of Science, Bangalore 560012, India Email: nands@iisc.ac.in

Recent advances on control theory of PDE systems ICTS, Bangalore, India February 19, 2024.

(ロ) (部) (主) (主) 王

DQC

Osci.	Domains

HighContract Problem 000000 HC OCP 00000000000

Osci.	Domains

HighContract Problem 000000 HC OCP 00000000000

Outline

2 Multi-scale convergence

Osci.	Domains

HighContract Problem 000000 HC OCP 00000000000

590

2 Multi-scale convergence

3 High Contrst Variational Problem in Oscillating Domain

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc 2 / 37

イロト イロト イヨト イヨト 三日

Osci.	Domains

HighContract Problem 000000 HC OCP 00000000000

2 Multi-scale convergence

3 High Contrst Variational Problem in Oscillating Domain

Multi-scale Analysis ICTS-Bangalore Q A.K.N/IISc

Figure: Pillar type oscillating domain

Reference: A. K. Nandakumaran and A. Sufian, Strong contrasting diffusivity in general oscillating domains: Homogenization of optimal control problems, Journal of Differential Equations, 291(2021) 57-89. https://doi.org/10.1016/j.jde.2021.04.031

Multi-scale Analysis

ICTS-Bangalore

Q A.K.N/IISc

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
o●ooooooo	00000000	000000	0000000000
More general of	oscillating domain wi	th strong contrasting co	mposites

Figure: Typical example of reference cells

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc 4 / 37

・ロト ・四ト ・ヨト ・ヨト

E

590

Multi-scale Con 00000000 HighContract Problem 000000 HC OCP

Domains with Oscillating Boundary; Sample Model Domains

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc 5 / 37

・ロト ・部ト ・ヨト ・ヨト

E

590

Multi-scale Con 00000000 HighContract Problem 000000 HC OCP 00000000000

Domains with Oscillating Boundary; Sample Model Domains

Domains with Oscillating Boundary; Sample Model Domains

A.K.N/IISc 6 / 37 Multi-scale Analysis **ICTS-Bangalore**

・ロト ・部ト ・ヨト ・ヨト

E

590

Domains with Oscillating Boundary; Sample Model Domains

Osci. Domains	HighContract Problem	HC OCP
oooo∙oooo	000000	00000000000
Some References		

• We have developed certain new unfolding operators relevant to such general oscillating domains. We exploit this in our present study.

Osci. Domains	HighContract Problem	HC OCP
oooo∙oooo	000000	00000000000
Some References		

• We have developed certain new unfolding operators relevant to such general oscillating domains. We exploit this in our present study.

 S. Aiyappan, A. K. Nandakumaran and Ravi Prakash, Generalization of Unfolding Operator for Highly Oscillating Smooth Boundary Domains and Homogenization, Calculus of Variations and PDE (2019) 57-86. https://doi.org/10.1007/s00526-018-1354-6.

 S Aiyappan, A. K. Nandakumaran and Ravi Prakash, Semi-linear optimal control problem on a smooth oscillating domain, Communications in Contemporary Mathematics, 1-26 (2019). DOI: 10.1142/S0219199719500299

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ のへで

Multi-scale Con 00000000 HighContract Problem 000000 HC OCP 00000000000

Rapidly oscillating functions

• The lack of strong convergence can be due to the concentration phenomena, vanishing energies

$$f_n(x) = \begin{cases} n \exp\left(\frac{1}{1-n^2 x^2}\right), \text{ if } |x| \le 1/n \\ 0, \text{ otherwise} \end{cases}; \quad f_n(x) = f(x-n)$$

Figure: mollifiers; vanishing-functions

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc 9 / 37

Oscillating functions and Scaling

Multi-scale Analysis

ICTS-Bangalore

A.K.N/IISc

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		000000	00000000000
Strong and Weal	k Convergence		

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		000000	00000000000
Strong and Weak	Convergence		

•
$$u_n \to u$$
 in $L^2(\Omega)$ strongly if $||u_n - u|| \to 0$

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		000000	00000000000
Strong and Weak	Convergence		

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

• $u_n \rightarrow u$ in $L^2(\Omega)$ weakly if $(u_n, v) \rightarrow (u, v)$ for all $v \in L^2(\Omega)$.

Osci. Domains		HighContract Problem	HC OCP
oooooooo●		000000	00000000000
Strong and Weak	Convergence		

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

• $u_n \rightharpoonup u$ in $L^2(\Omega)$ weakly if $(u_n, v) \rightarrow (u, v)$ for all $v \in L^2(\Omega)$.

• Under weak convergence, we loose lot of information contained in the sequence. For example

Osci. Domains		HighContract Problem	HC OCP
oooooooo∙		000000	00000000000
Strong and Weak	Convergence		

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

• $u_n \rightharpoonup u$ in $L^2(\Omega)$ weakly if $(u_n, v) \rightarrow (u, v)$ for all $v \in L^2(\Omega)$.

• Under weak convergence, we loose lot of information contained in the sequence. For example

- it does not give the convergence in energy or norm;

Osci. Domains		HighContract Problem	HC OCP
oooooooo∙		000000	00000000000
Strong and Weak	Convergence		

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

• $u_n \rightharpoonup u$ in $L^2(\Omega)$ weakly if $(u_n, v) \rightarrow (u, v)$ for all $v \in L^2(\Omega)$.

• Under weak convergence, we loose lot of information contained in the sequence. For example

- it does not give the convergence in energy or norm;

- how to pass the limit in the product (u_n, v_n) , nonlinearity;

Osci. Domains		HighContract Problem	HC OCP
oooooooo∙		000000	00000000000
Strong and Weak	Convergence		

– Strong convergence implies the convergence of energy, that is $\|u_n\| \to \|u\|$

• $u_n \rightharpoonup u$ in $L^2(\Omega)$ weakly if $(u_n, v) \rightarrow (u, v)$ for all $v \in L^2(\Omega)$.

• Under weak convergence, we loose lot of information contained in the sequence. For example

- it does not give the convergence in energy or norm;
- how to pass the limit in the product (u_n, v_n) , nonlinearity;
- hence difficulties in dealing with the problems of interest.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	•00000000	000000	00000000000
Two Scale Conv	rergence		

• Let Ω be an open domain in \mathbb{R}^n and Y be the unit cell in \mathbb{R}^n which will take care of the oscillating fast scale.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	●00000000	000000	00000000000
Two Scale Conv	ergence		

• Let Ω be an open domain in \mathbb{R}^n and Y be the unit cell in \mathbb{R}^n which will take care of the oscillating fast scale.

Definition (two-scale convergence)

A sequence of functions $\{v_{\varepsilon}\}$ in $L^2(\Omega)$ is said to two-scale converge to a limit $v \in L^2(\Omega \times Y)$ (denoted as $v_{\varepsilon} \stackrel{2\varsigma}{=} v$) if

$$\int_{\Omega} v_{\varepsilon} \phi\left(x, \frac{x}{\varepsilon}\right) \, dx \to \int_{\Omega} \int_{Y} v(x, y) \phi(x, y) \, dy \, dx$$

for all $\phi \in L^2[\Omega; C_{\text{per}}(Y)]$.

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	o●ooooooo	000000	00000000000
Two Scale Conv	rergence		

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	00000000	000000	00000000000
Two Scale Conv	vergence		

• more generally $f\left(x, \frac{x}{\varepsilon}\right)$ two-scale converges to f(x, y); in particular $\sin nx \xrightarrow{2\varsigma} \sin y$.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	o●ooooooo	000000	00000000000
Two Scale Conv	ergence		

• more generally $f\left(x, \frac{x}{\varepsilon}\right)$ two-scale converges to f(x, y); in particular $\sin nx \stackrel{2\underline{s}}{=} \sin y$.

Theorem (Compactness)

For any bounded sequence v_{ε} in $L^2(\Omega)$, there exists a subsequence and $v \in L^2(\Omega \times Y)$ such that, v_{ε} two-scale converges to v along the subsequence.

Multi-scale Analysis ICTS-Bangalore Q A.K.N/IISc

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	o●ooooooo	000000	00000000000
Two Scale Conv	ergence		

• more generally $f\left(x, \frac{x}{\varepsilon}\right)$ two-scale converges to f(x, y); in particular $\sin nx \stackrel{2\underline{s}}{=} \sin y$.

Theorem (Compactness)

For any bounded sequence v_{ε} in $L^{2}(\Omega)$, there exists a subsequence and $v \in L^{2}(\Omega \times Y)$ such that, v_{ε} two-scale converges to v along the subsequence.

Also, if v_{ε} is bounded in $H^1(\Omega)$, then v is independent of y and is in $H^1(\Omega)$, and there exists a $v_1 \in L^2[\Omega; H^1_{per}(Y)]$ such that, up to a subsequence, ∇v_{ε} two-scale converges to $\nabla v + \nabla_y v_1$.

<ロ > < 部 > < 書 > < 書 > 差 う へ で う く で 13 /

Multi-scale Analysis ICTS-Bangalore QQ A.K.N/IISc

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	oo●oooooo	000000	00000000000
Properties			

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	00000000	000000	00000000000
Properties			

• If
$$u_{\varepsilon} \xrightarrow{2s} u(x,y)$$
, then $u_{\varepsilon} \rightharpoonup \bar{u}(x) = \int_{Y} u(x,y) dy$ in L^2 weak.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	oo●oooooo	000000	00000000000
Properties			

• If
$$u_{\varepsilon} \xrightarrow{2s} u(x,y)$$
, then $u_{\varepsilon} \rightharpoonup \bar{u}(x) = \int_{Y} u(x,y) dy$ in L^2 weak.

• Let $\{u_{\varepsilon}\}$ two-scale converges to u and \overline{u} is the weak limit. Then

 $\liminf_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} \geq ||\bar{u}||_{L^{2}(\Omega)}.$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	oo●oooooo	000000	00000000000
Properties			

• If u_{ε} converges to u in L^2 (strong), then $u_{\varepsilon} \xrightarrow{2s} u$

• If
$$u_{\varepsilon} \xrightarrow{2s} u(x,y)$$
, then $u_{\varepsilon} \rightharpoonup \bar{u}(x) = \int_{Y} u(x,y) dy$ in L^2 weak.

• Let $\{u_{\varepsilon}\}$ two-scale converges to u and \overline{u} is the weak limit. Then

 $\liminf_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} \geq ||\bar{u}||_{L^{2}(\Omega)}.$

 $\liminf_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} \geq ||u||_{L^{2}(\Omega \times Y)} \geq ||\overline{u}||_{L^{2}(\Omega)}.$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	oo●oooooo	000000	00000000000
Properties			

• If
$$u_{\varepsilon} \xrightarrow{2s} u(x,y)$$
, then $u_{\varepsilon} \rightharpoonup \bar{u}(x) = \int_{Y} u(x,y) dy$ in L^2 weak.

• Let $\{u_{\varepsilon}\}$ two-scale converges to u and \overline{u} is the weak limit. Then

 $\liminf_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} \geq ||\bar{u}||_{L^{2}(\Omega)}.$

 $\liminf_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} \geq ||u||_{L^{2}(\Omega \times Y)} \geq ||\bar{u}||_{L^{2}(\Omega)}.$

Definition

We say u_{ε} strongly two-scale converges to u = u(x, y) in $L^{2}(\Omega)$, denoted by $u_{\varepsilon} \overset{strong-2s}{\frown} u$ if $u_{\varepsilon} \overset{2s}{\rightharpoonup} u$ and $\lim_{\varepsilon \to 0} ||u_{\varepsilon}||_{L^{2}(\Omega)} = ||u||_{L^{2}(\Omega \times Y)}$.

Multi-scale Con.

HighContract Problem 000000 HC OCP 00000000000

Passage to limit in the product

• For smooth ψ , $\psi\left(x,\frac{x}{\varepsilon}\right)$, converges strong two-scale to $\psi(x,y)$. In fact,

$$\psi\left(x,\frac{x}{\varepsilon}\right)\psi\left(x,\frac{x}{\varepsilon}\right) \to \int_{Y}\psi(x,y)\psi(x,y).$$

Osci. Domains 00000000 Multi-scale Con. 00000000 HighContract Problem 000000 HC OCP 00000000000

Passage to limit in the product

• For smooth ψ , $\psi\left(x, \frac{x}{\varepsilon}\right)$, converges strong two-scale to $\psi(x, y)$. In fact,

$$\psi\left(x,\frac{x}{\varepsilon}\right)\psi\left(x,\frac{x}{\varepsilon}\right) \to \int_{Y}\psi(x,y)\psi(x,y).$$

Theorem

Let u_{ε} and v_{ε} be two sequences in $L^{2}(\Omega)$ such that u_{ε} strongly two-scale converges to u in $L^{2}(\Omega)$ and v_{ε} two-scale converges to v in $L^{2}(\Omega)$, then the product

$$u_{\varepsilon}(x)v_{\varepsilon}(x) \rightharpoonup \int_{Y} u(x,y)v(x,y)dy$$

in $\mathcal{D}'(\Omega)$, that is in distribution. Further, if $u \in L^2(\Omega; C_{\#}(Y))$, then

$$\lim_{\varepsilon \to 0} \left\| u_{\varepsilon}(x) - u\left(x, \frac{x}{\varepsilon}\right) \right\|_{L^{2}(\Omega)} = 0.$$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	0000●0000	000000	00000000000
Unfolding Operato	rs		

• In two-scale convergence, we obtained the fast scale $y = \frac{x}{\varepsilon}$. We would like to go one-step further and introduce the fast scale in the sequence itself.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	000000000	000000	00000000000
Unfolding Operato	rs		

- In two-scale convergence, we obtained the fast scale $y = \frac{x}{\varepsilon}$. We would like to go one-step further and introduce the fast scale in the sequence itself.
- In other words, unfold the second hidden scale in the given sequence. This is done via the notion of scale decomposition of \mathbb{R}^n .

<ロト < 四ト < 臣 > < 臣 > < 臣 > < 臣</p>

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	0000●0000	000000	00000000000
Unfolding Operato	rs		

- In two-scale convergence, we obtained the fast scale $y = \frac{x}{\varepsilon}$. We would like to go one-step further and introduce the fast scale in the sequence itself.
- In other words, unfold the second hidden scale in the given sequence. This is done via the notion of scale decomposition of \mathbb{R}^n .
- Finally, understand the topology of two-scale convergence.

< ロ > < 部 > < 画 > < 画 > 、

Osci. Domains Oscio Domains Oscio

• Let $Y = [0,1)^n$, $Y_k = Y + k$, $k \in \mathbb{Z}^n$, then $\mathbb{R}^n = \biguplus_{k \in \mathbb{Z}^n} Y_k$.

• For any $x \in \mathbb{R}^n$, we can write x = N(x) + R(x), where N(x) and R(x) are the integer and fractional parts, respectively.

Figure: P = N(x)

Multi-scale Analysis

ICTS-Bangalore

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	000000000	000000	00000000000
Unfolding Method:	scale decomposition	1	

• In fact, we can use any two independent vectors to decompose \mathbb{R}^n .

Multi-scale Analysis ICTS-Bangalore

alore 🚇 A

18 / 37
 Osci. Domains
 Multi-scale Con.
 HighContract Problem
 HC OCP

 00000000
 00000000
 00000000
 000000000

 Unfolding Method: scale decomposition
 HighContract Problem
 HC OCP

• Also decompose \mathbb{R}^n with $\varepsilon - cells$ as $\mathbb{R}^n = \biguplus_{k \in \mathbb{Z}^n} \varepsilon Y_k$, where $\varepsilon Y_k = \varepsilon Y + \varepsilon k$. For any $\varepsilon > 0$, we may write $x = \varepsilon \left[N(\frac{x}{\varepsilon}) + R(\frac{x}{\varepsilon}) \right]$ for any $x \in \mathbb{R}^n$.

Figure: $P = \varepsilon N\left(\frac{x}{\varepsilon}\right)$ and $x = \varepsilon \left[N\left(\frac{x}{\varepsilon}\right) + R\left(\frac{x}{\varepsilon}\right)\right]$

・ロト ・母ト ・ヨト ・ヨト

A.K.N/IISc

19/

37

Multi-scale Analysis ICTS-Bangalore

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
000000000	00000000●	000000	00000000000
Unfolding Operato	or		

• Two-scale composition function: Define $S_{\varepsilon} : \mathbb{R}^n \times Y \to \mathbb{R}^n$ as

$$S_{\varepsilon}(x,y) = \varepsilon N\left(rac{x}{\varepsilon}
ight) + \varepsilon y.$$

Osci. Domains 000000000	Multi-scale Con. ooooooooo	HighContract Problem 000000	HC OCP 00000000000
Unfolding Ope	rator		

• Two-scale composition function: Define $S_{\varepsilon} : \mathbb{R}^n \times Y \to \mathbb{R}^n$ as $S_{\varepsilon}(x, y) = \varepsilon N\left(\frac{x}{\varepsilon}\right) + \varepsilon y.$

• Clearly $S_{\varepsilon}(x,y) = x + \varepsilon(y - R(\frac{x}{\varepsilon})) \to x$ uniformly in $\mathbb{R}^n \times Y$.

Definition (Unfolding Operator)

Let $u \in L^1(\mathbb{R}^n)$. The ε -unfolding of u is defined as

$$T^{\varepsilon}(u)(x,y) = uoS_{\varepsilon}(x,y) = u\left(\varepsilon N\left(\frac{x}{\varepsilon}\right) + \varepsilon y\right)$$

(1)

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	00000000●	000000	00000000000
Unfolding Operato	r		

• Two-scale composition function: Define $S_{\varepsilon} : \mathbb{R}^n \times Y \to \mathbb{R}^n$ as $S_{\varepsilon}(x, y) = \varepsilon N\left(\frac{x}{\varepsilon}\right) + \varepsilon y.$

• Clearly $S_{\varepsilon}(x,y) = x + \varepsilon(y - R(\frac{x}{\varepsilon})) \to x$ uniformly in $\mathbb{R}^n \times Y$.

Definition (Unfolding Operator)

Let $u \in L^1(\mathbb{R}^n)$. The ε -unfolding of u is defined as

$$T^{\varepsilon}(u)(x,y) = uoS_{\varepsilon}(x,y) = u\left(\varepsilon N\left(\frac{x}{\varepsilon}\right) + \varepsilon y\right)$$

(1)

37

Theorem

Let $\{u_{\varepsilon}\}$ be a bounded sequence in $L^{2}(\Omega)$, then $T_{\varepsilon}(u_{\varepsilon})$ converges to u(x,y) weakly in $L^{2}(\Omega \times Y)$ if and only if $u_{\varepsilon} \stackrel{2-s}{\rightharpoonup} u$. Multi-scale Analysis ICTS-Bangalore $(\Omega \wedge K.N/IISc$

Figure: Pillar type oscillating domain

Reference: A. K. Nandakumaran and A. Sufian, Strong contrasting diffusivity in general oscillating domains: Homogenization of optimal control problems, Journal of Differential Equations, 291(2021) 57-89. https://doi.org/10.1016/j.jde.2021.04.031

Multi-scale Analysis

ICTS-Bangalore

A.K.N/IISc

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		0●0000	00000000000
Variational Problem	m		

• Consider the ε dependent variational problem, for all $\phi \in H^1(\Omega_{\varepsilon})$, where $f \in L^2(\Omega)$:

 $\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + \int_{\Omega_{\varepsilon}} u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi, \end{cases}$ (2)

• There is no uniform ellipticity leading to non-uniform estimates.

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		0●0000	00000000000
Variational Problem	m .		

• Consider the ε dependent variational problem, for all $\phi \in H^1(\Omega_{\varepsilon})$, where $f \in L^2(\Omega)$:

$$\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + \int_{\Omega_{\varepsilon}} u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi, \end{cases}$$

$$(2)$$

- There is no uniform ellipticity leading to non-uniform estimates.
- Instead of Laplacian, one can consider more general elliptic operators.

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		o●oooo	00000000000
Variational Problem	m		

• Consider the ε dependent variational problem, for all $\phi \in H^1(\Omega_{\varepsilon})$, where $f \in L^2(\Omega)$:

 $\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + \int_{\Omega_{\varepsilon}} u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi, \end{cases}$ (2)

• There is no uniform ellipticity leading to non-uniform estimates.

• Instead of Laplacian, one can consider more general elliptic operators.

• One can also consider α_{ε}^2 instead of the coefficient ε^2 and limiting problem may depend on the limit of $\frac{\alpha_{\varepsilon}}{\varepsilon}$.

イロトイラトイヨト ヨークへ(22 / Multi-scale Analysis ICTS-Bangalore Ø A.K.N/IISc 37

Osci. Domains	HighContract Problem	HC OCP
000000000	00●000	00000000000
Estimates		

$$\begin{aligned} \|\chi_{C_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \varepsilon \|\chi_{I_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega^{-})} \\ + \|u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \leqslant \|f\|_{L^{2}(\Omega_{\varepsilon})} \end{aligned}$$
(3)

Osci. Domains	HighContract Problem	HC OCP
000000000	00●000	00000000000
Estimates		

$$\begin{aligned} \|\chi_{C_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \varepsilon \|\chi_{I_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega^{-})} \\ + \|u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \leqslant \|f\|_{L^{2}(\Omega_{\varepsilon})} \end{aligned}$$
(3)

• Observe that

$$\|\nabla u_{\varepsilon}\|_{L^{2}(C_{\varepsilon}^{+})} \leq k, \ \|\nabla u_{\varepsilon}\|_{L^{2}(I_{\varepsilon}^{+})} \leq k\varepsilon^{-1},$$

where k is a generic constant.

Osci. Domains	HighContract Problem	HC OCP
ooooooooo	00●000	00000000000
Estimates		

$$\begin{aligned} \|\chi_{C_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \varepsilon \|\chi_{I_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega^{-})} \\ + \|u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \leqslant \|f\|_{L^{2}(\Omega_{\varepsilon})} \end{aligned}$$
(3)

• Observe that

$$\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(C_{\varepsilon}^{+})} \leq k, \ \left\|\nabla u_{\varepsilon}\right\|_{L^{2}(I_{\varepsilon}^{+})} \leq k\varepsilon^{-1},$$

where k is a generic constant.

• In essence, we do not have the uniform bound on the gradient, which is not surprising as the bound inversely depends on the ellipticity constant.

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

・ロト ・四ト ・ヨト ・ヨト

Osci. Domains	HighContract Problem	HC OCP
ooooooooo	00●000	00000000000
Estimates		

$$\begin{aligned} \|\chi_{C_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \varepsilon \|\chi_{I_{\varepsilon}^{+}} \nabla u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon}^{+})} + \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega^{-})} \\ + \|u_{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \leqslant \|f\|_{L^{2}(\Omega_{\varepsilon})} \end{aligned}$$
(3)

• Observe that

$$\left\|\nabla u_{\varepsilon}\right\|_{L^{2}(C_{\varepsilon}^{+})} \leq k, \ \left\|\nabla u_{\varepsilon}\right\|_{L^{2}(I_{\varepsilon}^{+})} \leq k\varepsilon^{-1},$$

where k is a generic constant.

• In essence, we do not have the uniform bound on the gradient, which is not surprising as the bound inversely depends on the ellipticity constant.

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

・ロト ・四ト ・ヨト ・ヨト

Osci. Domains		HighContract Problem	HC OCP
00000000	00000000	000000	00000000000

 $\begin{array}{ll} u^{-} \in H^{1}(\Omega^{-}), & u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ \eta(x,y_{1}) = (\eta_{1},\eta_{2}), & z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \end{array}$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
		000000	

$$\begin{split} &u^{-} \in H^{1}(\Omega^{-}), \quad u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ &\eta(x,y_{1}) = (\eta_{1},\eta_{2}), \quad z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \\ &\bullet u_{\varepsilon} \rightharpoonup u^{-} \text{ in } H^{1}(\Omega^{-}) \end{split}$$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
		000000	

$$\begin{split} &u^{-} \in H^{1}(\Omega^{-}), \quad u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ &\eta(x,y_{1}) = (\eta_{1},\eta_{2}), \quad z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \\ &\bullet u_{\varepsilon} \rightharpoonup u^{-} \text{ in } H^{1}(\Omega^{-}) \end{split}$$

• $T^{\varepsilon}(u_{\varepsilon}^+) \rightharpoonup u_0(x, y_1)$ in $L^2(\Omega^u)$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
		000000	

$$\begin{split} &u^{-} \in H^{1}(\Omega^{-}), \quad u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ &\eta(x,y_{1}) = (\eta_{1},\eta_{2}), \quad z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \\ &\bullet u_{\varepsilon} \rightharpoonup u^{-} \text{ in } H^{1}(\Omega^{-}) \end{split}$$

• $T^{\varepsilon}(u_{\varepsilon}^+) \rightharpoonup u_0(x, y_1)$ in $L^2(\Omega^u)$

• $T^{\varepsilon}(\chi_{C^+_{\varepsilon}}(\nabla u_{\varepsilon})) = T^{\varepsilon}_{\mathcal{C}}(\nabla u_{\varepsilon}) \rightharpoonup \chi_{C}(y_1, x_2)(\eta_1, \eta_2)$ in $(L^2(\Omega^u_{\mathcal{C}}))^2$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
		000000	

$$\begin{split} &u^{-} \in H^{1}(\Omega^{-}), \quad u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ &\eta(x,y_{1}) = (\eta_{1},\eta_{2}), \quad z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \\ &\bullet u_{\varepsilon} \rightharpoonup u^{-} \text{ in } H^{1}(\Omega^{-}) \end{split}$$

- $T^{\varepsilon}(u_{\varepsilon}^+) \rightharpoonup u_0(x, y_1)$ in $L^2(\Omega^u)$
- $T^{\varepsilon}(\chi_{C^+_{\varepsilon}}(\nabla u_{\varepsilon})) = T^{\varepsilon}_{\mathrm{C}}(\nabla u_{\varepsilon}) \rightharpoonup \chi_C(y_1, x_2)(\eta_1, \eta_2)$ in $(L^2(\Omega^u_{\mathrm{C}}))^2$
- $T^{\varepsilon}(\varepsilon\chi_{I_{\varepsilon}^+}\nabla u_{\varepsilon}) \rightharpoonup \chi_I(y_1, x_2)z(x, y_1) = \chi_I(y_1, x_2)(z_1, z_2)$ in $(L^2(\Omega^u))^2$.

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
		000000	

$$\begin{split} &u^{-} \in H^{1}(\Omega^{-}), \quad u_{0}(x,y_{1}) \in L^{2}(\Omega^{u}), \\ &\eta(x,y_{1}) = (\eta_{1},\eta_{2}), \quad z(x,y_{1}) = (z_{1},z_{2}) \in (L^{2}(\Omega^{u}))^{2} \text{ such that, weakly} \\ &\bullet u_{\varepsilon} \rightharpoonup u^{-} \text{ in } H^{1}(\Omega^{-}) \end{split}$$

- $T^{\varepsilon}(u_{\varepsilon}^+) \rightharpoonup u_0(x, y_1)$ in $L^2(\Omega^u)$
- $T^{\varepsilon}(\chi_{C^+_{\varepsilon}}(\nabla u_{\varepsilon})) = T^{\varepsilon}_{\mathcal{C}}(\nabla u_{\varepsilon}) \rightharpoonup \chi_{C}(y_1, x_2)(\eta_1, \eta_2)$ in $(L^2(\Omega^u_{\mathcal{C}}))^2$

• $T^{\varepsilon}(\varepsilon\chi_{I_{\varepsilon}^+}\nabla u_{\varepsilon}) \rightharpoonup \chi_I(y_1, x_2)z(x, y_1) = \chi_I(y_1, x_2)(z_1, z_2)$ in $(L^2(\Omega^u))^2$.

We need to identify $u_0, \eta_1, \eta_2, z_1, z_2$ and get properties enjoyed by these functions. This is the technical aspects.

Osci. Domains	HighContract Problem	HC OCP
	000000	
Limit problem		

The limit problem in variational form is

find
$$u = (u^+, u^-) \in H(\Omega)$$
 such that

$$\int_{\Omega^+} |Y_{\rm C}(x_2)| \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega^+} \alpha(x) u^+ \phi + \int_{\Omega^-} u^- \phi$$

$$+ \int_{\Omega^-} \nabla u^- \nabla \phi = \int_{\Omega^+} \alpha(x) f \phi + \int_{\Omega^-} f \phi,$$

for all $\phi \in H(\Omega)$.

Osci. Domains		HighContract Problem	HC OCP
Limit problem	00000000	000000	0000000000
Limit problem			

The limit problem in variational form is

for

$$\begin{cases} \text{find } u = (u^+, u^-) \in H(\Omega) \text{ such that} \\ \int_{\Omega^+} |Y_{\mathcal{C}}(x_2)| \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega^+} \alpha(x) u^+ \phi + \int_{\Omega^-} u^- \phi \\ + \int_{\Omega^-} \nabla u^- \nabla \phi = \int_{\Omega^+} \alpha(x) f \phi + \int_{\Omega^-} f \phi, \end{cases} \\ \text{all } \phi \in H(\Omega). \text{Here } \alpha(x) = \left(|Y(x_2)| - \int_{Y_I(x_2)} \xi dy_1 \right), \end{cases}$$

25 / 37 Multi-scale Analysis **ICTS-Bangalore**

Osci. Domains	HighContract Problem	HC OCP
	000000	
Limit problem		

The limit problem in variational form is

find
$$u = (u^+, u^-) \in H(\Omega)$$
 such that

$$\int_{\Omega^+} |Y_{\rm C}(x_2)| \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega^+} \alpha(x) u^+ \phi + \int_{\Omega^-} u^- \phi$$

$$+ \int_{\Omega^-} \nabla u^- \nabla \phi = \int_{\Omega^+} \alpha(x) f \phi + \int_{\Omega^-} f \phi,$$

for all
$$\phi \in H(\Omega)$$
. Here $\alpha(x) = \left(|Y(x_2)| - \int_{Y_I(x_2)} \xi dy_1\right)$, where

$$\begin{cases} \xi(x_2, \cdot) \in V^{x_2} \\ \int_{Y(x_2)} \frac{\partial \xi(x_2, y_1)}{\partial y_1} \frac{\partial w(y_1)}{\partial y_1} + \int_{Y(x_2)} \xi(x_2, y_1) w(y_1) = \int_{Y(x_2)} w(y_1), \end{cases}$$

for all $w \in V^{x_2}$

Multi-scale Analysis

ICTS-Bangalore

🚇 A.K.N/IISc

 $\frac{25}{37}$

Osci. Domains 000000000		HighContract Problem 00000●	HC OCP 00000000000
Convergence Th	neorem		

Theorem

We have the following Convergences: as $\varepsilon \to 0$

$$\begin{split} u_{\varepsilon}^{-} &\rightharpoonup u^{-} \ weakly \ in \ \ H^{1}(\Omega^{-}), \\ \widetilde{u_{\varepsilon}^{+}} &\rightharpoonup |Y(x_{2})|u^{+} + \int_{Y_{I}(x_{2})} (f - u^{+})\xi(x_{2}, y_{1})dy_{1} \\ &\chi_{C_{\varepsilon}}^{+} \frac{\widetilde{\partial u_{\varepsilon}^{+}}}{\partial x_{1}} &\rightharpoonup 0, \quad \chi_{C_{\varepsilon}}^{+} \frac{\widetilde{\partial u_{\varepsilon}^{+}}}{\partial x_{2}} \rightharpoonup |Y_{C}(x_{2})| \frac{\partial u^{+}}{\partial x_{2}} \\ &\varepsilon \chi_{I_{\varepsilon}}^{+} \frac{\widetilde{\partial u_{\varepsilon}^{+}}}{\partial x_{1}} \rightharpoonup (f - u^{+}) \int_{Y_{I}(x_{2})} \frac{\partial \xi}{\partial y_{1}} dy_{1}, \quad \varepsilon \chi_{I_{\varepsilon}}^{+} \frac{\widetilde{\partial u_{\varepsilon}^{+}}}{\partial x_{2}} \rightharpoonup 0 \\ & weakly \ in \ L^{2}(\Omega^{+}) \end{split}$$

Multi-scale Analysis ICT

ICTS-Bangalore

・ロト ・部ト ・ヨト ・ヨト

ъ

26/

Osci. Domains 000000000 Multi-scale Con. 000000000 HighContract Problem 000000 HC OCP •0000000000

Optimal Control Problems

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP			
000000000	000000000	000000	0●000000000			
Central on C						

Control on C_{ε}

For $\theta_{\varepsilon} \in L^2(C_{\varepsilon})$ consider the cost functional

$$J_{\varepsilon}(u_{\varepsilon},\theta_{\varepsilon}) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |u_{\varepsilon} - u_d|^2 + \frac{\beta}{2} \int_{C_{\varepsilon}} |\theta_{\varepsilon}|^2$$

Osci. Domains		HighContract Problem	HC OCP			
000000000		000000	0000000000			
Control on C						

For $\theta_{\varepsilon} \in L^2(C_{\varepsilon})$ consider the cost functional

$$J_{\varepsilon}(u_{\varepsilon},\theta_{\varepsilon}) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |u_{\varepsilon} - u_d|^2 + \frac{\beta}{2} \int_{C_{\varepsilon}} |\theta_{\varepsilon}|^2$$

where u_{ε} is the unique solution of the following variational problem: for $f \in L^2(\Omega)$

find
$$u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon})$$
 such that

$$\int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi + \int_{\Omega_{\varepsilon}} \chi_{C_{\varepsilon}} \theta_{\varepsilon} \phi,$$
for all $\phi \in H^{1}(\Omega_{\varepsilon})$.

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

・ロト ・四ト ・田ト ・田下 三田

Osci. Domains		HighContract Problem	HC OCP			
000000000		000000	0●000000000			
Control on C						

For $\theta_{\varepsilon} \in L^2(C_{\varepsilon})$ consider the cost functional

$$J_{\varepsilon}(u_{\varepsilon},\theta_{\varepsilon}) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |u_{\varepsilon} - u_d|^2 + \frac{\beta}{2} \int_{C_{\varepsilon}} |\theta_{\varepsilon}|^2$$

where u_{ε} is the unique solution of the following variational problem: for $f \in L^2(\Omega)$

$$\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi + \int_{\Omega_{\varepsilon}} \chi_{C_{\varepsilon}} \theta_{\varepsilon} \phi, \\ \text{for all } \phi \in H^{1}(\Omega_{\varepsilon}). \end{cases}$$

The optimal control problem is to find $(\bar{u}_{\varepsilon}, \bar{\theta}_{\varepsilon}) \in H^1(\Omega_{\varepsilon}) \times L^2(C_{\varepsilon})$ such that

$$J_{\varepsilon}(\bar{u}_{\varepsilon}, \bar{\theta}_{\varepsilon}) = \inf\{J_{\varepsilon}(u_{\varepsilon}, \theta_{\varepsilon})\}.$$
(4)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

Osci. Domains 000000000 Multi-scale Con.

HighContract Problem 000000 HC OCP 00000000000

Two-scale limit control problem

For controls $\theta \in L^2(\Omega^+)$, consider the following L^2 cost functional

$$J(u, u_1, \theta) = \frac{1}{2} \int_{\Omega^u} |u^+ + u_1 - u_d|^2 + \frac{1}{2} \int_{\Omega^-} |u^- - u_d|^2 + \frac{\beta}{2} \int_{\Omega^u_C} |\theta|^2,$$

 Osci. Domains cococcoco
 Multi-scale Con. cococcoco
 HighContract Problem
 HC OCP cococcocco

 Two-scale limit control problem
 HighContract Problem
 HC OCP

For controls $\theta \in L^2(\Omega^+)$, consider the following L^2 cost functional

$$J(u, u_1, \theta) = \frac{1}{2} \int_{\Omega^u} |u^+ + u_1 - u_d|^2 + \frac{1}{2} \int_{\Omega^-} |u^- - u_d|^2 + \frac{\beta}{2} \int_{\Omega^u_{\rm C}} |\theta|^2,$$

where $(u, u_1) \in H(\Omega) \times V(\Omega)$ satisfies the micro-macro system

$$\begin{cases} \text{find } (u, u_1) \in H(\Omega) \times V(\Omega) \text{ such that} \\ \int_{\Omega_{\mathcal{C}}^u} \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega_{\mathcal{I}}^u} \frac{\partial u_1}{\partial y_1} \frac{\partial \phi_1}{\partial y_1} + \int_{\Omega^u} (u^+ + u_1)(\phi + \phi_1) + \int_{\Omega^-} \nabla u^- \nabla \phi \\ + \int_{\Omega^-} u^- \phi = \int_{\Omega^u} (f + \chi_{\mathcal{C}}(y_1, x_2)\theta)(\phi + \phi_1) + \int_{\Omega^-} f\phi, \end{cases}$$

Multi-scale Analysis ICTS-Bangalore 🚇 A.K.N/IISc

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣.

29/

Osci. Domains Multi-scale Con. HighContract Problem ococococo Control problem

For controls $\theta \in L^2(\Omega^+)$, consider the following L^2 cost functional

$$J(u, u_1, \theta) = \frac{1}{2} \int_{\Omega^u} |u^+ + u_1 - u_d|^2 + \frac{1}{2} \int_{\Omega^-} |u^- - u_d|^2 + \frac{\beta}{2} \int_{\Omega^u_{\rm C}} |\theta|^2,$$

where $(u, u_1) \in H(\Omega) \times V(\Omega)$ satisfies the micro-macro system

$$\begin{cases} \text{find } (u, u_1) \in H(\Omega) \times V(\Omega) \text{ such that} \\ \int_{\Omega_{\mathcal{C}}^u} \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega_1^u} \frac{\partial u_1}{\partial y_1} \frac{\partial \phi_1}{\partial y_1} + \int_{\Omega^u} (u^+ + u_1)(\phi + \phi_1) + \int_{\Omega^-} \nabla u^- \nabla \phi \\ + \int_{\Omega^-} u^- \phi = \int_{\Omega^u} (f + \chi_{\mathcal{C}}(y_1, x_2)\theta)(\phi + \phi_1) + \int_{\Omega^-} f\phi, \end{cases}$$

Optimal control problem: find $(\bar{u}, \bar{u}_1, \bar{\theta}) \in H(\Omega) \times V(\Omega) \times L^2(\Omega^+)$

$$J(\bar{u}, \bar{u}_1, \bar{\theta}) = \inf\{J(u, u_1, \theta)\}.$$

HC OCP

Osci. Domains Multi-scale Con. Multi-scale Con

Scale separated cost functional:

$$J(u,\theta) = \frac{1}{2} \int_{\Omega^+} \int_{Y(x_2)} \left| (1-\xi)u^+ + f\xi - u_d \right|^2 + \frac{1}{2} \int_{\Omega^-} |u^- - u_d|^2 + \frac{\beta}{2} \int_{\Omega^+} |Y_{\rm C}(x_2)| |\theta|^2$$

Scale separated cost functional:

$$\begin{split} J(u,\theta) &= \frac{1}{2} \int_{\Omega^+} \int_{Y(x_2)} \left| (1-\xi) u^+ + f\xi - u_d \right|^2 + \frac{1}{2} \int_{\Omega^-} |u^- - u_d|^2 \\ &+ \frac{\beta}{2} \int_{\Omega^+} |Y_{\mathcal{C}}(x_2)| |\theta|^2 \end{split}$$

Scale separated limit state equation:

 $\begin{cases} \text{find } u \in H(\Omega), \text{ such that,} \\ \int_{\Omega^+} |Y_{\mathsf{C}}(x_2)| \frac{\partial u^+}{\partial x_2} \frac{\partial \phi}{\partial x_2} + \int_{\Omega^+} \alpha(x) u^+ \phi + \int_{\Omega^-} u\phi + \int_{\Omega^-} \nabla u^- \nabla \phi \\ &= \int_{\Omega^+} \alpha(x) f\phi + \int_{\Omega^-} f\phi + \int_{\Omega^+} |Y_{\mathsf{C}}(x_2)| \theta\phi, \\ \text{for all } \phi \in H(\Omega). \end{cases}$

Multi-scale Analysis ICTS-Bangalore

A.K.N/IISc

・ロト・1日ト・日ト 田

000000000	Multi-scale Con. 000000000	OOOOOO	0000000000
Control on I			

Control on I_{ε}

For $\theta_{\varepsilon} \in L^2(I_{\varepsilon})$, consider the following L^2 -cost functional

$$J_{\varepsilon}(u_{\varepsilon},\theta_{\varepsilon}) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |u_{\varepsilon} - u_d|^2 + \frac{\beta}{2} \int_{\mathrm{I}_{\varepsilon}} |\theta_{\varepsilon}|^2,$$

Osci. Domains	HighContract Problem	HC OCP
000000000	000000	0000€0000000
Control on L		

For $\theta_{\varepsilon} \in L^2(I_{\varepsilon})$, consider the following L^2 -cost functional

$$J_{arepsilon}(u_{arepsilon}, heta_{arepsilon}) = rac{1}{2}\int_{\Omega_{arepsilon}}|u_{arepsilon}-u_d|^2 + rac{eta}{2}\int_{\mathrm{I}_{arepsilon}}| heta_{arepsilon}|^2,$$

where u_{ε} is the unique solution of the following variational problem: for $f \in L^2(\Omega)$

$$\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi + \int_{\Omega_{\varepsilon}} \chi_{I_{\varepsilon}} \theta_{\varepsilon} \phi, \end{cases}$$
(5)

for all $\phi \in H^1(\Omega_{\varepsilon})$.

Osci. Domains	HighContract Problem	HC OCP
000000000	000000	0000000000
Control on I		

For $\theta_{\varepsilon} \in L^2(I_{\varepsilon})$, consider the following L^2 -cost functional

$$J_{\varepsilon}(u_{\varepsilon},\theta_{\varepsilon}) = \frac{1}{2} \int_{\Omega_{\varepsilon}} |u_{\varepsilon} - u_d|^2 + \frac{\beta}{2} \int_{\mathrm{I}_{\varepsilon}} |\theta_{\varepsilon}|^2,$$

where u_{ε} is the unique solution of the following variational problem: for $f \in L^2(\Omega)$

$$\begin{cases} \text{find } u_{\varepsilon} \in H^{1}(\Omega_{\varepsilon}) \text{ such that} \\ \int_{\Omega_{\varepsilon}} \left(\chi_{\Omega^{-}} + \chi_{C_{\varepsilon}} + \varepsilon^{2} \chi_{I_{\varepsilon}} \right) \nabla u_{\varepsilon} \nabla \phi + u_{\varepsilon} \phi = \int_{\Omega_{\varepsilon}} f \phi + \int_{\Omega_{\varepsilon}} \chi_{I_{\varepsilon}} \theta_{\varepsilon} \phi, \end{cases}$$
(5)

for all $\phi \in H^1(\Omega_{\varepsilon})$. The optimal control problem is to find $(\bar{u}_{\varepsilon}, \bar{\theta}_{\varepsilon}) \in H^1(\Omega_{\varepsilon}) \times L^2(I_{\varepsilon})$ such that

 $J_{\varepsilon}(\bar{u}_{\varepsilon}, \bar{\theta}_{\varepsilon}) = \inf\{J_{\varepsilon}(u_{\varepsilon}, \theta_{\varepsilon}) : (u_{\varepsilon}, \theta_{\varepsilon}) \text{ satisfies (5)}\}.$ (6)

Osci. Domains Multi-scale Con. HighContract Problem HC OCP occocococo Cocococo Cococo HighContract Problem HC OCP occocococo Cococo Coco Cococo Coco Coc

• For the source term $f \in L^2(\Omega)$ and control $(\theta, \theta_1) \in L^2(\Omega^+) \times L^2(\Omega_{\rm I}^u)$ (or one can think $\theta_1 \in L^2(\Omega^u)$ with $\theta_1 = 0$ a.e. in $\Omega_{\rm C}^u$), the limit L^2 -cost functional is

$$J(u, u_1, \theta, \theta_1) = \frac{1}{2} \int_{\Omega^u} (u^+ + u_1 - u_d)^2 + \int_{\Omega^-} (u^- - u_d)^2 + \frac{\beta}{2} \int_{\Omega^\mu} (\theta + \theta_1)^2$$

イロト イボト イヨト 一日

Osci. Domains		HighContract Problem	HC OCP
00000000	00000000	000000	000000000000

• Here $(u, u_1) \in H(\Omega) \times V(\Omega)$ satisfies

$$\int_{\Omega_{\rm C}^{u}} \frac{\partial u^{+}}{\partial x_{2}} \frac{\partial \phi}{\partial x_{2}} + \int_{\Omega_{\rm I}^{u}} \frac{\partial u_{1}}{\partial y_{1}} \frac{\partial \phi_{1}}{\partial y_{1}} + \int_{\Omega^{u}} (u^{+} + u_{1})(\phi + \phi_{1})$$
$$+ \int_{\Omega^{-}} (\nabla u^{-} \nabla \phi + u\phi) = \int_{\Omega^{u}} (f + \chi_{\rm I}(y_{1}, x_{2})(\theta + \theta_{1}))(\phi + \phi_{1}) + \int_{\Omega^{-}} f\phi,$$

for all $(\phi, \phi_1) \in H(\Omega) \times V(\Omega)$.

Osci. Domains		HighContract Problem	HC OCP
00000000	00000000	000000	000000000000

• Here $(u, u_1) \in H(\Omega) \times V(\Omega)$ satisfies

$$\int_{\Omega_{\rm C}^{u}} \frac{\partial u^{+}}{\partial x_{2}} \frac{\partial \phi}{\partial x_{2}} + \int_{\Omega_{\rm I}^{u}} \frac{\partial u_{1}}{\partial y_{1}} \frac{\partial \phi_{1}}{\partial y_{1}} + \int_{\Omega^{u}} (u^{+} + u_{1})(\phi + \phi_{1})$$
$$+ \int_{\Omega^{-}} (\nabla u^{-} \nabla \phi + u\phi) = \int_{\Omega^{u}} (f + \chi_{\rm I}(y_{1}, x_{2})(\theta + \theta_{1}))(\phi + \phi_{1}) + \int_{\Omega^{-}} f\phi,$$

for all $(\phi, \phi_1) \in H(\Omega) \times V(\Omega)$.

• Now the optimal control problem is to find $(\bar{u}, \bar{u}_1, \bar{\theta}, \bar{\theta}_1) \in H(\Omega) \times V(\Omega) \times L^2(\Omega^+) \times L^2(\Omega_I^u)$ such that

$$J(\bar{u}, \bar{u}_1, \bar{\theta}, \bar{\theta}_1) = \inf\{J(u, u_1, \theta, \theta_1)\}.$$

< □ > < @ > < 注 > < 注 > ... 注

Osci. Domains		HighContract Problem	HC OCP
ooooooooo		000000	000000000000
Partial scale separ	ation		

• A complete scale separation is not available **Reduced cost functional:** The L^2 -cost functional reduces to

$$J(u, u_{11}, \theta, \theta_1) = \frac{1}{2} \int_{\Omega^+} \int_{Y(x_2)} ((1 - \xi)u^+ + \xi f + u_{11} - u_d)^2 + \int_{\Omega^-} (u^- - u_d)^2 + \frac{\beta}{2} \int_{\Omega^+} \int_{Y(x_2)} (\theta + \theta_1)^2$$

Osci. Domains	Multi-scale Con.	HighContract Problem	HC OCP
ooooooooo	00000000	000000	000000000000
Partial scale se	paration		

• A complete scale separation is not available **Reduced cost functional:** The L^2 -cost functional reduces to

$$J(u, u_{11}, \theta, \theta_1) = \frac{1}{2} \int_{\Omega^+} \int_{Y(x_2)} ((1 - \xi)u^+ + \xi f + u_{11} - u_d)^2 + \int_{\Omega^-} (u^- - u_d)^2 + \frac{\beta}{2} \int_{\Omega^+} \int_{Y(x_2)} (\theta + \theta_1)^2$$

Reduced state equation: $(\bar{u}, \bar{u}_{11}) \in H(\Omega) \times V(\Omega)$ satisfies

$$\begin{cases} \int_{\Omega^+} |Y_{\rm C}(x_2)| \frac{\partial u^+}{\partial x_2} \frac{\partial \phi^+}{\partial x_2} + \int_{\Omega^+} \alpha(x) u^+ \phi^+ + \int_{\Omega^-} \nabla u^- \nabla \phi^- + \int_{\Omega^-} u^- \phi \\ = \int_{\Omega^+} \int_{Y(x_2)} ((1-\xi)f + (1-\xi)(\theta+\theta_1))\phi^+ + \int_{\Omega^-} f\phi^-, \\ \int_{\Omega^u} \frac{\partial u_{11}}{\partial y_1} \frac{\partial \phi_1}{\partial y_1} + \int_{\Omega^u} u_{11}\phi_1 = \int_{\Omega^u} (\theta+\theta_1)\phi_1, \end{cases}$$

Multi-scale Analysis ICTS

(日)

34/

37

Osci.	Domains
Dof	orongo
ner	erence

A. K. Nandakumaran and A. Sufian, Strong contrasting diffusivity in general oscillating domains: Homogenization of optimal control problems,

Journal of Differential Equations, 291(2021) 57-89. https://doi.org/10.1016/j.jde.2021.04.031

・ロト ・母ト ・ヨト ・ヨト

◆□▶ ◆舂▶ ◆産▶ ◆産▶ ○

A.K.N/IISc

HC OCP 00000000000

37

Some Recent Relevant Articles

A. K. NANDAKUMARAN AND ABU SUFIAN, Unfolding Operator on Heisenberg Group, SIAM J. of Control
and Optimization, Vol. 61, No. 3 (2023), pp. 1350-1374.

Ē.

A. K. NANDAKUMARAN AND ABU SUFIAN, Oscillating PDE in a rough domain with a curved interface: Homogenization of an Optimal Control Problem, ESAIM-COCV, ESAIM: COCV 27 (2021) S4. DOI: https://doi.org/10.1051/cocy/2020045

S. AIYAPPAN, A. K. NANDAKUMARAN, AND RAVI PRAKASH, Locally periodic unfolding operator for highly oscillating rough domains, Annali di Matematica Pura ed Applicata (1923 -). https://doi.org/10.1007/s10231-019-00848-7.

RAJESH MAHADEVAN, A. K. NANDAKUMARAN, RAVI PRAKASH, Homogenization of an elliptic equation in a domain with oscillating boundary with non-homogeneous non-linear boundary conditions, Appl. Math. Optim., 82, pages 245-278 (2020) Online 2018. https://doi.org/10.1007/s00245-018-9499-4. https://doi.org/10.1007/s00245-018-9499-4

S. AIYAPPAN, A.K.NANDAKUMARAN AND RAVI PRAKASH, Semi-Linear Optimal Control Problem on a Smooth Oscillating Domain, Communications in Contemporary Mathematics (2019) 1950029 (26 pages) DOI: 10.1142/S0219199719500299

S. AIYAPPAN, A. K. NANDAKUMARAN, AND RAVI PRAKASH, Generalization of unfolding operator for highly oscillatory smooth boundary domains and homogenization, Calc. Var. (2018) 57:86 https://doi.org/10.1007/s00526-018-1354-6.

> Multi-scale Analysis **ICTS-Bangalore**

Thank You! A. K. Nandakumaran, IISc., Bangalore

NPTEL Video Courses

ODE: http://nptel.ac.in/courses/111108081/ PDE-1: https://nptel.ac.in/courses/111/108/111108144/ PDE-2: https://nptel.ac.in/courses/111/108/111108152/ Adv. PDE-1: https://nptel.ac.in/courses/111108168/ Adv. PDE-2: https://nptel.ac.in/courses/111108412/