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beyond CBCs: GW signal types
(for LVK network)
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a brief review of (recent) reviews
[2019]

[2022]
[2021]

[2020]

[2023]

[2023]

clear signs of a mature
but vibrant field
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CW signals: basic concepts
● “quasi-stationary” and “quasi-monochromatic”
● Slow frequency & amplitude modulation:

– intrinsic pulsar spin-down (energy loss)
– daily rotation of Earth
– yearly orbit of Earth around Sun

– optional: source binary orbit

● Much simpler than CBC waveforms,
usually no need for simulations-informed
waveform models.

● Long-duration matched filter sensitive to
tiny offsets in template parameters.

● → searches (for unknown sources)
very computationally expensive:
extremely dense template banks,
up to 1017 in all-sky searches!

[K.Wette]
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CW signals: Taylor series spindown model
● the usual two polarization components:

 

● phase evolution:

 
  with                             

● Same as in radio timing, just at GW frequencies, e.g.                      for “mountains”
 

● If only..
– pulsar has negligible proper motion
– we had an ideal omnidirectional detector

at the solar system barycentre

→ this would be all there is to it!
 

● BUT need to take into account:
– actual detector response
– timing corrections between SSB

and detector frames.

[M.Shaltev]
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CW signals: Doppler modulation and detector response
● real GW detectors on Earth: Doppler modulation from daily&yearly motion

● timing relation between wavefront arrivals in detector frame and in SSB:

● modulated signal waveform at detector:

(including detector response / antenna pattern)

● frequency evolution parameters
(“Doppler parameters”, λ):
 

intrinsic spindown terms,
sky position (alpha,delta)

● in data analysis also, also called “barycentring”

→ a main cost factor
[K.Wette]
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detector noise
● GW detector noise is ≈ Gaussian

(especially when averaging over long durations).

● Fully described by Power Spectral Density (PSD).

● Frequency-dependent PSD (“coloured noise”):

 

Real noise not perfectly Gaussian, contains artifacts like
–  glitches (short duration, complex shapes)

–  lines (fixed frequency, can be persistent, main CW headache)
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detector noise & CW data analysis
● Quasimonochromatic signals → usually work in the Fourier domain

● Can extract “narrowband” data sets,
noise PSD locally almost constant

● Usually split data into Short Fourier Transforms (SFTs) (TSFT=1800s or similar).
→ only assume PSD is constant over each SFT:

● PSD estimates from per-SFT periodograms, time-averaged:

(Virgo groups use different, but
  conceptionally similar formats)

→ timeseries inner product
→ matched filter
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CWs: the key points
● Quasi-monochromatic: simple templates

● Incredibly weak.

● Long-duration:
– gain SNR by integrating longer
– data very close to Gaussian (except near narrow disturbances)
– precise frequency resolution from long-term phase coherence
– precise sky localisation, even with a single detector,

because Earth moves during observation
– computational cost for unknown targets grows steeply with observing time

(or at least with coherence time – more later).
● Not mainly from cost of a single long matched filter (~T).
● But because template banks become so dense.
● logical flip-side of the great resolution
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CW searches
Categorisation by amount of prior information:

● targeted searches

● narrowband searches

● directed searches

[Wette2023]

● spotlight searches

● allsky searches

● dark matter: “no sky”

https://arxiv.org/abs/2305.07106
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targeted searches
● Pulsar ephemerides (radio, X-ray, gamma-ray)

→ cheap and very sensitive fully-coherent analysis:
Taylor signal model, GWs coupled tightly to rotation frequency, no phase jumps

● Crucial milestone per target: spindown upper limit ↔ all energy loss into GWs:

● no GW detection → observational upper limits on GW strain:
if source emitting at h

0
 would have detected a louder outlier (with e.g. 90% confidence)

● Crab and Vela pulsars: spindown limit first beaten with initial LIGO/Virgo in 2000s.

● Narrowband approach: allow EM–GW mismatch  1 Hz,≲
still beat limit for 7 pulsars in O3 [Abbott+ ApJ922:133]

● As of O3: beaten 
for 23 pulsars
[Abbott+ ApJ935:1]

https://doi.org/10.3847/1538-4357/ac6ad
https://doi.org/10.3847/1538-4357/ac6acf
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● Large parameter space (frequency, spindowns, possibly sky) at affordable cost.

● Simple signal model, dimensionality not too high;
but parameter space is curved and highly structured.

● approximate metric as time-average of phase model derivatives:

where               is the max Doppler shift from Earth’s motion [Prix2007]

● For a 4D parameter space                             → number of templates:

(or even steeper!)

● Computational cost                        (per-template MF: cost           )

● Intuitive reason for steep scaling of N
p
:

growing T
obs 

 → small offsets give big dephasing

→ shrinking “mismatch ellipses” covered by each template

● Larger template banks → higher trials factor
→ less significance for the same signal!

directed & all-sky searches

[Wette2014]

https://doi.org/10.1103/PhysRevD.75.023004
http://dx.doi.org/10.1103/PhysRevD.90.122010
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semi-coherent searches
● Broad searches with T

obs 
> months → fully-coherent searches a bad choice

● Better sensitivity at fixed cost [Brady&Creighton1998]:

● Template density only scales with T
seg

 instead of T
obs

.

● No longer require phase-coherence across whole T
obs

:
→ overall sensitivity reduced
→ more susceptible to spurious instrumental artifacts
→ more robust to astrophysical variations in the source (e.g. NS glitches)

● So much computational efficiency gain→ better search depth at fixed budget!

● Spurious candidates can be taken out with hierarchical follow-ups [e.g. Tenorio+2021].

https://arxiv.org/abs/gr-qc/9812014
https://arxiv.org/abs/2105.13860
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semi-coherent searches
● T

seg
 from single SFTs (e.g. 1800s for most “Hough” type searches) up to several 

days (for the most expensive Einstein@Home distributed computing searches)

● Instead of simple semi-coherent sum

more sophisticated methods exist, e.g. using refinement:

– use “coarse grid” template banks {λ
k
} in each segment with resolution given by T

seg
 

– evaluate final detection statistic on a
“fine grid” {λ} with resolution given by T

obs

– Get that final F(x,λ) from summing up
F

k
(x

k
,λ

k
) along the λ time-frequency track

– Optimal fine-grid construction and
coarse/fine computational cost balancing
is tricky and requires detailed understanding
of parameter space structure
(correlations/degeneracies between parameters).

mailto:Einstein@Home
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candidate post-processing
● Wide-parameter space searches (directed, all-sky) produce many outliers.

● Typical steps (in variable order):
– vetos: use simple characteristics of noise or expected signals

to “kill” candidates en masse
– clustering: reduce number of candidates by identifying small volumes in 

parameter space with multiple outliers that could come from the same physical 
source (instrumental disturbance or real CW signal)

– follow-up: run a new search around interesting candidates, with different 
methods or settings: switching to matched filter if not used in first stage, 
increasing the coherence times, MCMCs, etc

– upper limits: if no detection     : software injections of simulated signals to 
estimate the h0 at which we’d detect 95% of signals (averaged over other 
parameters)

● can then be astrophysically interpreted as max allowed ellipticity
for a NS at a certain distance

● or equivalently exclusion distance for NSs at given max ellipticity
● or e.g. saturation amplitude under r-mode model



16/17

Viterbi methods
● Consider CW signal

as a “hidden Markov model”
and the GW model as the
observable derived from it.

● points along a time-frequency
track are the “states” of that model

● “Viterbi algorithm” is an efficient
way to find the best track across
[t,f] data range.

● → extremely cheap CW search

● robust against non-ideal signal evolution, e.g. NS glitchs, timing noise,
spin wandering due to choppy accretion, …

● Suvorova+2016, Suvorova+2017, Sun+2017, Sun+2019, Bayley+2019

● Used in various directed and all-sky searches.

[Bayley+2019]

https://arxiv.org/abs/1606.02412
https://arxiv.org/abs/1710.07092
https://arxiv.org/abs/1710.00460
https://arxiv.org/abs/1903.03866
https://arxiv.org/abs/1903.12614
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