From faces of Weyl polytopes, to weights and characters of highest weight modules

Apoorva Khare Indian Institute of Science (Bangalore)

> ACMRT / Chari-65 ICTS – Nov 2023

g = complex semisimple/Kac-Moody Lie algebra (just work with sln),
 U(g) = universal enveloping algebra.

Triangular decomposition: $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, simple roots π , Weyl group W.

g = complex semisimple/Kac-Moody Lie algebra (just work with sln),
 U(g) = universal enveloping algebra.

Triangular decomposition: $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$, simple roots π , Weyl group W.

- Fix a (highest) weight $\lambda \in \mathfrak{h}^*$.
 - $M(\lambda) = \text{Verma module};$
 - $L(\lambda) = \text{simple quotient};$
 - V = highest weight module: $M(\lambda) \twoheadrightarrow V \twoheadrightarrow L(\lambda)$.
- We are interested in the structure of highest weight modules, e.g. simple *non-integrable* modules. (Integrable modules, Verma modules well-studied.)

The start of the journey

In 2009, Chari–Greenstein used certain combinatorial subsets of root system Δ to:

- Study modules over classical and quantum loop algebras,
- Construct Koszul algebras of all finite global dimensions from graded g-modules (via endomorphism algebras as in blocks of O),

The start of the journey

In 2009, Chari–Greenstein used certain combinatorial subsets of root system Δ to:

- Study modules over classical and quantum loop algebras,
- Construct Koszul algebras of all finite global dimensions from graded g-modules (via endomorphism algebras as in blocks of O),
- Obtain a graded character formula (at q = 1) of a Kirillov–Reshetikhin module over Uq(g),
- Connect parabolic subalgebras of g to ad-nilpotent ideals.

These combinatorial subsets $Y \subseteq \Delta$ are given by:

$$y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$$

The start of the journey (cont.)

Then in 2009, Chari–Dolbin–Ridenour classified all such subsets. Related to roots on the faces of root polytopes $\mathrm{conv}\,\Delta.$

- Chari–K.–Ridenour (2012) extended to faces of Weyl polytopes conv(wt L(λ)), λ ∈ P⁺, and constructed larger families of Koszul (endomorphism) algebras.
- What are these "discrete faces" (or roots on them)?

The start of the journey (cont.)

Then in 2009, Chari–Dolbin–Ridenour classified all such subsets. Related to roots on the faces of root polytopes $\mathrm{conv}\,\Delta.$

- Chari–K.–Ridenour (2012) extended to faces of Weyl polytopes conv(wt L(λ)), λ ∈ P⁺, and constructed larger families of Koszul (endomorphism) algebras.
- What are these "discrete faces" (or roots on them)?

This has now led to:

 The study of weights of all simple modules L(λ) (even for λ ∉ P⁺) and of all highest weight modules – over semisimple and also Kac-Moody g;

The start of the journey (cont.)

Then in 2009, Chari–Dolbin–Ridenour classified all such subsets. Related to roots on the faces of root polytopes $\mathrm{conv}\,\Delta.$

- Chari–K.–Ridenour (2012) extended to faces of Weyl polytopes conv(wt L(λ)), λ ∈ P⁺, and constructed larger families of Koszul (endomorphism) algebras.
- What are these "discrete faces" (or roots on them)?

This has now led to:

- The study of weights of all simple modules L(λ) (even for λ ∉ P⁺) and of all highest weight modules – over semisimple and also Kac-Moody g;
- A hitherto unstudied (even over sl₄) class of "universal" highest weight modules M;
- $\bullet\,$ BGG resolutions and Weyl–Kac character formulas for $\mathbb M.$

Apoorva Khare, Indian Institute of Science

1a. First-order theory: weights of simple modules

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Introduction

Suppose g is finite-dimensional and semisimple. Classical picture of finite-dimensional simple module $L(\lambda)$:

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Introduction

Suppose \mathfrak{g} is finite-dimensional and semisimple.

Classical picture of finite-dimensional simple module $L(\lambda)$:

 Qualitatively: conv wt L(λ) = conv W(λ). This is a W-invariant convex polytope P_λ. Now wt L(λ) = P_λ ∩ (λ − Zπ).

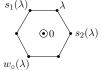
Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Introduction

Suppose \mathfrak{g} is finite-dimensional and semisimple.

Classical picture of finite-dimensional simple module $L(\lambda)$: ^s

 Qualitatively: conv wt L(λ) = conv W(λ). This is a W-invariant convex polytope P_λ. Now wt L(λ) = P_λ ∩ (λ − Zπ).



• Quantitatively: $ch L(\lambda)$ is given by the Weyl Character Formula.

If instead $L(\lambda)$ is infinite-dimensional:

• *Quantitatively:* character known through Kazhdan-Lusztig theory, e.g.:

$$\operatorname{ch} L(ww_{\circ} \bullet 0) = \sum_{x \leqslant w} (-1)^{\ell(w) - \ell(x)} P_{x,w}(1) \operatorname{ch} M(xw_{\circ} \bullet 0).$$

Note: cancellations and Kazhdan-Lusztig polynomials make it hard to compute multiplicities.

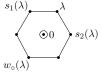
Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Introduction

Suppose \mathfrak{g} is finite-dimensional and semisimple.

Classical picture of finite-dimensional simple module $L(\lambda)$:

 Qualitatively: conv wt L(λ) = conv W(λ). This is a W-invariant convex polytope P_λ. Now wt L(λ) = P_λ ∩ (λ − Zπ).



• Quantitatively: $ch L(\lambda)$ is given by the Weyl Character Formula.

If instead $L(\lambda)$ is infinite-dimensional:

• *Quantitatively:* character known through Kazhdan-Lusztig theory, e.g.:

$$\operatorname{ch} L(ww_{\circ} \bullet 0) = \sum_{x \leqslant w} (-1)^{\ell(w) - \ell(x)} P_{x,w}(1) \operatorname{ch} M(xw_{\circ} \bullet 0).$$

Note: cancellations and Kazhdan-Lusztig polynomials make it hard to compute multiplicities.

 Qualitatively: which weights occur in L(λ)? What is their convex hull? (Was not written down until recently.)

Apoorva Khare, Indian Institute of Science

What if \mathfrak{g} is of infinite type?

- If \mathfrak{g} is affine, or symmetrizable, $\operatorname{ch} L(\lambda)$ is not known for *all* critical λ .
- If g is non-symmetrizable, formulas for $\operatorname{ch} L(\lambda)$ are not known even for integrable simple modules.

What if \mathfrak{g} is of infinite type?

- If \mathfrak{g} is affine, or symmetrizable, $\operatorname{ch} L(\lambda)$ is not known for *all* critical λ .
- If \mathfrak{g} is non-symmetrizable, formulas for $\ch{L}(\lambda)$ are not known even for integrable simple modules.

With this motivation, we first present several positive formulas (non-recursive, no cancellations) for weights of non-integrable $L(\lambda)$.

What if \mathfrak{g} is of infinite type?

- If \mathfrak{g} is affine, or symmetrizable, $\operatorname{ch} L(\lambda)$ is not known for *all* critical λ .
- If \mathfrak{g} is non-symmetrizable, formulas for $\ch{L}(\lambda)$ are not known even for integrable simple modules.

With this motivation, we first present several positive formulas (non-recursive, no cancellations) for weights of non-integrable $L(\lambda)$.

 These formulas are *uniform* – i.e., insensitive to whether g is of finite or infinite type, whether λ is critical or not...

What if \mathfrak{g} is of infinite type?

- If \mathfrak{g} is affine, or symmetrizable, $\operatorname{ch} L(\lambda)$ is not known for *all* critical λ .
- If \mathfrak{g} is non-symmetrizable, formulas for $\ch{L}(\lambda)$ are not known even for integrable simple modules.

With this motivation, we first present several positive formulas (non-recursive, no cancellations) for weights of non-integrable $L(\lambda)$.

- These formulas are *uniform* i.e., insensitive to whether \mathfrak{g} is of finite or infinite type, whether λ is critical or not...
- These formulas involve the weights of a "first-order" (= parabolic) Verma module $M(\lambda, J)$.

What if \mathfrak{g} is of infinite type?

- If \mathfrak{g} is affine, or symmetrizable, $\operatorname{ch} L(\lambda)$ is not known for *all* critical λ .
- If \mathfrak{g} is non-symmetrizable, formulas for $\ch{L}(\lambda)$ are not known even for integrable simple modules.

With this motivation, we first present several positive formulas (non-recursive, no cancellations) for weights of non-integrable $L(\lambda)$.

- These formulas are *uniform* i.e., insensitive to whether \mathfrak{g} is of finite or infinite type, whether λ is critical or not...
- These formulas involve the weights of a "first-order" (= parabolic) Verma module $M(\lambda, J)$.
- We then extend this (uniform) formula to all highest weight g-modules now involves the weights of "higher order Verma modules" M(λ, H).

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Notation for Kac–Moody \mathfrak{g}

For every Kac–Moody Lie algebra \mathfrak{g} (e.g. \mathfrak{sl}_n):

- Generalized Cartan matrix A, indexed by Dynkin diagram nodes I;
- Realization $(\mathfrak{h}, \pi, \pi^{\vee})$ of simple (co)roots satisfying: $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$.

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Notation for Kac–Moody \mathfrak{g}

For every Kac–Moody Lie algebra \mathfrak{g} (e.g. \mathfrak{sl}_n):

- Generalized Cartan matrix A, indexed by Dynkin diagram nodes I;
- Realization (𝔥, π, π[∨]) of simple (co)roots satisfying: ⟨α_j, α[∨]_i⟩ = a_{ij}.
- Root system $\Delta = \Delta^+ \sqcup \Delta^-$.
- Generators $e_i, f_i, i \in I$, and \mathfrak{h} .

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Notation for Kac–Moody \mathfrak{g}

For every Kac–Moody Lie algebra \mathfrak{g} (e.g. \mathfrak{sl}_n):

- Generalized Cartan matrix A, indexed by Dynkin diagram nodes I;
- Realization $(\mathfrak{h}, \pi, \pi^{\vee})$ of simple (co)roots satisfying: $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$.
- Root system $\Delta = \Delta^+ \sqcup \Delta^-$.
- Generators $e_i, f_i, i \in I$, and \mathfrak{h} .
- Weyl group W generated by simple reflections: s_i(λ) := λ − ⟨λ, α[∨]_i⟩α_i.

Notation for Kac–Moody \mathfrak{g}

For every Kac–Moody Lie algebra \mathfrak{g} (e.g. \mathfrak{sl}_n):

- Generalized Cartan matrix A, indexed by Dynkin diagram nodes I;
- Realization $(\mathfrak{h}, \pi, \pi^{\vee})$ of simple (co)roots satisfying: $\langle \alpha_j, \alpha_i^{\vee} \rangle = a_{ij}$.
- Root system $\Delta = \Delta^+ \sqcup \Delta^-$.
- Generators $e_i, f_i, i \in I$, and \mathfrak{h} .
- Weyl group W generated by simple reflections: s_i(λ) := λ − ⟨λ, α[∨]_i⟩α_i.

Parabolic analogues: For a subset $J \subseteq I$, we have analogues:

- Parabolic Weyl group W_J generated by $\{s_j : j \in J\}$.
- Define $\pi_J := \{ \alpha_j : j \in J \}.$
- Roots $\Delta_J = \Delta_J^+ \sqcup \Delta_J^-$.
- The Levi subalgebra l_J is generated by $\{e_j, f_j : j \in J\}$ and \mathfrak{h} .

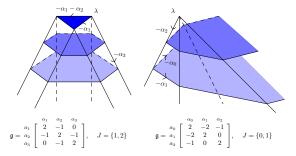
Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Integrable Slice Decomposition of the weights

Theorem (K. (2016), Dhillon-K. (2022))

Given $J \subseteq I$ and $\nu \in \mathfrak{h}^*$ (P_J^+) , let $L_J(\nu)$ denote the simple (integrable) \mathfrak{l}_J -module with highest weight ν . Then wt $L(\lambda) = \bigsqcup_{\mu \in \mathbb{Z}_{\geq 0}(\pi \setminus \pi_{J_\lambda})} \operatorname{wt} L_{J_\lambda}(\lambda - \mu),$

where $J_{\lambda} = J_{L(\lambda)}$ is the integrability $\{i \in I : \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}\}$.

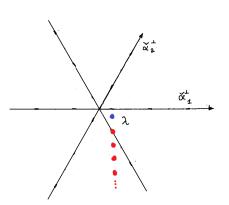


Apoorva Khare, Indian Institute of Science

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Example of Integrable Slice Decomposition in rank 2

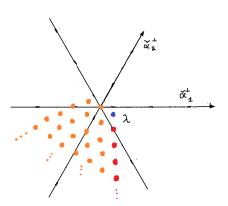
wt
$$L(\lambda) = \bigsqcup_{\mu \in \mathbb{Z}_{\geq 0}(\pi \setminus \pi_{J_{\lambda}})} \operatorname{wt} L_{J_{\lambda}}(\lambda - \mu).$$



Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Example of Integrable Slice Decomposition in rank 2

$$\operatorname{wt} L(\lambda) = \bigsqcup_{\mu \in \mathbb{Z}_{\geq 0}(\pi \setminus \pi_{J_{\lambda}})} \operatorname{wt} L_{J_{\lambda}}(\lambda - \mu).$$



Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

A question of Bump on the weights

Recall, Verma modules and finite-dimensional simple modules have "no holes":

• For all $\lambda \in \mathfrak{h}^*$,

wt $M(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda)).$

A question of Bump on the weights

Recall, Verma modules and finite-dimensional simple modules have "no holes":

• For all $\lambda \in \mathfrak{h}^*$,

```
wt M(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda)).
```

```
• For all \lambda \in P^+,
```

```
wt L(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda)).
```

Question (Bump): Does this hold for all (non-integrable) simple modules $L(\lambda), \ \lambda \in \mathfrak{h}^*$?

A question of Bump on the weights

Recall, Verma modules and finite-dimensional simple modules have "no holes":

• For all $\lambda \in \mathfrak{h}^*$,

```
wt M(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda)).
```

```
• For all \lambda \in P^+,
```

```
wt L(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda)).
```

Question (Bump): Does this hold for all (non-integrable) simple modules $L(\lambda), \ \lambda \in \mathfrak{h}^*$?

Proposition (K. (2016), Dhillon–K. (2022))

Yes.

Second weight-formula for $L(\lambda)$.

A question of Bump on the weights

Recall, Verma modules and finite-dimensional simple modules have "no holes":

• For all $\lambda \in \mathfrak{h}^*$,

```
wt M(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda)).
```

```
• For all \lambda \in P^+,
```

```
wt L(\lambda) = (\lambda - \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda)).
```

Question (Bump): Does this hold for all (non-integrable) simple modules $L(\lambda), \ \lambda \in \mathfrak{h}^*$?

Proposition (K. (2016), Dhillon-K. (2022))

Yes.

Second weight-formula for $L(\lambda)$.

These formulas follow from weight-formulas for a class of universal "first-order" highest weight modules $M(\lambda, J)$:

Apoorva Khare, Indian Institute of Science

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Parabolic Verma modules

Key tool in proving the above weight-formulas: parabolic Verma modules.

Say $\lambda \in \mathfrak{h}^*$ and $J \subseteq J_{\lambda}$ (so $\langle \lambda, \alpha_j^{\vee} \rangle \in \mathbb{Z}_{\geqslant 0}$). Define

$$M(\lambda,J) := \frac{U\mathfrak{g}}{U\mathfrak{g} \cdot (\ker \lambda, \mathfrak{n}^+, \{f_j^{\langle \lambda, \alpha_j^\vee \rangle + 1}\})} = \frac{M(\lambda)}{\sum_{j \in J} U\mathfrak{g} \cdot f_j^{\langle \lambda, \alpha_j^\vee \rangle + 1} M(\lambda)_\lambda}.$$

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Parabolic Verma modules

Key tool in proving the above weight-formulas: parabolic Verma modules.

Say $\lambda \in \mathfrak{h}^*$ and $J \subseteq J_{\lambda}$ (so $\langle \lambda, \alpha_j^{\vee} \rangle \in \mathbb{Z}_{\geqslant 0}$). Define

$$M(\lambda,J):=\frac{U\mathfrak{g}}{U\mathfrak{g}\cdot(\ker\lambda,\mathfrak{n}^+,\{f_j^{\langle\lambda,\alpha_j^\vee\rangle+1}\})}=\frac{M(\lambda)}{\sum_{j\in J}U\mathfrak{g}\cdot f_j^{\langle\lambda,\alpha_j^\vee\rangle+1}M(\lambda)_\lambda}.$$

"Extremal" special cases:

 Zeroth order: J = Ø (for any λ ∈ h*), M(λ, Ø) = M(λ), Verma module. <u>Character:</u> Kostant partition function

$$\operatorname{ch} M(\lambda) = \frac{e^{\lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}, \qquad \forall \lambda \in \mathfrak{h}^*.$$

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Parabolic Verma modules

Key tool in proving the above weight-formulas: parabolic Verma modules.

Say $\lambda \in \mathfrak{h}^*$ and $J \subseteq J_{\lambda}$ (so $\langle \lambda, \alpha_j^{\vee} \rangle \in \mathbb{Z}_{\geqslant 0}$). Define

$$M(\lambda,J):=\frac{U\mathfrak{g}}{U\mathfrak{g}\cdot(\ker\lambda,\mathfrak{n}^+,\{f_j^{\langle\lambda,\alpha_j^\vee\rangle+1}\})}=\frac{M(\lambda)}{\sum_{j\in J}U\mathfrak{g}\cdot f_j^{\langle\lambda,\alpha_j^\vee\rangle+1}M(\lambda)_\lambda}.$$

"Extremal" special cases:

• Zeroth order: $J = \emptyset$ (for any $\lambda \in \mathfrak{h}^*$), $M(\lambda, \emptyset) = M(\lambda)$, Verma module. <u>Character:</u> Kostant partition function

$$\operatorname{ch} M(\lambda) = \frac{e^{\lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}, \qquad \forall \lambda \in \mathfrak{h}^*.$$

In first order, if e.g. J = I (so λ ∈ P⁺): M(λ, I) = L^{max}(λ), maximal integrable module (simple if g is symmetrizable).
 <u>Character</u>: Weyl-Kac character formula

$$\operatorname{ch} L^{\max}(\lambda) = \sum_{w \in W} \frac{(-1)^{\ell(w)} e^{w \cdot \lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}, \qquad \forall \lambda \in P^+.$$

Apoorva Khare, Indian Institute of Science

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Weight-formula 3 for $L(\lambda)$: Minkowski difference

The above weight-formulas – (1) Slice decomposition, (2) "No holes in hull" –

Why do they hold for $L(\lambda)$ for all $\lambda \in \mathfrak{h}^*$?

Weight-formula 3 for $L(\lambda)$: Minkowski difference

The above weight-formulas – (1) Slice decomposition, (2) "No holes in hull" –

Why do they hold for $L(\lambda)$ for all $\lambda \in \mathfrak{h}^*$?

Because (a) They turn out to hold for all parabolic Verma modules $M(\lambda, J)$, and (b) Recalling $J_{\lambda} := \{i \in I : \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}\}$, we have:

Theorem (K. (2016), Dhillon-K. (2022))

wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda})$, for all $\lambda \in \mathfrak{h}^*$ (and all Kac–Moody \mathfrak{g}).

Weight-formula 3 for $L(\lambda)$: Minkowski difference

The above weight-formulas – (1) Slice decomposition, (2) "No holes in hull" –

Why do they hold for $L(\lambda)$ for all $\lambda \in \mathfrak{h}^*$?

Because (a) They turn out to hold for all parabolic Verma modules $M(\lambda, J)$, and (b) Recalling $J_{\lambda} := \{i \in I : \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}\}$, we have:

Theorem (K. (2016), Dhillon-K. (2022))

wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda})$, for all $\lambda \in \mathfrak{h}^*$ (and all Kac–Moody \mathfrak{g}).

Weight-formula 3... for all parabolic Verma modules:

wt
$$M(\lambda, J) =$$
wt $L_J(\lambda) - \mathbb{Z}_{\geq 0}(\Delta^+ \setminus \Delta_J^+).$

Weight-formula 3 for $L(\lambda)$: Minkowski difference

The above weight-formulas – (1) Slice decomposition, (2) "No holes in hull" –

Why do they hold for $L(\lambda)$ for all $\lambda \in \mathfrak{h}^*$?

Because (a) They turn out to hold for all parabolic Verma modules $M(\lambda, J)$, and (b) Recalling $J_{\lambda} := \{i \in I : \langle \lambda, \alpha_i^{\vee} \rangle \in \mathbb{Z}_{\geq 0}\}$, we have:

Theorem (K. (2016), Dhillon-K. (2022))

wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda})$, for all $\lambda \in \mathfrak{h}^*$ (and all Kac–Moody \mathfrak{g}).

Weight-formula 3... for all parabolic Verma modules:

wt
$$M(\lambda, J) =$$
wt $L_J(\lambda) - \mathbb{Z}_{\geq 0}(\Delta^+ \setminus \Delta_J^+).$

Now set $J = J_{\lambda} \rightsquigarrow$ gives third weight-formula for $\operatorname{wt} L(\lambda)$.

Theorem (G.V.K. Teja, 2020): "Minimal description" of all $\operatorname{wt} M(\lambda, J)$ (and hence for all simple $L(\lambda)$), using *parabolic* partial sum property.

Apoorva Khare, Indian Institute of Science

1b. First-order invariant & convex hull, of all modules

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

A first-order invariant of a highest weight module

The "discrete" Minkowski difference formula for $\operatorname{wt} L(\lambda), \operatorname{wt} M(\lambda, J)$

 \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis)

The "discrete" Minkowski difference formula for wt $L(\lambda)$, wt $M(\lambda, J)$ \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis) \rightsquigarrow extends to convex hull formula – for **all** highest weight modules!

This is an application of a "first-order invariant" of highest weight module V:

The "discrete" Minkowski difference formula for wt $L(\lambda)$, wt $M(\lambda, J)$ \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis) \rightsquigarrow extends to convex hull formula – for **all** highest weight modules!

This is an application of a "first-order invariant" of highest weight module V:

Theorem (Dhillon-K., 2022)

Fix a Kac–Moody algebra \mathfrak{g} , a weight λ , and a highest weight module V. The following data are equivalent:

The "discrete" Minkowski difference formula for wt $L(\lambda)$, wt $M(\lambda, J)$ \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis) \rightsquigarrow extends to convex hull formula – for **all** highest weight modules!

This is an application of a "first-order invariant" of highest weight module V:

Theorem (Dhillon-K., 2022)

Fix a Kac–Moody algebra \mathfrak{g} , a weight λ , and a highest weight module V. The following data are equivalent:

2
$$\operatorname{conv}(\operatorname{wt} V)$$
, the convex hull of the weights of V.

The "discrete" Minkowski difference formula for wt $L(\lambda)$, wt $M(\lambda, J)$ \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis) \rightsquigarrow extends to convex hull formula – for **all** highest weight modules!

This is an application of a "first-order invariant" of highest weight module V:

Theorem (Dhillon-K., 2022)

Fix a Kac–Moody algebra \mathfrak{g} , a weight λ , and a highest weight module V. The following data are equivalent:

- I_V, the integrability of V,
 i.e. I_V = {i ∈ I : f_i acts locally nilpotently (= non-freely) on V_λ}.
- 2 $\operatorname{conv}(\operatorname{wt} V)$, the convex hull of the weights of V.
- **3** The stabilizer of the character of V in W.

The "discrete" Minkowski difference formula for wt $L(\lambda)$, wt $M(\lambda, J)$ \rightsquigarrow akin to V-decomposition of convex polyhedra (from Motzkin's 1936 thesis) \rightsquigarrow extends to convex hull formula – for **all** highest weight modules!

This is an application of a "first-order invariant" of highest weight module V:

Theorem (Dhillon-K., 2022)

Fix a Kac–Moody algebra \mathfrak{g} , a weight λ , and a highest weight module V. The following data are equivalent:

- I_V, the integrability of V,
 i.e. I_V = {i ∈ I : f_i acts locally nilpotently (= non-freely) on V_λ}.
- 2 $\operatorname{conv}(\operatorname{wt} V)$, the convex hull of the weights of V.
- **3** The stabilizer of the character of V in W.

Moreover, for special classes of highest weight modules, including simple modules $L(\lambda)$, these data determine the weights.

Convex hull of weights

Recall – integrability of V is: $I_V := \{i \in I : f_i \text{ acts locally nilpotently on } V_\lambda\}.$

Theorem (Dhillon-K., 2022)

For all highest weight modules V over Kac–Moody $\mathfrak{g},$ $\operatorname{conv}(\operatorname{wt} V)$ is the Minkowski sum of

- the hull conv $W_{I_V}(\lambda)$, and
- the cone $-\mathbb{R}_{\geq 0}W_{I_V}(\pi_{I\setminus I_V})$.

Extends Weyl polytope to all V over all \mathfrak{g} .

Convex hull of weights

Recall – integrability of V is: $I_V := \{i \in I : f_i \text{ acts locally nilpotently on } V_\lambda\}.$

Theorem (Dhillon-K., 2022)

For all highest weight modules V over Kac–Moody $\mathfrak{g},$ $\operatorname{conv}(\operatorname{wt} V)$ is the Minkowski sum of

- the hull conv $W_{I_V}(\lambda)$, and
- the cone $-\mathbb{R}_{\geq 0}W_{I_V}(\pi_{I\setminus I_V})$.

Extends Weyl polytope to all V over all \mathfrak{g} .

Corollary: conv(wt V) is always a W_{I_V} -invariant polyhedron. (Novel even in finite type.)

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Faces of the convex hull

Question: What are the faces/face lattice of this polyhedron?

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

Faces of the convex hull

Question: What are the faces/face lattice of this polyhedron? Previously known for fin. dim. $L(\lambda)$:

- Satake, Ann. of Math. 1960
- Borel-Tits, IHES Publ. 1965
- Vinberg, Math. USSR Izv. 1991
- Casselman, Aust. Math. Soc. Lec. Ser. 1997
- Cellini-Marietti, IMRN 2015

Faces of the convex hull

Question: What are the faces/face lattice of this polyhedron? Previously known for fin. dim. $L(\lambda)$:

- Satake, Ann. of Math. 1960
- Borel-Tits, IHES Publ. 1965
- Vinberg, Math. USSR Izv. 1991
- Casselman, Aust. Math. Soc. Lec. Ser. 1997
- Cellini-Marietti, IMRN 2015

Theorem (K. (2016), Dhillon–K. (2017))

Let g be a Kac–Moody Lie algebra, $\lambda \in \mathfrak{h}^*$, and V a highest weight g-module.

- **1** For each $J \subseteq I$, the locus $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_\lambda$ is a face of $\operatorname{conv}(\operatorname{wt} V)$.
- An arbitrary face F of conv(wt V) is in the W_{IV} orbit of a unique such face F_J.

Faces of the convex hull

Question: What are the faces/face lattice of this polyhedron? Previously known for fin. dim. $L(\lambda)$:

- Satake, Ann. of Math. 1960
- Borel-Tits, IHES Publ. 1965
- Vinberg, Math. USSR Izv. 1991
- Casselman, Aust. Math. Soc. Lec. Ser. 1997
- Cellini-Marietti, IMRN 2015

Theorem (K. (2016), Dhillon–K. (2017))

Let g be a Kac–Moody Lie algebra, $\lambda \in \mathfrak{h}^*$, and V a highest weight g-module.

- **(**) For each $J \subseteq I$, the locus $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_\lambda$ is a face of $\operatorname{conv}(\operatorname{wt} V)$.
- An arbitrary face F of conv(wt V) is in the W_{IV} orbit of a unique such face F_J.

Also: complete determination of the face lattice (for all \mathfrak{g}, λ, V).

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

From (exposed) faces to weak faces to 212-closed subsets

Recall the 2009 property studied by Chari with coauthors:

 $y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$

How does this connect to faces of conv(wt V)?

Recall the 2009 property studied by Chari with coauthors:

 $y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$

How does this connect to faces of conv(wt V)? Via successively weakening the notion of a **face**:

Lemma

Given a subset $Y \subseteq \mathbf{X} := \operatorname{conv}(\operatorname{wt} V)$, each statement implies the next:

- 1 Y is a W_{I_V} -translate of $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_{\lambda}$.
- Y is an exposed face of conv(wt V), i.e., maximizer-set of a linear functional.

Recall the 2009 property studied by Chari with coauthors:

 $y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$

How does this connect to faces of conv(wt V)? Via successively weakening the notion of a **face**:

Lemma

Given a subset $Y \subseteq \mathbf{X} := \operatorname{conv}(\operatorname{wt} V)$, each statement implies the next:

1 Y is a
$$W_{I_V}$$
-translate of $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_{\lambda}$.

- Y is an exposed face of conv(wt V), i.e., maximizer-set of a linear functional.
- 3 Y is a weak \mathbb{R} -face of $\mathbf{X} = \operatorname{conv}(\operatorname{wt} V)$: if an interior point $\lambda x_1 + (1 \lambda) x_2 \in Y$, then $x_1, x_2 \in Y$. (Actually, slightly more general.)

Recall the 2009 property studied by Chari with coauthors:

 $y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$

How does this connect to faces of conv(wt V)? Via successively weakening the notion of a **face**:

Lemma

Given a subset $Y \subseteq \mathbf{X} := \operatorname{conv}(\operatorname{wt} V)$, each statement implies the next:

1 Y is a
$$W_{I_V}$$
-translate of $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_{\lambda}$.

- Y is an exposed face of conv(wt V), i.e., maximizer-set of a linear functional.
- **3** Y is a weak \mathbb{R} -face of $\mathbf{X} = \operatorname{conv}(\operatorname{wt} V)$: if an interior point $\lambda x_1 + (1 \lambda) x_2 \in Y$, then $x_1, x_2 \in Y$. (Actually, slightly more general.)
- Y satisfies the 2009-property above (via λ = 1/2). (We call such Y as 212-closed subsets of X.)

Recall the 2009 property studied by Chari with coauthors:

 $y_1 + y_2 = \alpha_1 + \alpha_2 \quad (y_1, y_2 \in Y, \ \alpha_1, \alpha_2 \in \Delta) \implies \alpha_1, \alpha_2 \in Y.$

How does this connect to faces of conv(wt V)? Via successively weakening the notion of a **face**:

Lemma

Given a subset $Y \subseteq \mathbf{X} := \operatorname{conv}(\operatorname{wt} V)$, each statement implies the next:

1 Y is a
$$W_{I_V}$$
-translate of $F_J := \operatorname{conv} U(\mathfrak{l}_J)V_{\lambda}$.

- Y is an exposed face of conv(wt V), i.e., maximizer-set of a linear functional.
- **3** Y is a weak \mathbb{R} -face of $\mathbf{X} = \operatorname{conv}(\operatorname{wt} V)$: if an interior point $\lambda x_1 + (1 \lambda) x_2 \in Y$, then $x_1, x_2 \in Y$. (Actually, slightly more general.)
- Y satisfies the 2009-property above (via λ = ¹/₂). (We call such Y as 212-closed subsets of X.)

Chari et al: 212-closed subsets of $\mathbf{X} = \Delta$; weak faces of $\mathbf{X} = \operatorname{wt} L(\lambda), \lambda \in P^+$.

Preceding slide: (1) \iff (2) for $\mathbf{X} = \operatorname{conv}(\operatorname{wt} V)$.

Apoorva Khare, Indian Institute of Science

Three formulas for weights and a question of Bump First-order invariant and convex hull of weights

From exposed to weak faces to 212-closed subsets (cont.)

How restrictive are (3), (4)? (In general – no "nice" answer.) What about for "special" subsets **X** in representation theory?

From exposed to weak faces to 212-closed subsets (cont.)

How restrictive are (3), (4)? (In general – no "nice" answer.) What about for "special" subsets X in representation theory?

For these subsets - these are equivalent to (the weights on) exposed faces!

Theorem (G.V.K. Teja (*Transform. Groups*, in press))

These notions (1)–(4) are equivalent for $\mathbf{X} = wt V$ and $\mathbf{X} = conv(wt V)$, for all highest weight modules over Kac–Moody g.

2a. Higher-order theory: holes, higher-order Vermas

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Holes in the set of weights

Recall, Verma modules and integrable simple modules have "no holes":

- For all $\lambda \in \mathfrak{h}^*$, wt $M(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda))$.
- For all $\lambda \in P^+$, wt $L(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda))$.

Holes in the set of weights

Recall, Verma modules and integrable simple modules have "no holes":

- For all $\lambda \in \mathfrak{h}^*$, wt $M(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda))$.
- For all $\lambda \in P^+$, wt $L(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda))$.
- This in fact extends to all parabolic Verma modules: wt M(λ, J) = (λ − Zπ) ∩ conv(wt M(λ, J)), hence from above, holds for all simples L(λ).

Does this hold for all highest weight modules V?

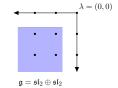
Holes in the set of weights

Recall, Verma modules and integrable simple modules have "no holes":

- For all $\lambda \in \mathfrak{h}^*$, wt $M(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda))$.
- For all $\lambda \in P^+$, wt $L(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda))$.
- This in fact extends to all parabolic Verma modules: wt M(λ, J) = (λ − Zπ) ∩ conv(wt M(λ, J)), hence from above, holds for all simples L(λ).

Does this hold for *all* highest weight modules V?

No: Consider $\mathfrak{g} = \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and $V' = M(0)/M(s_1s_2 \bullet 0)$.



Holes in the set of weights

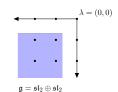
Recall, Verma modules and integrable simple modules have "no holes":

- For all $\lambda \in \mathfrak{h}^*$, wt $M(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} M(\lambda))$.
- For all $\lambda \in P^+$, wt $L(\lambda) = (\lambda \mathbb{Z}\pi) \cap \operatorname{conv}(\operatorname{wt} L(\lambda))$.
- This in fact extends to all parabolic Verma modules: wt M(λ, J) = (λ − Zπ) ∩ conv(wt M(λ, J)), hence from above, holds for all simples L(λ).

Does this hold for *all* highest weight modules V?

No: Consider $\mathfrak{g} = \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$, and $V' = M(0)/M(s_1s_2 \bullet 0)$.

Deleted (blue) portion: example of a second order hole.



Question (Lepowsky): Is this the only way holes arise? <u>Answer</u> (Dhillon–K., 2022): Yes.

Apoorva Khare, Indian Institute of Science

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Holes in the set of weights (cont.) + Weight formula 1

In general:

Definition

The holes \mathcal{H}_V in a module $M(\lambda) \twoheadrightarrow V$ are all $H \subseteq J_\lambda \subseteq I$ such that

(a) the Dynkin subdiagram on H has no edges, and

(b) $\prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \cdot V_{\lambda} = 0.$ (Note: $H \subseteq J_{\lambda}$.)

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Holes in the set of weights (cont.) + Weight formula 1

In general:

Definition

The holes \mathcal{H}_V in a module $M(\lambda) \twoheadrightarrow V$ are all $H \subseteq J_\lambda \subseteq I$ such that

(a) the Dynkin subdiagram on H has no edges, and

(b) $\prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \cdot V_{\lambda} = 0.$ (Note: $H \subseteq J_{\lambda}$.)

$$\begin{aligned} & \textit{Example: } \mathfrak{g} = \mathfrak{sl}_4(\mathbb{C}) \text{ and} \\ & V' = \frac{M(0)}{U\mathfrak{g}(f_1 f_3, f_2) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1 f_3, f_2)} \quad \rightsquigarrow \quad \mathcal{H}_{V'} = \{\{1, 3\}, \{2\}\}. \end{aligned}$$

Using (higher-order) holes yields a positive weight-formula for all V:

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Holes in the set of weights (cont.) + Weight formula 1

In general:

Definition

The holes \mathcal{H}_V in a module $M(\lambda) \twoheadrightarrow V$ are all $H \subseteq J_\lambda \subseteq I$ such that

(a) the Dynkin subdiagram on H has no edges, and

(b) $\prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \cdot V_{\lambda} = 0.$ (Note: $H \subseteq J_{\lambda}$.)

$$\begin{aligned} & \textit{Example: } \mathfrak{g} = \mathfrak{sl}_4(\mathbb{C}) \text{ and} \\ & V' = \frac{M(0)}{U\mathfrak{g}(f_1 f_3, f_2) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1 f_3, f_2)} \quad \rightsquigarrow \quad \mathcal{H}_{V'} = \{\{1, 3\}, \{2\}\}. \end{aligned}$$

Using (higher-order) holes yields a positive weight-formula for all V:

Theorem (K.-Teja, 2022)

Given a Kac–Moody \mathfrak{g} , a weight $\lambda \in \mathfrak{h}^*$, and a nonzero module $M(\lambda) \twoheadrightarrow V$,

wt
$$V = \bigcup_{J \subseteq J_{\lambda} : J \cap H \neq \emptyset \ \forall H \in \mathcal{H}_{V}} \operatorname{wt} M(\lambda, J).$$

Apoorva Khare, Indian Institute of Science

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Higher-order Verma modules

Definition: Given any weight $\lambda \in \mathfrak{h}^*$, and any subset $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$, define the (universal) higher-order Verma module

$$\mathbb{M}(\lambda,\mathcal{H}) := \frac{M(\lambda)}{\sum_{H \in \mathcal{H}} \left(U \mathfrak{g} \cdot \prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \right) \cdot M(\lambda)_{\lambda}}$$

Higher-order Verma modules

Definition: Given any weight $\lambda \in \mathfrak{h}^*$, and any subset $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$, define the (universal) higher-order Verma module

$$\mathbb{M}(\lambda,\mathcal{H}) := \frac{M(\lambda)}{\sum_{H \in \mathcal{H}} \left(U \mathfrak{g} \cdot \prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \right) \cdot M(\lambda)_{\lambda}}$$

Example: $\mathfrak{g} = \mathfrak{sl}_4, \lambda = 0$. Then there are *eleven* (higher-order) Verma modules:

• The extremal ones are M(0) itself, and zero:

$$\mathbb{M}(0, \emptyset) = M(0), \qquad \mathbb{M}(0, \{\emptyset\}) = 0.$$

Higher-order Verma modules

Definition: Given any weight $\lambda \in \mathfrak{h}^*$, and any subset $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$, define the (universal) higher-order Verma module

$$\mathbb{M}(\lambda,\mathcal{H}) := \frac{M(\lambda)}{\sum_{H \in \mathcal{H}} \left(U \mathfrak{g} \cdot \prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \right) \cdot M(\lambda)_{\lambda}}.$$

Example: $\mathfrak{g} = \mathfrak{sl}_4$, $\lambda = 0$. Then there are *eleven* (higher-order) Verma modules: • The extremal ones are M(0) itself, and zero:

$$\mathbb{M}(0, \emptyset) = M(0), \qquad \mathbb{M}(0, \{\emptyset\}) = 0.$$

• There are $2^{|I|} - 1 = 7$ (other) parabolic / "first-order" Verma modules:

$$\begin{split} \mathbb{M}(0,\{\{i\}\}) &= M(0)/U(\mathfrak{g}) \cdot f_i \cdot M(0)_0 = M(0,\{i\}), \quad \forall i \in I;\\ \mathbb{M}(0,\{\{i\},\{j\}\}) &= M(0,\{i,j\}), \qquad \forall i \neq j \in I;\\ \mathbb{M}(0,\{\{1\},\{2\},\{3\}\}) &= M(0,I) = L(0). \end{split}$$

Higher-order Verma modules

Definition: Given any weight $\lambda \in \mathfrak{h}^*$, and any subset $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$, define the (universal) higher-order Verma module

$$\mathbb{M}(\lambda,\mathcal{H}) := \frac{M(\lambda)}{\sum_{H \in \mathcal{H}} \left(U \mathfrak{g} \cdot \prod_{h \in H} f_h^{\langle \lambda, \alpha_h^{\vee} \rangle + 1} \right) \cdot M(\lambda)_{\lambda}}.$$

Example: $\mathfrak{g} = \mathfrak{sl}_4$, $\lambda = 0$. Then there are *eleven* (higher-order) Verma modules: • The extremal ones are M(0) itself, and zero:

$$\mathbb{M}(0, \emptyset) = M(0), \qquad \mathbb{M}(0, \{\emptyset\}) = 0.$$

• There are $2^{|I|} - 1 = 7$ (other) parabolic / "first-order" Verma modules:

$$\begin{split} \mathbb{M}(0,\{\{i\}\}) &= M(0)/U(\mathfrak{g}) \cdot f_i \cdot M(0)_0 = M(0,\{i\}), \quad \forall i \in I; \\ \mathbb{M}(0,\{\{i\},\{j\}\}) &= M(0,\{i,j\}), \qquad \forall i \neq j \in I; \\ \mathbb{M}(0,\{\{1\},\{2\},\{3\}\}) &= M(0,I) = L(0). \end{split}$$

• There are two second-order Verma modules:

 $\mathbb{M}(0,\{\{1,3\}\}) = M(0)/U(\mathfrak{g}) \cdot f_1 f_3 \cdot M(0)_0;$ $V' = \mathbb{M}(0,\{\{1,3\},\{2\}\}).$

Apoorva Khare, Indian Institute of Science

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

All highest weight modules: Weight formula 2

Recall, simples and first-order Vermas have the same weights:

Theorem (K. (2016), Dhillon-K. (2022))

wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda})$, for all $\lambda \in \mathfrak{h}^*$ (and all Kac–Moody \mathfrak{g}).

All highest weight modules: Weight formula 2

Recall, simples and first-order Vermas have the same weights:

Theorem (K. (2016), Dhillon-K. (2022))

wt $L(\lambda) = \operatorname{wt} M(\lambda, J_{\lambda})$, for all $\lambda \in \mathfrak{h}^*$ (and all Kac–Moody \mathfrak{g}).

Such an equality of weights holds in full generality:

Theorem (K.–Teja, 2022)

Fix any Kac–Moody \mathfrak{g} , weight λ , and nonzero module $M(\lambda) \twoheadrightarrow V$. Then

wt $V = \operatorname{wt} \mathbb{M}(\lambda, \mathcal{H}_V).$

Thus, need to better understand higher-order Vermas.

2b. Higher-order Vermas: characters, BGG resolutions

From weights to characters, to resolutions

```
The higher order Verma modules are crucial in understanding wt V for all modules M(\lambda) \twoheadrightarrow V.
We understand their weights (hence, weights of all V).
Can we understand their characters?
```

From weights to characters, to resolutions

```
The higher order Verma modules are crucial in understanding wt V for all modules M(\lambda) \twoheadrightarrow V.
We understand their weights (hence, weights of all V).
Can we understand their characters?
```

- (0th order usual Vermas) Character = Kostant partition function.
- (1st order parabolic Vermas) Weyl-Kac character formula
 Euler characteristic of a BGG-type resolution.

Question: What happens in higher order, i.e. for $\mathbb{M}(\lambda, \mathcal{H})$?

We can answer this for two classes of modules (we explain one below).

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

BGG resolution: 1. Pairwise orthogonal minimal holes

Example: $\mathfrak{g} = \mathfrak{sl}_n$ and

$$V'' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_5) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_5)}.$$
 (Thus $V'' = \mathbb{M}(0, \{\{1, 3\}, \{5\}\}).$)

BGG resolution: 1. Pairwise orthogonal minimal holes

Example: $\mathfrak{g} = \mathfrak{sl}_n$ and

$$V'' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_5) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_5)}.$$

(Thus $V'' = \mathbb{M}(0, \{\{1,3\}, \{5\}\}).)$ Now check:

 $0 \to M(s_1s_3s_5 \bullet 0) \xrightarrow{d_2} M(s_1s_3 \bullet 0) \oplus M(s_5 \bullet 0) \xrightarrow{d_1} M(0) \xrightarrow{d_0} V'' \to 0,$

where d_0 is the natural projection, and

•
$$d_1(X_1m_{s_1s_3} \bullet 0 + X_2m_{s_5} \bullet 0) := X_1 \cdot f_1f_3m_0 + X_2 \cdot f_5m_0.$$

•
$$d_2(Xm_{s_1s_3s_5\bullet 0}) := (-Xf_5 \cdot m_{s_1s_3\bullet 0}, Xf_1f_3 \cdot m_{s_5\bullet 0}).$$

BGG resolution: 1. Pairwise orthogonal minimal holes

Example: $\mathfrak{g} = \mathfrak{sl}_n$ and

$$V'' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_5) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_5)}.$$

(Thus $V'' = \mathbb{M}(0, \{\{1,3\}, \{5\}\}).)$ Now check:

 $0 \to M(s_1s_3s_5 \bullet 0) \xrightarrow{d_2} M(s_1s_3 \bullet 0) \oplus M(s_5 \bullet 0) \xrightarrow{d_1} M(0) \xrightarrow{d_0} V'' \to 0,$

where d_0 is the natural projection, and

•
$$d_1(X_1m_{s_1s_3} \bullet 0 + X_2m_{s_5} \bullet 0) := X_1 \cdot f_1f_3m_0 + X_2 \cdot f_5m_0.$$

•
$$d_2(Xm_{s_1s_3s_5\bullet 0}) := (-Xf_5 \cdot m_{s_1s_3\bullet 0}, Xf_1f_3 \cdot m_{s_5\bullet 0}).$$

This is easily verified, but also – special case of the Koszul resolution over $R := \mathbb{C}[f_1 f_3, f_5]$, subsequently tensored with the free R-module $U(\mathfrak{n}^-) \otimes_R -$.

BGG resolution: 1. Pairwise orthogonal minimal holes

Example: $\mathfrak{g} = \mathfrak{sl}_n$ and

$$V'' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_5) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_5)}.$$

(Thus $V'' = \mathbb{M}(0, \{\{1,3\}, \{5\}\}).)$ Now check:

 $0 \to M(s_1s_3s_5 \bullet 0) \xrightarrow{d_2} M(s_1s_3 \bullet 0) \oplus M(s_5 \bullet 0) \xrightarrow{d_1} M(0) \xrightarrow{d_0} V'' \to 0,$

where d_0 is the natural projection, and

•
$$d_1(X_1m_{s_1s_3} \bullet 0 + X_2m_{s_5} \bullet 0) := X_1 \cdot f_1f_3m_0 + X_2 \cdot f_5m_0.$$

•
$$d_2(Xm_{s_1s_3s_5} \bullet 0) := (-Xf_5 \cdot m_{s_1s_3} \bullet 0, Xf_1f_3 \cdot m_{s_5} \bullet 0).$$

This is easily verified, but also – special case of the Koszul resolution over $R := \mathbb{C}[f_1 f_3, f_5]$, subsequently tensored with the free R-module $U(\mathfrak{n}^-) \otimes_R -$.

• It is also the BGG resolution over

$$W_{\mathcal{H}} = \langle s_{H_1} := s_1 s_3, \ s_{H_2} := s_5 \rangle \simeq (\mathbb{Z}/2\mathbb{Z})^2,$$

with length $\ell_{\mathcal{H}}(s_{H_1}) = \ell_{\mathcal{H}}(s_{H_2}) := 1.$

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

BGG resolution: 1. Pairwise orthogonal minimal holes

The above example – and proof – is completely general:

Theorem (K.–Teja, 2022)

Fix Kac-Moody g and a weight λ . Suppose $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$ is such that \mathcal{H}^{\min} consists of pairwise orthogonal subsets $H_1, \ldots, H_k \subseteq J_{\lambda}$. Define $s_H := \prod_{h \in H} s_h$. Then $\mathbb{M}(\lambda, \mathcal{H})$ has a BGG resolution:

$$0 \longrightarrow M_k \xrightarrow{d_k} M_{k-1} \xrightarrow{d_{k-1}} \cdots \xrightarrow{d_2} M_1 \xrightarrow{d_1} M_0 \xrightarrow{d_0} \mathbb{M}(\lambda, \mathcal{H}) \to 0,$$

with M_p the direct sum of Vermas $M(s_{H_{i_1}} \cdots s_{H_{i_p}} \bullet \lambda)$ over all *p*-tuples of indices $1 \leq i_1 < \cdots < i_p \leq k$.

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

BGG resolution: 1. Pairwise orthogonal minimal holes

The above example – and proof – is completely general:

Theorem (K.–Teja, 2022)

Fix Kac-Moody g and a weight λ . Suppose $\mathcal{H} \subseteq \text{Indep}(J_{\lambda})$ is such that \mathcal{H}^{\min} consists of pairwise orthogonal subsets $H_1, \ldots, H_k \subseteq J_{\lambda}$. Define $s_H := \prod_{h \in H} s_h$. Then $\mathbb{M}(\lambda, \mathcal{H})$ has a BGG resolution:

$$0 \longrightarrow M_k \xrightarrow{d_k} M_{k-1} \xrightarrow{d_{k-1}} \cdots \xrightarrow{d_2} M_1 \xrightarrow{d_1} M_0 \xrightarrow{d_0} \mathbb{M}(\lambda, \mathcal{H}) \to 0,$$

with M_p the direct sum of Vermas $M(s_{H_{i_1}} \cdots s_{H_{i_p}} \bullet \lambda)$ over all p-tuples of indices $1 \leq i_1 < \cdots < i_p \leq k$. In particular, with $W_{\mathcal{H}} \simeq (\mathbb{Z}/2\mathbb{Z})^k$,

$$\operatorname{ch} \mathbb{M}(\lambda, \mathcal{H}) = \sum_{w \in W_{\mathcal{H}}} \frac{(-1)^{\ell_{\mathcal{H}}(w)} e^{w \cdot \lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}$$

Resembles the Weyl-Kac character formula:

$$\operatorname{ch} M(\lambda, J) = \sum_{w \in W_J} \frac{(-1)^{\ell(w)} e^{w \cdot \lambda}}{\prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})^{\dim \mathfrak{g}_{\alpha}}}.$$

Holes; higher-order Verma modules Higher order BGG Category \mathcal{O} ; BGG resolutions

Disjoint but non-orthogonal holes?

Speculation: Suppose $\mathcal{H}^{\min} = \{H_1, H_2\}$, with the H_i disjoint independent sets but not pairwise orthogonal. Then s_{H_1}, s_{H_2} generate a dihedral subgroup $W_{\mathcal{H}}$ of W. Does this provide a BGG resolution?

Disjoint but non-orthogonal holes?

Speculation: Suppose $\mathcal{H}^{\min} = \{H_1, H_2\}$, with the H_i disjoint independent sets but not pairwise orthogonal. Then s_{H_1}, s_{H_2} generate a dihedral subgroup $W_{\mathcal{H}}$ of W. Does this provide a BGG resolution?

"Simplest case": Consider $\mathfrak{g} = \mathfrak{sl}_4(\mathbb{C}), \lambda = 0$, and the module mentioned above:

$$V' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_2) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_2)} = \mathbb{M}(0, \{\{1, 3\}, \{2\}\}).$$

Then $s_{H_1} := s_1 s_3$ and $s_{H_2} := s_2$ generate a dihedral subgroup $W_{\mathcal{H}} \leq W$ of size 8, say with longest element \mathbf{w}_{\circ} .

Disjoint but non-orthogonal holes?

Speculation: Suppose $\mathcal{H}^{\min} = \{H_1, H_2\}$, with the H_i disjoint independent sets but not pairwise orthogonal. Then s_{H_1}, s_{H_2} generate a dihedral subgroup $W_{\mathcal{H}}$ of W. Does this provide a BGG resolution?

"Simplest case": Consider $\mathfrak{g} = \mathfrak{sl}_4(\mathbb{C}), \lambda = 0$, and the module mentioned above:

$$V' := \frac{M(0)}{U\mathfrak{g}(f_1f_3, f_2) \cdot M(0)_0} = \frac{U\mathfrak{n}^-}{U\mathfrak{n}^-(f_1f_3, f_2)} = \mathbb{M}(0, \{\{1, 3\}, \{2\}\}).$$

Then $s_{H_1} := s_1 s_3$ and $s_{H_2} := s_2$ generate a dihedral subgroup $W_{\mathcal{H}} \leq W$ of size 8, say with longest element \mathbf{w}_{\circ} .

Question 1: Does V' have the following resolution? (Only unknown case!)

$$0 \to M(\mathbf{w}_{\circ} \bullet 0) \to M(\mathbf{w}_{\circ}s_{H_{1}} \bullet 0) \oplus M(\mathbf{w}_{\circ}s_{H_{2}} \bullet 0)$$
$$\to M(s_{H_{1}}s_{H_{2}} \bullet 0) \oplus M(s_{H_{2}}s_{H_{1}} \bullet 0)$$
$$\to M(s_{H_{1}} \bullet 0) \oplus M(s_{H_{2}} \bullet 0) \to M(0) \to V' \to 0$$

(Writing down the explicit maps is tedious, but not hard.) More generally, find a resolution for $\mathbb{M}(\lambda, \mathcal{H})$ using Vermas, when \mathcal{H}^{\min} consists of disjoint subsets.

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

 ② Define the higher order BGG category O^H – full subcategory of O with objects on which the lowering operators f_H := ∏_{h∈H} f_h (H ∈ H) act locally nilpotently. (Special cases: usual O, parabolic category O.)

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

Pefine the higher order BGG category O^H – full subcategory of O with objects on which the lowering operators f_H := ∏_{h∈H} f_h (H ∈ H) act locally nilpotently.
 (Special cases: usual O, parabolic category O.)

Theorem [K.–Teja, 2022] $\mathcal{O}^{\mathcal{H}}$ is an abelian subcategory of \mathcal{O} , with enough projectives and injectives.

Question: Does every projective have a "standard filtration" via higher-order Vermas? And does a variant of BGG reciprocity hold in $\mathcal{O}^{\mathcal{H}}$? (K.–Teja, 2022: Yes for $\mathfrak{g} = \mathfrak{sl}_2^{\oplus n}$.)

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

2 Define the higher order BGG category $\mathcal{O}^{\mathcal{H}}$ – full subcategory of \mathcal{O} with objects on which the lowering operators $\mathbf{f}_H := \prod_{h \in H} f_h \ (H \in \mathcal{H})$ act locally nilpotently.

(Special cases: usual \mathcal{O} , parabolic category \mathcal{O} .)

Theorem [K.–Teja, 2022] $\mathcal{O}^{\mathcal{H}}$ is an abelian subcategory of \mathcal{O} , with enough projectives and injectives.

Question: Does every projective have a "standard filtration" via higher-order Vermas? And does a variant of BGG reciprocity hold in $\mathcal{O}^{\mathcal{H}}$? (K.–Teja, 2022: Yes for $\mathfrak{g} = \mathfrak{sl}_2^{\oplus n}$.)

3 "Higher order" Jantzen filtrations? Endomorphism algebras (Koszulity)?

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

2 Define the higher order BGG category $\mathcal{O}^{\mathcal{H}}$ – full subcategory of \mathcal{O} with objects on which the lowering operators $\mathbf{f}_H := \prod_{h \in H} f_h \ (H \in \mathcal{H})$ act locally nilpotently.

(Special cases: usual \mathcal{O} , parabolic category \mathcal{O} .)

Theorem [K.–Teja, 2022] $\mathcal{O}^{\mathcal{H}}$ is an abelian subcategory of \mathcal{O} , with enough projectives and injectives.

Question: Does every projective have a "standard filtration" via higher-order Vermas? And does a variant of BGG reciprocity hold in $\mathcal{O}^{\mathcal{H}}$? (K.–Teja, 2022: Yes for $\mathfrak{g} = \mathfrak{sl}_2^{\oplus n}$.)

Wigher order" Jantzen filtrations? Endomorphism algebras (Koszulity)?Interpret higher-order Vermas on the flag variety?

BGG resolutions – or simpler, characters – for higher-order Verma modules M(λ, H)?

(The other setting in which we can provide a resolution involves summing over a Weyl *semigroup* orbit, not Weyl group – see paper for details.)

2 Define the higher order BGG category $\mathcal{O}^{\mathcal{H}}$ – full subcategory of \mathcal{O} with objects on which the lowering operators $\mathbf{f}_H := \prod_{h \in H} f_h \ (H \in \mathcal{H})$ act locally nilpotently.

(Special cases: usual \mathcal{O} , parabolic category \mathcal{O} .)

Theorem [K.–Teja, 2022] $\mathcal{O}^{\mathcal{H}}$ is an abelian subcategory of \mathcal{O} , with enough projectives and injectives.

Question: Does every projective have a "standard filtration" via higher-order Vermas? And does a variant of BGG reciprocity hold in $\mathcal{O}^{\mathcal{H}}$? (K.–Teja, 2022: Yes for $\mathfrak{g} = \mathfrak{sl}_2^{\oplus n}$.)

- 3 "Higher order" Jantzen filtrations? Endomorphism algebras (Koszulity)?
- Interpret higher-order Vermas on the flag variety?
- Solution Analogues over quantum groups $U_q(\mathfrak{g}), U_q(\widehat{\mathfrak{g}})$?

Happy birthday, Vyjayanthi!

- A weight-formula for all highest weight modules, and a higher order parabolic category O, Preprint, 2022. (With G.V.K. Teja.)
- [2] Characters of highest weight modules and integrability,
 J. Algebra, 2022 (with G. Dhillon) + Extended abstract in FPSAC 2017.
- [3] Faces of highest weight modules and the universal Weyl polyhedron, *Adv. Math.*, 2017. (With G. Dhillon.)
- [4] Standard parabolic subsets of highest weight modules, *Trans. Amer. Math. Soc.*, 2017.
- [5] Faces and maximizer subsets of highest weight modules, *J. Algebra*, 2016.
- [6] Faces of weight polytopes and a generalization of a theorem of Vinberg, *Alg. Repr. Theory*, 2012. (With T. Ridenour.)
- [7] Faces of polytopes and Koszul algebras,

J. Pure Appl. Alg., 2012. (With V. Chari and T. Ridenour.) Apoorva Khare, Indian Institute of Science