
From faces of Weyl polytopes, to weights and
characters of highest weight modules

Apoorva Khare
Indian Institute of Science (Bangalore)

ACMRT / Chari-65
ICTS – Nov 2023



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

Introduction

g = complex semisimple/Kac–Moody Lie algebra (just work with sln),
U(g) = universal enveloping algebra.

Triangular decomposition: g = n− ⊕ h⊕ n+, simple roots π,
Weyl group W .

Fix a (highest) weight λ ∈ h∗.

M(λ) = Verma module;
L(λ) = simple quotient;
V = highest weight module: M(λ)� V � L(λ).

We are interested in the structure of highest weight modules,
e.g. simple non-integrable modules.
(Integrable modules, Verma modules well-studied.)
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The start of the journey

In 2009, Chari–Greenstein used certain combinatorial subsets of root system ∆
to:

Study modules over classical and quantum loop algebras,

Construct Koszul algebras of all finite global dimensions from graded
g-modules (via endomorphism algebras as in blocks of O),

Obtain a graded character formula (at q = 1) of a Kirillov–Reshetikhin
module over Uq(ĝ),

Connect parabolic subalgebras of g to ad-nilpotent ideals.

These combinatorial subsets Y ⊆ ∆ are given by:

y1 + y2 = α1 + α2 (y1, y2 ∈ Y , α1, α2 ∈ ∆) =⇒ α1, α2 ∈ Y .

Apoorva Khare, Indian Institute of Science 3
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The start of the journey (cont.)

Then in 2009, Chari–Dolbin–Ridenour classified all such subsets. Related to
roots on the faces of root polytopes conv ∆.

Chari–K.–Ridenour (2012) extended to faces of
Weyl polytopes conv(wtL(λ)), λ ∈ P+,

and constructed larger families of Koszul (endomorphism) algebras.

What are these “discrete faces” (or roots on them)?

This has now led to:

The study of weights of all simple modules L(λ) (even for λ 6∈ P+) and
of all highest weight modules – over semisimple and also Kac–Moody g;

A hitherto unstudied (even over sl4) class of “universal” highest weight
modules M;

BGG resolutions and Weyl–Kac character formulas for M.

Apoorva Khare, Indian Institute of Science 4
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Introduction
Suppose g is finite-dimensional and semisimple.
Classical picture of finite-dimensional simple module L(λ):

Qualitatively: conv wtL(λ) = convW (λ).
This is a W -invariant convex polytope Pλ.
Now wtL(λ) = Pλ ∩ (λ− Zπ).

s1(λ) λ

w◦(λ)

0 s2(λ)

Quantitatively: chL(λ) is given by the Weyl Character Formula.

If instead L(λ) is infinite-dimensional:

Quantitatively: character known through Kazhdan–Lusztig theory, e.g.:

chL(ww◦ • 0) =
∑
x6w

(−1)`(w)−`(x)Px,w(1) chM(xw◦ • 0).

Note: cancellations and Kazhdan–Lusztig polynomials make it hard to
compute multiplicities.

Qualitatively: which weights occur in L(λ)? What is their convex hull?
(Was not written down until recently.)

Apoorva Khare, Indian Institute of Science 5
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Introduction

What if g is of infinite type?

If g is affine, or symmetrizable, chL(λ) is not known for all critical λ.

If g is non-symmetrizable, formulas for chL(λ) are not known even for
integrable simple modules.

With this motivation, we first present several positive formulas (non-recursive,
no cancellations) for weights of non-integrable L(λ).

These formulas are uniform – i.e., insensitive to whether g is of finite or
infinite type, whether λ is critical or not. . .

These formulas involve the weights of a “first-order” (= parabolic)
Verma module M(λ, J).

We then extend this (uniform) formula to all highest weight g-modules –
now involves the weights of “higher order Verma modules” M(λ,H).

Apoorva Khare, Indian Institute of Science 6
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Notation for Kac–Moody g

For every Kac–Moody Lie algebra g (e.g. sln):

Generalized Cartan matrix A, indexed by Dynkin diagram nodes I;

Realization (h, π, π∨) of simple (co)roots satisfying: 〈αj , α∨i 〉 = aij .

Root system ∆ = ∆+ t∆−.

Generators ei, fi, i ∈ I, and h.

Weyl group W generated by simple reflections: si(λ) := λ− 〈λ, α∨i 〉αi.

Parabolic analogues: For a subset J ⊆ I, we have analogues:

Parabolic Weyl group WJ generated by {sj : j ∈ J}.
Define πJ := {αj : j ∈ J}.
Roots ∆J = ∆+

J t∆−J .

The Levi subalgebra lJ is generated by {ej , fj : j ∈ J} and h.

Apoorva Khare, Indian Institute of Science 7
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Integrable Slice Decomposition of the weights

Theorem (K. (2016), Dhillon–K. (2022))

Given J ⊆ I and ν ∈ h∗ (P+
J ), let LJ(ν) denote the simple (integrable)

lJ -module with highest weight ν. Then
wtL(λ) =

⊔
µ∈Z>0(π\πJλ )

wtLJλ(λ− µ),

where Jλ = JL(λ) is the integrability {i ∈ I : 〈λ, α∨i 〉 ∈ Z>0}.

λ−α1 − α2

−α1

−α3

g =




α1 α2 α3

α̌1 2 −1 0
α̌2 −1 2 −1
α̌3 0 −1 2


, J = {1, 2}

λ

−α0

−α1

−α2

g =




α0 α1 α2

α̌0 2 −2 −1
α̌1 −2 2 0
α̌2 −1 0 2


, J = {0, 1}

Figure 1.

1
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Example of Integrable Slice Decomposition in rank 2

wtL(λ) =
⊔

µ∈Z>0(π\πJλ )

wtLJλ(λ− µ).
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A question of Bump on the weights

Recall, Verma modules and finite-dimensional simple modules have “no holes”:

For all λ ∈ h∗,

wtM(λ) = (λ− Zπ) ∩ conv(wtM(λ)).

For all λ ∈ P+,

wtL(λ) = (λ− Zπ) ∩ conv(wtL(λ)).

Question (Bump): Does this hold for all (non-integrable) simple modules
L(λ), λ ∈ h∗?

Proposition (K. (2016), Dhillon–K. (2022))

Yes.

Second weight-formula for L(λ).

These formulas follow from weight-formulas for a class of universal “first-order”
highest weight modules M(λ, J):

Apoorva Khare, Indian Institute of Science 10
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Parabolic Verma modules
Key tool in proving the above weight-formulas: parabolic Verma modules.

Say λ ∈ h∗ and J ⊆ Jλ (so 〈λ, α∨j 〉 ∈ Z>0). Define

M(λ, J) :=
Ug

Ug · (kerλ, n+, {f
〈λ,α∨j 〉+1

j })
=

M(λ)∑
j∈J Ug · f

〈λ,α∨j 〉+1

j M(λ)λ

.

“Extremal” special cases:

Zeroth order: J = ∅ (for any λ ∈ h∗), M(λ, ∅) = M(λ), Verma module.
Character: Kostant partition function

chM(λ) =
eλ∏

α∈∆+(1− e−α)dim gα
, ∀λ ∈ h∗.

In first order, if e.g. J = I (so λ ∈ P+): M(λ, I) = Lmax(λ), maximal
integrable module (simple if g is symmetrizable).
Character: Weyl–Kac character formula

chLmax(λ) =
∑
w∈W

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)dim gα

, ∀λ ∈ P+.

Apoorva Khare, Indian Institute of Science 11
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=

M(λ)∑
j∈J Ug · f

〈λ,α∨j 〉+1

j M(λ)λ

.

“Extremal” special cases:

Zeroth order: J = ∅ (for any λ ∈ h∗), M(λ, ∅) = M(λ), Verma module.
Character: Kostant partition function

chM(λ) =
eλ∏

α∈∆+(1− e−α)dim gα
, ∀λ ∈ h∗.

In first order, if e.g. J = I (so λ ∈ P+): M(λ, I) = Lmax(λ), maximal
integrable module (simple if g is symmetrizable).
Character: Weyl–Kac character formula

chLmax(λ) =
∑
w∈W

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)dim gα

, ∀λ ∈ P+.
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

Weight-formula 3 for L(λ): Minkowski difference

The above weight-formulas – (1) Slice decomposition, (2) “No holes in hull” –

Why do they hold for L(λ) for all λ ∈ h∗?

Because (a) They turn out to hold for all parabolic Verma modules M(λ, J),
and (b) Recalling Jλ := {i ∈ I : 〈λ, α∨i 〉 ∈ Z≥0}, we have:

Theorem (K. (2016), Dhillon–K. (2022))

wtL(λ) = wtM(λ, Jλ), for all λ ∈ h∗ (and all Kac–Moody g).

Weight-formula 3. . . for all parabolic Verma modules:

wtM(λ, J) = wtLJ(λ)− Z>0(∆+ \∆+
J ).

Now set J = Jλ  gives third weight-formula for wtL(λ).

Theorem (G.V.K. Teja, 2020): “Minimal description” of all wtM(λ, J) (and
hence for all simple L(λ)), using parabolic partial sum property.

Apoorva Khare, Indian Institute of Science 12
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1b. First-order invariant &
convex hull, of all modules



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

A first-order invariant of a highest weight module

The “discrete” Minkowski difference formula for wtL(λ), wtM(λ, J)

 akin to V -decomposition of convex polyhedra (from Motzkin’s 1936 thesis)

 extends to convex hull formula – for all highest weight modules!

This is an application of a “first-order invariant” of highest weight module V :

Theorem (Dhillon–K., 2022)

Fix a Kac–Moody algebra g, a weight λ, and a highest weight module V .
The following data are equivalent:

1 IV , the integrability of V,
i.e. IV = {i ∈ I : fi acts locally nilpotently (= non-freely) on Vλ}.

2 conv(wtV ), the convex hull of the weights of V .

3 The stabilizer of the character of V in W .

Moreover, for special classes of highest weight modules, including simple
modules L(λ), these data determine the weights.

Apoorva Khare, Indian Institute of Science 13
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

Convex hull of weights

Recall – integrability of V is: IV := {i ∈ I : fi acts locally nilpotently on Vλ}.

Theorem (Dhillon–K., 2022)

For all highest weight modules V over Kac–Moody g,
conv(wtV ) is the Minkowski sum of

the hull convWIV (λ), and

the cone −R>0WIV (πI\IV ).

Extends Weyl polytope to all V over all g.

Corollary: conv(wtV ) is always a WIV -invariant polyhedron.
(Novel even in finite type.)

Apoorva Khare, Indian Institute of Science 14
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

Faces of the convex hull

Question: What are the faces/face lattice of this polyhedron?

Previously
known for fin. dim. L(λ):

• Satake, Ann. of Math. 1960 • Vinberg, Math. USSR Izv. 1991
• Borel–Tits, IHES Publ. 1965 • Casselman, Aust. Math. Soc. Lec. Ser. 1997

• Cellini–Marietti, IMRN 2015

Theorem (K. (2016), Dhillon–K. (2017))

Let g be a Kac–Moody Lie algebra, λ ∈ h∗, and V a highest weight g-module.

1 For each J ⊆ I, the locus FJ := convU(lJ)Vλ is a face of conv(wtV ).

2 An arbitrary face F of conv(wtV ) is in the WIV orbit of a unique such
face FJ .

Also: complete determination of the face lattice (for all g, λ, V ).

Apoorva Khare, Indian Institute of Science 15
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

From (exposed) faces to weak faces to 212-closed subsets
Recall the 2009 property studied by Chari with coauthors:

y1 + y2 = α1 + α2 (y1, y2 ∈ Y , α1, α2 ∈ ∆) =⇒ α1, α2 ∈ Y .
How does this connect to faces of conv(wtV )?

Via successively weakening the
notion of a face:

Lemma

Given a subset Y ⊆ X := conv(wtV ), each statement implies the next:

1 Y is a WIV -translate of FJ := convU(lJ)Vλ.

2 Y is an exposed face of conv(wtV ), i.e., maximizer-set of a linear
functional.

3 Y is a weak R-face of X = conv(wtV ): if an interior point
λx1 + (1− λ)x2 ∈ Y, then x1, x2 ∈ Y . (Actually, slightly more general.)

4 Y satisfies the 2009-property above (via λ = 1
2
).

(We call such Y as 212-closed subsets of X.)

Chari et al: 212-closed subsets of X = ∆; weak faces of X = wtL(λ), λ ∈ P+.

Preceding slide: (1)⇐⇒ (2) for X = conv(wtV ).

Apoorva Khare, Indian Institute of Science 16
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

From exposed to weak faces to 212-closed subsets (cont.)

How restrictive are (3), (4)? (In general – no “nice” answer.)
What about for “special” subsets X in representation theory?

For these subsets – these are equivalent to (the weights on) exposed faces!

Theorem (G.V.K. Teja (Transform. Groups, in press))

These notions (1)–(4) are equivalent for X = wtV and X = conv(wtV ),
for all highest weight modules over Kac–Moody g.

Apoorva Khare, Indian Institute of Science 17



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Three formulas for weights and a question of Bump
First-order invariant and convex hull of weights

From exposed to weak faces to 212-closed subsets (cont.)

How restrictive are (3), (4)? (In general – no “nice” answer.)
What about for “special” subsets X in representation theory?

For these subsets – these are equivalent to (the weights on) exposed faces!

Theorem (G.V.K. Teja (Transform. Groups, in press))

These notions (1)–(4) are equivalent for X = wtV and X = conv(wtV ),
for all highest weight modules over Kac–Moody g.

Apoorva Khare, Indian Institute of Science 17



2a. Higher-order theory:
holes, higher-order Vermas



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

Holes in the set of weights

Recall, Verma modules and integrable simple modules have “no holes”:

For all λ ∈ h∗, wtM(λ) = (λ− Zπ) ∩ conv(wtM(λ)).

For all λ ∈ P+, wtL(λ) = (λ− Zπ) ∩ conv(wtL(λ)).

This in fact extends to all parabolic Verma modules:
wtM(λ, J) = (λ− Zπ) ∩ conv(wtM(λ, J)),

hence from above, holds for all simples L(λ).

Does this hold for all highest weight modules V ?
λ = (0, 0)

g = sl2 ⊕ sl2

Figure 1.

1

No: Consider g = sl2 ⊕ sl2, and V ′ = M(0)/M(s1s2 • 0).

Deleted (blue) portion: example of a second order hole.

Question (Lepowsky): Is this the only way holes arise?
Answer (Dhillon–K., 2022): Yes.

Apoorva Khare, Indian Institute of Science 18
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Recall, Verma modules and integrable simple modules have “no holes”:

For all λ ∈ h∗, wtM(λ) = (λ− Zπ) ∩ conv(wtM(λ)).

For all λ ∈ P+, wtL(λ) = (λ− Zπ) ∩ conv(wtL(λ)).

This in fact extends to all parabolic Verma modules:
wtM(λ, J) = (λ− Zπ) ∩ conv(wtM(λ, J)),

hence from above, holds for all simples L(λ).

Does this hold for all highest weight modules V ?
λ = (0, 0)

g = sl2 ⊕ sl2

Figure 1.

1

No: Consider g = sl2 ⊕ sl2, and V ′ = M(0)/M(s1s2 • 0).

Deleted (blue) portion: example of a second order hole.
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Holes in the set of weights (cont.) + Weight formula 1
In general:

Definition

The holes HV in a module M(λ)� V are all H ⊆ Jλ ⊆ I such that

(a) the Dynkin subdiagram on H has no edges, and

(b)
∏
h∈H f

〈λ,α∨h 〉+1

h · Vλ = 0. (Note: H ⊆ Jλ.)

Example: g = sl4(C) and

V ′ =
M(0)

Ug(f1f3, f2) ·M(0)0
=

Un−

Un−(f1f3, f2)
 HV ′ = {{1, 3}, {2}}.

Using (higher-order) holes yields a positive weight-formula for all V :

Theorem (K.–Teja, 2022)

Given a Kac–Moody g, a weight λ ∈ h∗, and a nonzero module M(λ)� V,

wtV =
⋃

J⊆Jλ : J∩H 6=∅ ∀H∈HV

wtM(λ, J).

Apoorva Khare, Indian Institute of Science 19
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Higher-order Verma modules
Definition: Given any weight λ ∈ h∗, and any subset H ⊆ Indep(Jλ),
define the (universal) higher-order Verma module

M(λ,H) :=
M(λ)∑

H∈H

(
Ug ·

∏
h∈H f

〈λ,α∨
h
〉+1

h

)
·M(λ)λ

.

Example: g = sl4, λ = 0. Then there are eleven (higher-order) Verma modules:
The extremal ones are M(0) itself, and zero:

M(0, ∅) = M(0), M(0, {∅}) = 0.

There are 2|I| − 1 = 7 (other) parabolic / “first-order” Verma modules:

M(0, {{i}}) = M(0)/U(g) · fi ·M(0)0 = M(0, {i}), ∀i ∈ I;

M(0, {{i}, {j}}) = M(0, {i, j}), ∀i 6= j ∈ I;

M(0, {{1}, {2}, {3}}) = M(0, I) = L(0).

There are two second-order Verma modules:

M(0, {{1, 3}}) = M(0)/U(g) · f1f3 ·M(0)0;

V ′ = M(0, {{1, 3}, {2}}).
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Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

Higher-order Verma modules
Definition: Given any weight λ ∈ h∗, and any subset H ⊆ Indep(Jλ),
define the (universal) higher-order Verma module

M(λ,H) :=
M(λ)∑

H∈H

(
Ug ·

∏
h∈H f

〈λ,α∨
h
〉+1

h

)
·M(λ)λ

.

Example: g = sl4, λ = 0. Then there are eleven (higher-order) Verma modules:
The extremal ones are M(0) itself, and zero:

M(0, ∅) = M(0), M(0, {∅}) = 0.

There are 2|I| − 1 = 7 (other) parabolic / “first-order” Verma modules:

M(0, {{i}}) = M(0)/U(g) · fi ·M(0)0 = M(0, {i}), ∀i ∈ I;

M(0, {{i}, {j}}) = M(0, {i, j}), ∀i 6= j ∈ I;

M(0, {{1}, {2}, {3}}) = M(0, I) = L(0).

There are two second-order Verma modules:

M(0, {{1, 3}}) = M(0)/U(g) · f1f3 ·M(0)0;

V ′ = M(0, {{1, 3}, {2}}).

Apoorva Khare, Indian Institute of Science 20



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

Higher-order Verma modules
Definition: Given any weight λ ∈ h∗, and any subset H ⊆ Indep(Jλ),
define the (universal) higher-order Verma module

M(λ,H) :=
M(λ)∑

H∈H

(
Ug ·

∏
h∈H f

〈λ,α∨
h
〉+1

h

)
·M(λ)λ

.

Example: g = sl4, λ = 0. Then there are eleven (higher-order) Verma modules:
The extremal ones are M(0) itself, and zero:

M(0, ∅) = M(0), M(0, {∅}) = 0.

There are 2|I| − 1 = 7 (other) parabolic / “first-order” Verma modules:

M(0, {{i}}) = M(0)/U(g) · fi ·M(0)0 = M(0, {i}), ∀i ∈ I;

M(0, {{i}, {j}}) = M(0, {i, j}), ∀i 6= j ∈ I;

M(0, {{1}, {2}, {3}}) = M(0, I) = L(0).

There are two second-order Verma modules:

M(0, {{1, 3}}) = M(0)/U(g) · f1f3 ·M(0)0;

V ′ = M(0, {{1, 3}, {2}}).

Apoorva Khare, Indian Institute of Science 20



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

Higher-order Verma modules
Definition: Given any weight λ ∈ h∗, and any subset H ⊆ Indep(Jλ),
define the (universal) higher-order Verma module

M(λ,H) :=
M(λ)∑

H∈H

(
Ug ·

∏
h∈H f

〈λ,α∨
h
〉+1

h

)
·M(λ)λ

.

Example: g = sl4, λ = 0. Then there are eleven (higher-order) Verma modules:
The extremal ones are M(0) itself, and zero:

M(0, ∅) = M(0), M(0, {∅}) = 0.

There are 2|I| − 1 = 7 (other) parabolic / “first-order” Verma modules:

M(0, {{i}}) = M(0)/U(g) · fi ·M(0)0 = M(0, {i}), ∀i ∈ I;

M(0, {{i}, {j}}) = M(0, {i, j}), ∀i 6= j ∈ I;

M(0, {{1}, {2}, {3}}) = M(0, I) = L(0).

There are two second-order Verma modules:

M(0, {{1, 3}}) = M(0)/U(g) · f1f3 ·M(0)0;

V ′ = M(0, {{1, 3}, {2}}).

Apoorva Khare, Indian Institute of Science 20



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

All highest weight modules: Weight formula 2

Recall, simples and first-order Vermas have the same weights:

Theorem (K. (2016), Dhillon–K. (2022))

wtL(λ) = wtM(λ, Jλ), for all λ ∈ h∗ (and all Kac–Moody g).

Such an equality of weights holds in full generality:

Theorem (K.–Teja, 2022)

Fix any Kac–Moody g, weight λ, and nonzero module M(λ)� V . Then

wtV = wtM(λ,HV ).

Thus, need to better understand higher-order Vermas.

Apoorva Khare, Indian Institute of Science 21
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2b. Higher-order Vermas:
characters, BGG resolutions



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

From weights to characters, to resolutions

The higher order Verma modules are crucial in understanding wtV for all
modules M(λ)� V .
We understand their weights (hence, weights of all V ).
Can we understand their characters?

(0th order – usual Vermas) Character = Kostant partition function.

(1st order – parabolic Vermas) Weyl–Kac character formula
= Euler characteristic of a BGG-type resolution.

Question: What happens in higher order, i.e. for M(λ,H)?

We can answer this for two classes of modules (we explain one below).

Apoorva Khare, Indian Institute of Science 22
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BGG resolution: 1. Pairwise orthogonal minimal holes
Example: g = sln and

V ′′ :=
M(0)

Ug(f1f3, f5) ·M(0)0
=

Un−

Un−(f1f3, f5)
.

(Thus V ′′ = M(0, {{1, 3}, {5}}).)

Now check:

0→M(s1s3s5 • 0)
d2−→M(s1s3 • 0)⊕M(s5 • 0)

d1−→M(0)
d0−→ V ′′ → 0,

where d0 is the natural projection, and

d1(X1ms1s3•0 +X2ms5•0) := X1 · f1f3m0 +X2 · f5m0.

d2(Xms1s3s5•0) := (−Xf5 ·ms1s3•0, Xf1f3 ·ms5•0).

This is easily verified, but also – special case of the Koszul resolution over
R := C[f1f3, f5],
subsequently tensored with the free R-module U(n−)⊗R −.

It is also the BGG resolution over

WH = 〈sH1 := s1s3, sH2 := s5〉 ' (Z/2Z)2,

with length `H(sH1) = `H(sH2) := 1.

Apoorva Khare, Indian Institute of Science 23
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BGG resolution: 1. Pairwise orthogonal minimal holes
The above example – and proof – is completely general:

Theorem (K.–Teja, 2022)

Fix Kac-Moody g and a weight λ. Suppose H ⊆ Indep(Jλ) is such that Hmin

consists of pairwise orthogonal subsets H1, . . . , Hk ⊆ Jλ. Define
sH :=

∏
h∈H sh. Then M(λ,H) has a BGG resolution:

0 −→Mk
dk−→Mk−1

dk−1−→ · · · d2−→M1
d1−→M0

d0−→ M(λ,H)→ 0,

with Mp the direct sum of Vermas M(sHi1 · · · sHip • λ) over all p-tuples of
indices 1 6 i1 < · · · < ip 6 k.

In particular, with WH ' (Z/2Z)k,

chM(λ,H) =
∑

w∈WH

(−1)`H(w)ew•λ∏
α∈∆+(1− e−α)dim gα

.

Resembles the Weyl–Kac character formula:

chM(λ, J) =
∑
w∈WJ

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)dim gα

.
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Disjoint but non-orthogonal holes?

Speculation: Suppose Hmin = {H1, H2}, with the Hi disjoint independent sets
but not pairwise orthogonal. Then sH1 , sH2 generate a dihedral subgroup WH
of W . Does this provide a BGG resolution?

“Simplest case”: Consider g = sl4(C), λ = 0, and the module mentioned above:

V ′ :=
M(0)

Ug(f1f3, f2) ·M(0)0
=

Un−

Un−(f1f3, f2)
= M(0, {{1, 3}, {2}}).

Then sH1 := s1s3 and sH2 := s2 generate a dihedral subgroup WH 6W of
size 8, say with longest element w◦.

Question 1: Does V ′ have the following resolution? (Only unknown case!)

0→M(w◦ • 0)→ M(w◦sH1 • 0)⊕M(w◦sH2 • 0)

→ M(sH1sH2 • 0)⊕M(sH2sH1 • 0)

→ M(sH1 • 0)⊕M(sH2 • 0)→M(0)→ V ′ → 0

(Writing down the explicit maps is tedious, but not hard.) More generally, find
a resolution for M(λ,H) using Vermas, when Hmin consists of disjoint subsets.

Apoorva Khare, Indian Institute of Science 25
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Future directions
1 BGG resolutions – or simpler, characters – for higher-order Verma

modules M(λ,H)?

(The other setting in which we can provide a resolution involves summing
over a Weyl semigroup orbit, not Weyl group – see paper for details.)

2 Define the higher order BGG category OH –
full subcategory of O with objects on which the lowering operators
fH :=

∏
h∈H fh (H ∈ H) act locally nilpotently.

(Special cases: usual O, parabolic category O.)

Theorem [K.–Teja, 2022] OH is an abelian subcategory of O, with
enough projectives and injectives.

Question: Does every projective have a “standard filtration” via
higher-order Vermas? And does a variant of BGG reciprocity hold in OH?
(K.–Teja, 2022: Yes for g = sl⊕n2 .)

3 “Higher order” Jantzen filtrations? Endomorphism algebras (Koszulity)?
4 Interpret higher-order Vermas on the flag variety?
5 Analogues over quantum groups Uq(g), Uq(ĝ)?
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Apoorva Khare, Indian Institute of Science 26



Weight-formulas for simple highest weight modules
Higher-order theory: all highest weight modules

Holes; higher-order Verma modules
Higher order BGG Category O; BGG resolutions

Future directions
1 BGG resolutions – or simpler, characters – for higher-order Verma

modules M(λ,H)?

(The other setting in which we can provide a resolution involves summing
over a Weyl semigroup orbit, not Weyl group – see paper for details.)

2 Define the higher order BGG category OH –
full subcategory of O with objects on which the lowering operators
fH :=

∏
h∈H fh (H ∈ H) act locally nilpotently.

(Special cases: usual O, parabolic category O.)

Theorem [K.–Teja, 2022] OH is an abelian subcategory of O, with
enough projectives and injectives.

Question: Does every projective have a “standard filtration” via
higher-order Vermas? And does a variant of BGG reciprocity hold in OH?
(K.–Teja, 2022: Yes for g = sl⊕n2 .)

3 “Higher order” Jantzen filtrations? Endomorphism algebras (Koszulity)?

4 Interpret higher-order Vermas on the flag variety?
5 Analogues over quantum groups Uq(g), Uq(ĝ)?
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Happy birthday, Vyjayanthi!
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