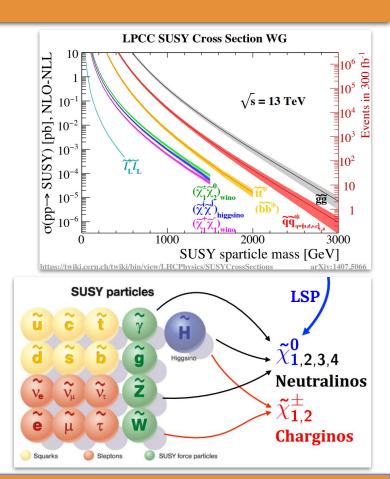
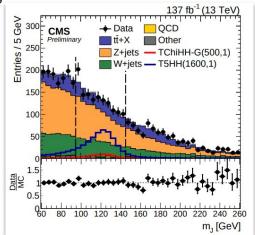
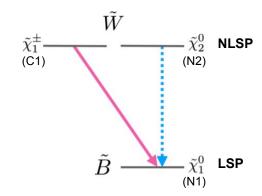
Recent Electroweak SUSY searches at CMS

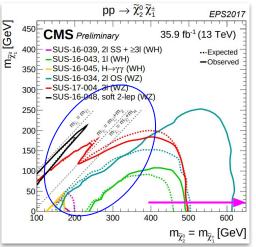
Hunting SUSY @ HL-LHC ICTS - Bengaluru

23rd November 2021


Vinay Hegde Texas Tech University


Introduction


- Strong SUSY production
 - Explored extensively since the start of LHC.
 - No hints for SUSY so far and limits are quite <u>strong</u>.
- Search for electroweak production is challenging since the cross sections are low.
- Naturalness → higgsinos mass near the EW scale.
- Probing small cross section EWKino:
 - leptonic signatures
 - advanced analysis techniques
 - o large LHC dataset



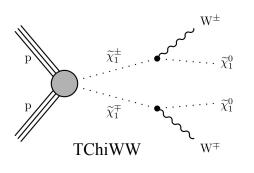
Mass spectra and analysis techniques

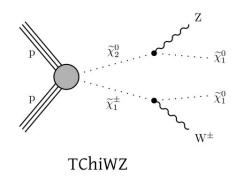
- If the mass difference between LSP (χ^0_1) and NLSP (χ^{\pm}_1/χ^0_2) is small & m_{NLSP} is low
 - \circ $\chi_1^0 \to \text{low/moderate momentum} \to \text{low/moderate p}_{\text{\tiny T}}^{\text{miss}}$.
 - \circ Low/moderate boson p_{T} bosons from NLSP decay.
 - o Good sensitivity from leptonic searches.
- For large mass difference and high m_{NLSP},
 - \circ $\chi^0_1 \rightarrow \text{ high momentum} \rightarrow \text{high p}_T^{\text{miss}}$.
 - \circ Bosons from NLSP decay \rightarrow high momentum.
- High p_T bosons: Take advantage of higher BR for hadronic decays, large radius jet with mass near the boson mass and sub-jet properties.

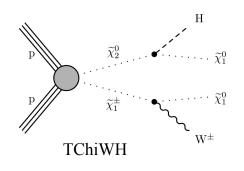
EWK SUSY

Searches covered today....

All hadronic final state searches

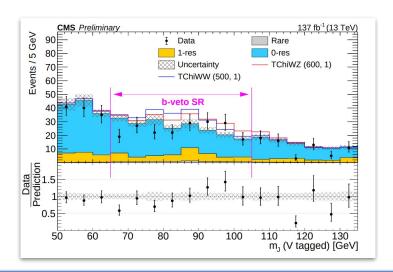

- $\circ WX + p_{T}^{miss} (\underline{SUS-21-002})$
- $\circ \quad \mathbf{HH} + \mathbf{p_{T}}^{\mathbf{miss}} \left(\underline{\mathbf{SUS}} 20 004 \right)$

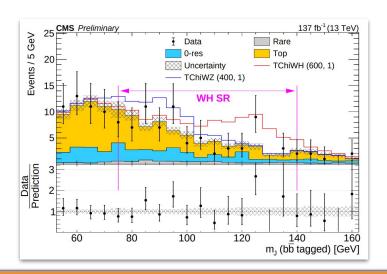

Leptonic searches


- WH-1l search (<u>arXiv:2107.12553</u>)
- Generic multilepton (arXiv:2106.14246)
- Soft lepton search (<u>sus-18-004</u>)
- Stau lepton search (<u>sus-21-001</u>)

Main focus

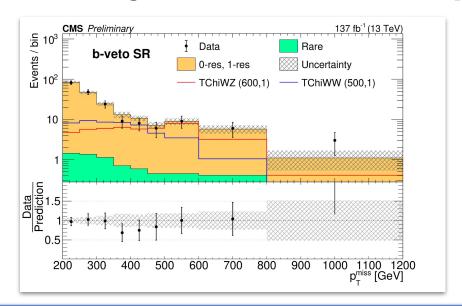
WX + p_T miss final state search

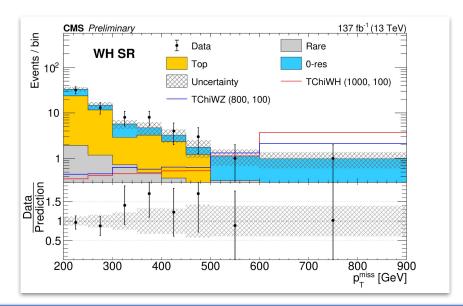



- 2 bosons decay hadronically, giving 2 AK8 jets.
- Search regions are designed based on the number of b-jet tags.
- **0 b**-tags

- **0 b-tags** when $Z \rightarrow qq$
- \geqslant **1 b-tags** when Z \rightarrow bb
- \geqslant **1 b-tags** from H \rightarrow bb

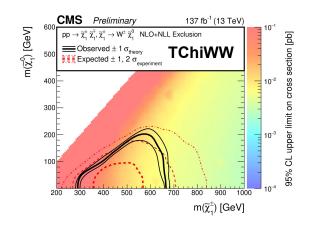
Search strategy

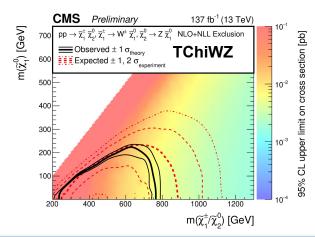

- The search is designed for high p_T^{miss} events arising from high mass NLSP decaying to low mass LSP.
- Uses AK8 jet properties to reduce background
 - soft-drop mass
 - DeepAK8 taggers W(qq) vs QCD, W/Z (qq) vs QCD, H/Z (bb) vs QCD.

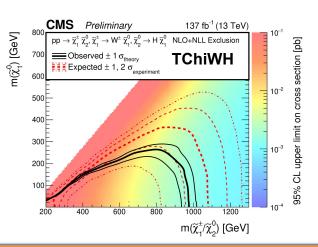


Background estimation and results

- Z(vv), W(lv) and tt are the dominant SM backgrounds.
- Background estimation uses control regions defined by inverting the deepAK8 discriminator cuts and single & dilepton regions.
- No significant deviations from SM predictions.

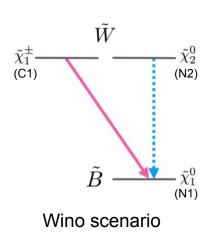

Simplified model interpretations

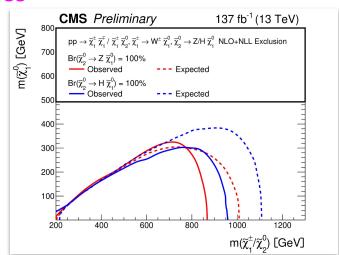

- For wino cross section scenarios with $m_{LSP} \sim 0$, the search places some of the most stringent limits.
- Mass exclusions

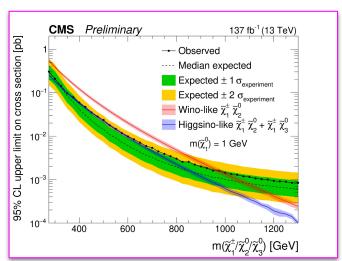

TChiWW: 290 - 670 GeV

TChiWZ: 230 - 760 GeV

TChiWH: 200 - 970 GeV

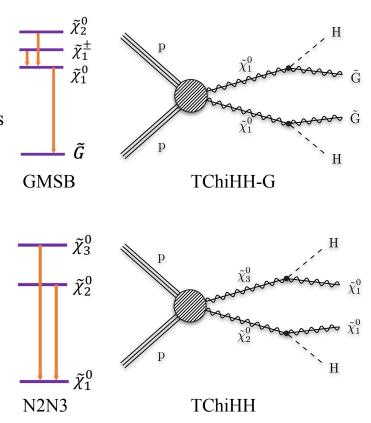






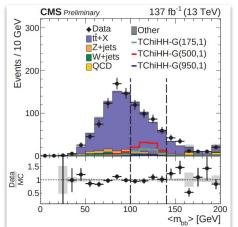
Interpretations - beyond simplified models

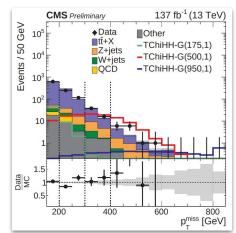
- Realistic wino scenarios involve $\chi_{1}^{\pm}\chi_{1}^{\pm}$ and $\chi_{1}^{\pm}\chi_{2}^{0}$ production. Two cases $\chi_{2}^{0} \rightarrow Z + \chi_{1}^{0}$ with 100% BR 'or' $\chi_{2}^{0} \rightarrow H + \chi_{1}^{0}$ with 100% BR are considered.
- Search is also sensitive to TChiWH model having $\chi_1^{\pm} \chi_2^0 + \chi_1^{\pm} \chi_3^0$ production with higgsino cross sections.



(C1)

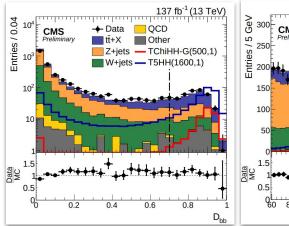
HH+p_T search - models targeted

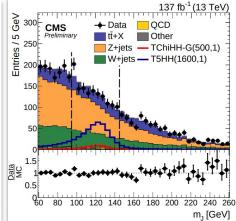

- Search for pair produced neutralinos with H(bb)H(bb) and p_T^{miss} final state.
- GMSB scenario:
 - Higher $\chi_1^0 \chi_1^0$ production since χ_1^{\pm} , χ_1^0 and χ_2^0 are mass degenerate with $\chi_1^{\pm}/\chi_2^0 \rightarrow \chi_1^0$ + soft particles.
 - \circ χ_1^0 is NLSP and goldstino, G~ is LSP.
- N2N3 scenario:
 - Only $\chi_2^0 \chi_3^0$ production, χ_1^{\pm} is not accessible; $\chi_2^0 \& \chi_3^0$ are mass degenerate.
 - \circ χ_2^0 / χ_3^0 are co-NLSP and χ_1^0 is LSP.
- 100% BR for NLSP \rightarrow H + LSP.



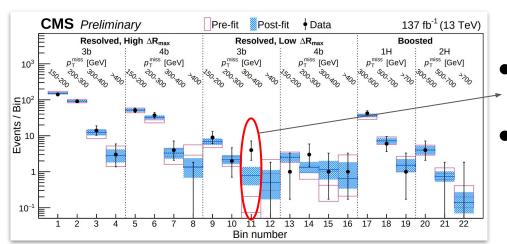
Analysis strategy

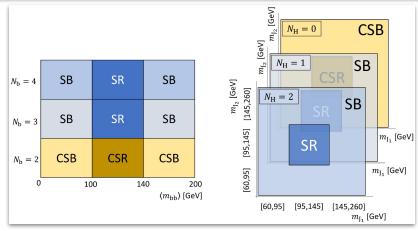
Resolved category


- Expect 4 AK4 jets from 2 low p_T H decays.
- Sensitive to low p_T^{miss} and $m_{NLSP}^{-1} \sim m_{LSP}^{-1}$ cases.
- Uses pairs of b-tagged jets to identify H candidates.



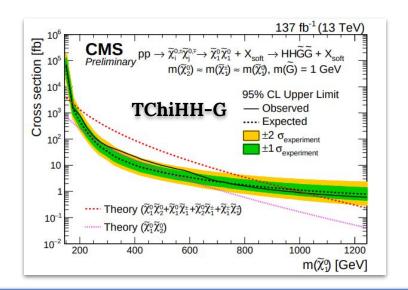
Boosted category

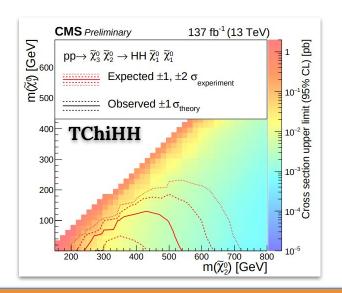

- Expect 2 AK8 jets from boosted H decays.
- Sensitive to high p_T^{miss}, high m_{NLSP} and m_{NLSP} >> m_{LSP} cases.
- DeepAK8 bb-tagger to discriminate H candidates from background.



Background estimation and results

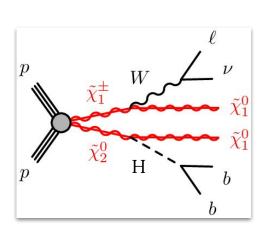
- tt and Z(vv) are the dominant backgrounds.
- Background estimation uses ABCD method using mass sidebands and tagging.

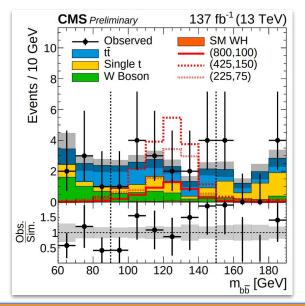


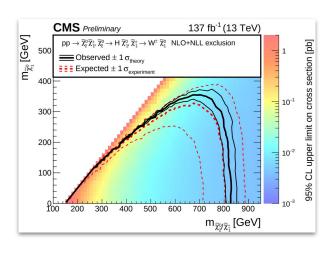


- ~3.2 σ local significance in one resolved category bin.
- A typical SUSY signal would populate several search bins very unlikely to be a signal.

Interpretations

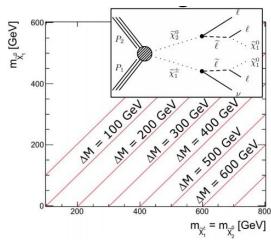

- GMSB scenario, TChiHH-G: mass exclusion 175 1025 GeV.
- N2N3 scenario, TChiHH: Starting to be sensitive to a large region of higgsino masses, even if there is no observed exclusion.

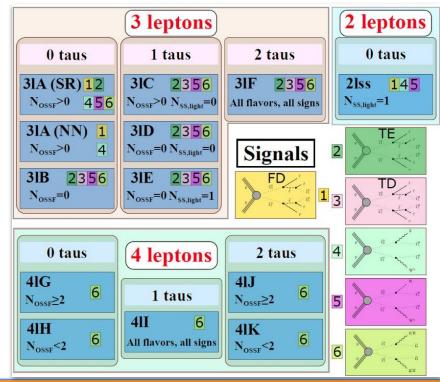




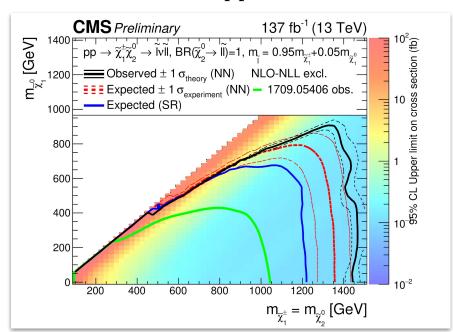
WH 1*l* final state

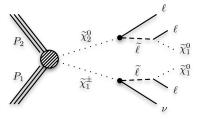
- Targets W $\rightarrow lv$ and H \rightarrow bb decays. For $\mathbf{H}\rightarrow$ bb, m_{bb} : 90-150 GeV.
- Uses **AK8** jets with $p_T > 250$ GeV & DNN to identify boosted H candidates.
- With respect to previous 2016 (36 fb⁻¹) results, mass exclusion improves by ~350 GeV
 half of this improvement coming from improved analysis technique & the other half from ~4x higher data.




\geq 2 lepton search

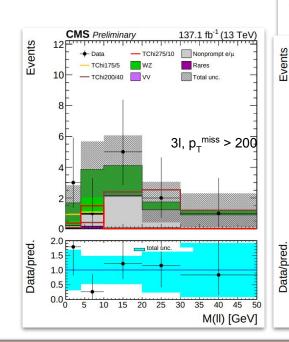
 Targets wide variety of models with 13 different leptonic decay combinations - workhorse of EWKino searches.

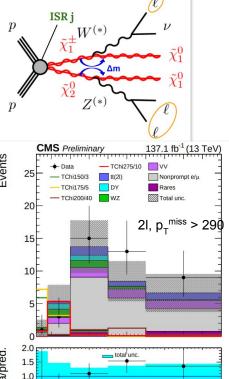

Signal kinematics vary with masses involved, very similar for a given ΔM .


- Parametric neural network (PNN):
 - Maximize signal/background.
 - Learns the peculiarities of signal models using ΔM
 & other SUSY parameters.

Results & interpretations

- No significant deviation from SM predictions in any of the SRs.
- For slepton mediated SMS scenarios, PNN based mass limits are ~ 150 GeV better than cut based approach.

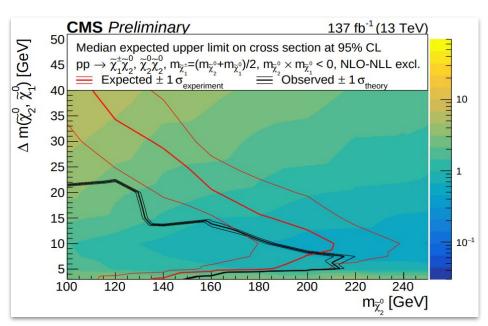



Has several SRs and interpretations!

Soft opposite-sign dilepton and trilepton search

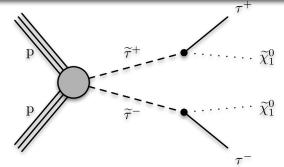
- Designed to target compressed mass regions (Δm ~ 0) using 2l and 3l events.
- Challenges: low p_T^{miss} and low visible energy events with huge QCD & Z→vv + jets backgrounds.
- Strategy: soft leptons with p_T down to 3.5 (5) GeV μ (e) + ISR: $(2/3) < (p_T^{miss}/HT) < 1.4$.
- No significant deviations from SM predictions.

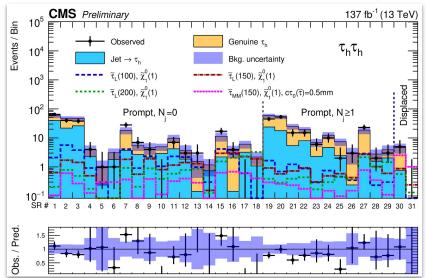
$$\Delta m = m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0)$$


0.5

M(II) [GeV]

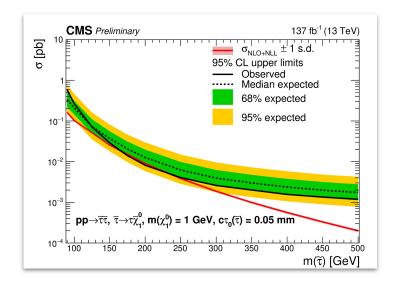
Results & interpretations


- Interpret the results in terms of wino & higgsino models.
- This search is able to probe highly compressed mass $\Delta m \sim 3$ GeV for higgsino cross sections.

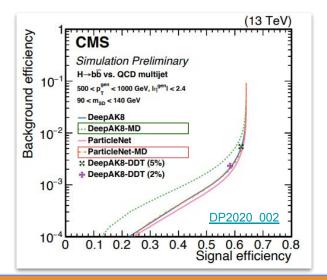

- Extended sensitivity:
 - at high ∆m due to adding 3l channel
 - $\begin{array}{ll} \circ & \text{at low } \Delta m \text{ by lowering } p_T \\ & \text{thresholds and } \Delta m \\ & \text{requirement} \end{array}$

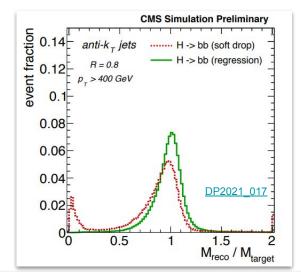
Stau pair search

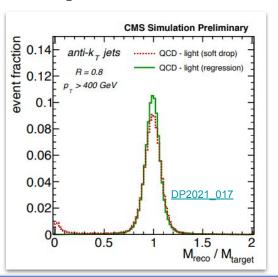
- Direct pair production of status (NSLP) with hadronic ditau final state.
- Promptly decaying and long lived stau are considered.
- Main background processes: DY→ ττ,
 W(lv), tt & QCD. DeepTau tagger is used to enhance signal to background discrimination.
- Observations are consistent with predictions from SM.



Interpretations

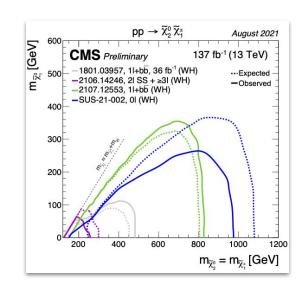

- Results are interpreted using τ_{I} , and degenerate scenarios.
 - \circ Improvement from barely excluded τ_1 results (using 77 fb⁻¹) to exclusion up to 350 GeV.
- Starting to exclude long lived stau scenarios as well.

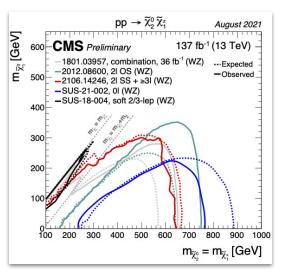




What can we expect from HL-LHC?

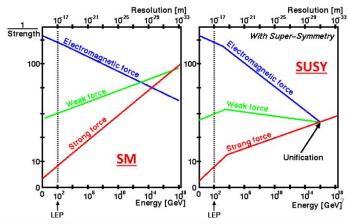
- Run 2 → DeepAK8 taggers which clearly an improvement over previous tagging techniques. Run 3→ <u>ParticleNet</u> algorithms (something else?) have shown improvements over DeepAK8.
- ParticleNet regression techniques → improvement over soft-drop mass.
- As usual, we are going to have more data and better techniques!

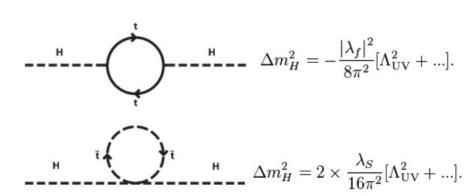




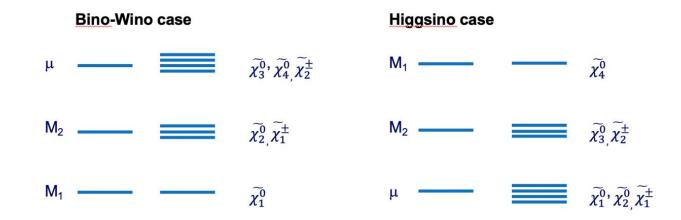
Summary & outlook

- With the help of new jet tagging techniques, hadronic searches are trying to cover higher m_{NLSP} scenarios; leptonic searches are complementary to hadronic searches.
- The EWKino mass exclusions reach ~ 1 TeV for low m_{LSP}.
- We are starting to explore low cross section higgsino scenarios.
- Several new techniques have been developed in Run 2 and we'll improve them and hope we discover SUSY in Run 3!

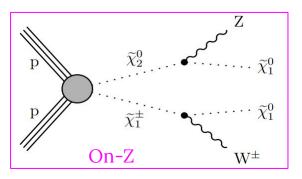


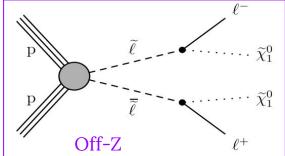


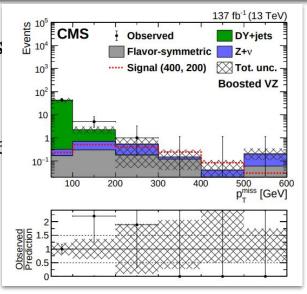
Additional information


SUSY

- R-parity, $P_R = (-1)^{3(B-L)+2S}$, where B = baryon no., L = lepton no., S = spin. It is a multiplicative quantum number. SM particles have $P_R = +1$, SUSY particles have $P_R = -1$.
- RPC consequences = SUSY particles are pair produced and their decay must result in SUSY particles and SUSY particles cannot decay to SM particles only. Lightest SUSY particles (LSP) is stable.

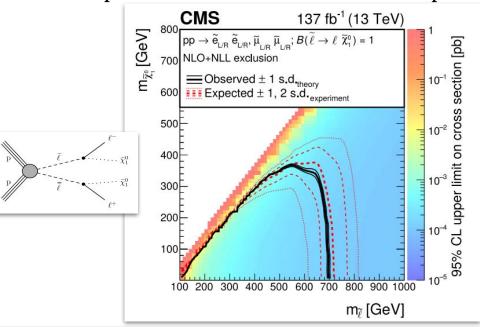


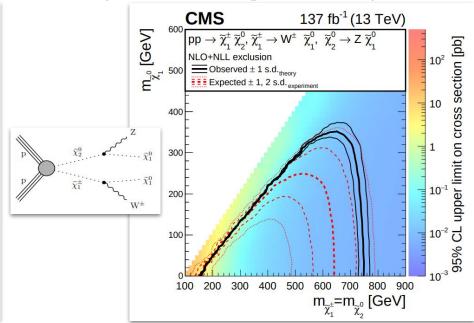

SUSY - mass splitting



2l OSSF on-Z and off-Z

- EWKino & slepton pair production with opposite s leptons in final state.
- SRs: on-Z and off-Z using m₁₁.
- Key variables: p_T^{miss} , N_{jets} , merged or resolved W de radius" jet vs 2 "small radius" jets).
- No significant excess over SM predictions.


Improved background estimation methods and re-optimized for higher 137 fb⁻¹ of data.


EWK SUSY

Interpretations

 Chargino/neutralino masses up to 750 GeV are excluded (Improves previous CMS mass exclusions by 100-150 GeV).

Slepton mass exclusions reach up to 700 GeV (~200 GeV improvement).

