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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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Quantum Systems - In Situ Readout

• In-situ quantum measurement: Controlled opening of system

• In-situ quantum measurement: Precise tool of quantum control

e.g: Cavity QED, circuit QED 

• Engineered Quantum Systems: Quantum Simulation to Quantum Control

2. The Impurity–Bath System
Our experiment realizes the immersion of single to few neutral
Cs impurities into an ultra-cold Rb bath. For the investigation of
motional and spin dynamical experiments, positions and
quantum states of both species, bath properties (density and
temperature) and the magnetic environment are controlled. An
overview of the system is given in Figure 1: Impurities and the
ultracold bath are prepared independently, separated by roughly
160 μm distance. Subsequently, we transfer the Cs impurities
into the bath, where interaction dynamics in the dilute ultracold
cloud is governed by two-body s-wave interaction between
individual Cs atoms and the bath, characterized by the scattering
length aIB. When considering typical Rb bath conditions, the
strong atom number imbalance makes collisions between pairs
of impurity atoms as well as the creation of correlations due to
impurity–bath collisions very unlikely. Thus, we can neglect such
events on experimentally relevant time scales, which simplifies
the modeling of Cs dynamics in the following.

Two processes lead to observable impurity dynamics, as
depicted in Figure 1(b): First, elastic collisions between an
impurity and bath atom lead to an exchange of momentum and
kinetic energy, thus to the thermalization of an initially non-
thermal impurity state, which is the foundation for the
observation of motional dynamics in Section 3. Second,
depending on the internal impurity and bath atom state, a
collision can lead to an exchange of angular momentum,
accompanied by the conversion between internal-state energy
and kinetic energy of the two-particle system. This change of the
impurity’s internal state serves as a measure of the impurity–
bath interaction strength, thus providing us with a complemen-
tary tool to study dynamics via the spin degree-of-freedom, see
Section 4. Typical experiment time-scales are set by collision

rates between impurity and bath atoms and are in the order of
few 100ms for a high-density Rb BEC to few 100ms for more
dilute thermal Rb clouds. Eventually, the time scale of
observation is limited by three-body recombination of one
impurity atom with two Rb atoms, which leads to the loss of Cs
atoms from the trap, for details see refs. [39,40].

2.1. Experimental Techniques

An overview of the experiment setup and the trapping geometry
are given in Figure 2(a) and (b), respectively. We prepare
impurities in the ultracold bath in three steps:

First, Rb atoms are cooled and trapped in a standard three-
dimensional magneto-optical trap (MOT) from a pre-cooled
atomic beam emitted by a 2D-MOT. Subsequently, they are
loaded into an optical dipole trap (ODT), formed by two
superimposed, mutually orthogonal beams (λDT ¼ 1064nm).
The Rb atoms are cooled evaporatively to a temperature of few
100 nK. Changing the final condition of the evaporative cooling,
we tune the Rb bath between a pure thermal sample and a quasi-
pure BEC with a condensate fraction of "50%. The final state of
the Rb bath is probed by standard absorption imaging after time-
of-flight (see Figure 3(b)), from which we infer the condensate
fractionN0/N and temperature Tof the cloud, shown in Figure 3
(a). This is compared to the theoretical prediction for the
condensate fraction of an interacting BEC[42]

N0

N
¼ 1# t3 # ζ 2ð Þ

ζ 3ð Þ ηt
2 1# t3
! "2=5 ð1Þ

with t ¼ T=T0
c and the interaction parameter η / a2=5BB .

[42] Here,
the measured condensate fraction is shown as a function of
temperature, normalized by the critical temperature T0

c of an
non-interacting gas in a harmonic trap. For the trapped BEC,
repulsive interaction (aBB > 0) lowers the condensate density at
the trap center, leading to a reduction of the critical temperature

Figure 1. Scheme of impurities in an ultracold bath. a) Individual neutral
Cs impurities (right, fluorescence images and resulting binned position
distribution) are immersed in an ultracold (quantum) bath of Rb (left,
time-of-flight absorption image). A species-specific optical lattice (blue)
yields optical dipole trapping for impurities only and can be facilitated for
deterministic doping of Cs into the bath, or for spatially resolved
measurements. Interaction in the system are driven by inter-species cold
collisions (s-wave scattering length aIB) and intra-species interaction in
the bath (aBB). Impurity-impurity interaction is absent. b) Impurity–bath
interaction in the collision channel mi;mbi & Fi ¼ 3;mii' Fb ¼ 1;mbijjj
features elastic (internal state maintaining) and inelastic (spin exchange)
collisions. Reproduced with permission.[31] Copyright 2018, American
Physical Society (APS).

Figure 2. Experiment overview. a) Ultracold impurity and bath samples
are prepared in an ultra-high vacuum environment. A set of magnetic
solenoids creates strong magnetic fields in Helmholz and Anit-Helmholtz
configuration along the z axis for magneto optical trapping and Feshbach
spectroscopy (1). Further solenoids provide an inhomogeneous mag.
field along x for Stern-Gerlach-type experiments (2) and homogeneous
compensation fields in three dimensions (3). b) Optical dipole trap setup
(before establishing impurity–bath interaction). The ultracold bath and
impurity atoms are prepared in independent crossed optical dipole traps
(ODT), sharing a trapping beam along the z axis. The species-specific
lattice is co-aligned to the shared ODT. Figure (a) reproduced with
permission.[41] Copyright 2016, APS.
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Quasi-Periodic Systems

• Quasi-Periodic Systems

• Lattice with disordered on-site potential (uncorrelated)                

Neither periodic nor disordered systems: e.g. Aubre-André-Harper 
Mobility Edge in 1d 

S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 18 (1980);  
S. Ganeshan, K. Sun, and S. Das Sarma, Phys. Rev. Lett. 110, 180403 (2013).  
S. Ganeshan, J. H. Pixley, and S. Das Sarma, Phys. Rev. Lett. 114, 146601 (2015).

Anderson Localization, Mobility Edge in 3-d

P. W. Anderson Phys. Rev. 109, 1492



Quasi-Periodic Systems - Resurgence
• Multiple Experimental Realizations

Observation of many-body localization of interacting fermions in
a quasi-random optical lattice
Michael Schreiber1,2, Sean S. Hodgman1,2, Pranjal Bordia1,2, Henrik P. Lüschen1,2, Mark H. Fischer3, Ronen
Vosk3, Ehud Altman3, Ulrich Schneider1,2 and Immanuel Bloch1,2

1
Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstr. 4, 80799 Munich, Germany

2
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

3
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

We experimentally observe many-body localization of interacting fermions in a one-dimensional quasi-random optical lattice. We identify the many-
body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time
evolution appears ergodic and thermalizing, erasing all remnants of the initial order. In contrast, above a critical disorder strength a significant portion
of the initial ordering persists, thereby serving as an effective order parameter for localization. The stationary density wave order and the critical
disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. We connect this dependence to the
ubiquitous logarithmic growth of entanglement entropy characterizing the generic many-body localized phase.

Introduction The ergodic hypothesis is one of the central principles
of statistical physics. In ergodic time evolution of a quantum many-body
system, local degrees of freedom become fully entangled with the rest of
the system, leading to an effectively classical hydrodynamic evolution
of the remaining slow observables [1]. Hence, ergodicity is responsible
for the demise of observable quantum correlations in the dynamics of
large many-body systems and forms the basis for the emergence of local
thermodynamic equilibrium in isolated quantum systems [2, 3, 4]. It is
therefore of fundamental interest to investigate how ergodicity breaks
down and search for alternative, genuinely quantum paradigms in the
dynamics, and to understand the long-time stationary states that ensue
in the absence of ergodicity.

One path to breaking ergodicity is provided by the study of inte-
grable models, where thermalization is prevented due to the constraints
imposed on the dynamics by an infinite set of conservation rules. Such
models have been realized and studied in a number of experiments with
ultracold atomic gases [5, 6, 7]. However, integrable models represent
very special and fine-tuned situations, making it difficult to extract gen-

eral underlying principles.

Theoretical studies over the last decade point to many-body lo-
calization (MBL) in a disordered isolated quantum system as a more
generic alternative to thermalization dynamics. In his original pa-
per on single-particle localization, Anderson already speculated that
interacting many-body systems subject to sufficiently strong disorder
would also fail to thermalize [8]. Only recently, however, have con-
vincing theoretical arguments been put forward that Anderson local-
ization remains stable under the addition of moderate interactions,
even in highly excited many-body states [9, 10, 11]. Further theoret-
ical studies have established the many-body localized state as a dis-
tinct dynamical phase of matter that exhibits novel universal behavior
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In particular, the relax-
ation of local observables does not follow the conventional paradigm
of thermalization and is expected to show explicit breaking of ergodic-
ity. In many ways, the MBL transition is fundamentally different from
all other known transitions [23, 24]. On one side of the transition er-
godicity prevails and quantum effects decay at long times, whereas on
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Figure 1: Schematics of the many-body system, initial state and phase-diagram. A. Initial state of our system consisting of a charge density wave, where all
atoms occupy even sites (e) only. For an interacting many-body system, the evolution of this state over time depends on whether the system is ergodic or not. B.
Schematic phase diagram for the system: in the ergodic, delocalized phase (white) the initial CDW quickly decays, while it persists for long times in the non-ergodic,
localized phase (yellow). The striped area indicates the dependence of the transition on the doublon fraction, with the black solid line indicating the case of no
doublons. The black dash-dotted line represents the experimentally observed transition for a finite doublon fraction, extracted from the data in Fig. 4. The grey arrows
depict the postulated pattern of renormalization group flows controlling the localization transition. For U = 0, as well as in the limit of infinite U with no doublons
present [36], the transition is controlled by the non-interacting Aubry-André critical point, represented by the unstable grey fixed points. Generically, however, it is
governed by the MBL critical point, shown in red. C. Schematic showing a visual representation of the three terms in the Aubry-André Hamiltonian (Eq. (2)).
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complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a di! erent angle, thus 
making even more complex lattice con" gurations19, 
such as Kagomé lattices20. # e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h _ 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light " elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

# e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic con" nement arises due to the gaussian 
pro" le of the laser beams (see Fig. 2). Although this 
harmonic con" nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the con" nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). # is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
# en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously " lled 
momentum distribution of the atom cloud within 
the " rst Brillouin zone (a square in momentum space 
with width 2h _ kL). # e atom cloud for such an input 
state should then expand like a square box a$ er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution a$ er 
adiabatic turn-o! 23 (see Fig. 3e).

a

b

Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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is incommensurate with the underlying lattice and the model is qua-
siperiodic. Parameter ϕ acts as a global spatial shift of the potential 
and, although crucial for many effects, such as topological pump-
ing19–21, it does not affect the localization properties. The tunable 
parameter β provides a knob by which to interpolate between two 
known limiting cases: (1) β → 0 reduces to the AA modulation5,22, 
up to a constant energy shift VAA

j ðβÞ ¼ cosð2πbjþ ϕÞ % cosðπbÞ
I

;  
(2) β → ∞ corresponds to a step potential switching between ±1 val-
ues according to the Fibonacci sequence7,8.

Unlike Anderson localization under on-site disorder1, the local-
ization transition for the AA model (β = 0) occurs for all eigen-
modes at the same non-zero critical point5,6 (see x axis of Fig. 1b). 
The critical point can be obtained using a self-duality argument5,6: 
for λ/t < 2, all modes are extended, for λ/t > 2 they are localized, and 
at the critical point λ/t = 2, all the modes are critical and self-similar 
with a power-law spatial decay (Fig. 1b). In the limit of β → ∞, all 
the eigenmodes of the Fibonacci model are critical for any finite 
λ/t > 0 (refs. 7,8). The main goal of this work is to explore the IAAF 
localization phase diagram and understand how AA modes con-
tinuously develop into critical Fibonacci modes. Note that previous 
studies of deformations of a cosine potential into a step function 
observed the appearance of band edges but did not reach the criti-
cal Fibonacci model23. Crucially, the IAAF (equation (2)) contains a 
constant energy shift, cos(πb), that guarantees the correct Fibonacci 
limit (β → ∞). Accordingly, our IAAF model allows us to explore 
the emergence of criticality.

We first develop an intuitive picture of what we expect to observe: 
as β increases, the sampled function becomes steeper (Fig. 1a) and 
effectively should lead to stronger localization (that is, the region 
where the modes are extended shrinks) (Fig. 1b). More precisely, 
we theoretically investigate the transition to criticality by comput-
ing the eigenmodes of equation (1) and systematically analysing the 

inverse participation ratio (IPR) of each eigenstate ψn as a measure 
of its localization:

IPRn !

PL
j¼1 ψn;j

!!!
!!!
4

PL
j¼1 ψn;j

!!!
!!!
2 ð3Þ

where the sums run over length L of the chain. In the regime where 
the nth eigenmode ψn is extended, the IPR is equal to the inverse of 
the system length (IPRn = 1/L) and drops to 0 for an infinite system. 
Conversely, for modes localized on N sites, the IPR is equal to 1/N 
and remains finite for infinite system size.

In Fig. 1c–e, we summarize the IPR values obtained within the 
tight-binding analysis. Let us start with Fig. 1d, which illustrates 
the spectral dependence of the IPR for β = 0. The AA localization 
transition, occurring simultaneously for all eigenmodes at λ/t = 2, 
is clearly seen. Figure 1c shows the IPR of the lowest-energy eigen-
mode as a function of IAAF parameters λ/t and β. The IPR does not 
evolve monotonously with β but presents a cascade of lobes of higher 
IPR values (red regions, Fig. 1c) separated by minima of IPR (blue 
regions, Fig. 1c). Similar lobe structures occur for all eigenmodes 
(Supplementary Section III). At low λ/t, when increasing β, the 
region where all eigenmodes are extended decreases (green dashed 
line in Fig. 1c and Supplementary Section I). We now focus on the 
cascade to criticality for λ/t = 5.5, that is, starting from the strongly 
localized AA and continuously evolving toward the Fibonacci limit. 
As summarized in Fig. 1e, we observe that the lowest set of eigen-
modes squeeze into a narrow spectral window, hybridize due to the 
finite hopping strength t, and delocalize at β ≈ 1.5. We analytically 
obtain the position of the delocalization transition (Supplementary 
Section II), where, using Thouless’s formula24, we derive the con-
dition for a diverging localization length for the lowest-energy  
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eigenmode (dash-dotted line in Fig. 1c). By further increasing β, the 
modes localize once more with a smaller IPR. This process repeats  
at each minimum of the IPR (Fig. 1c). Furthermore, different  
bands exhibit this cascade at different values of β (Supplementary 
Section III). We conclude that the transition to criticality does not  
happen uniformly, but instead occurs through successive localization– 
delocalization transitions.

To observe experimentally these localization–delocalization 
transitions, we engineered cavity-polariton samples. This photonic 
platform has been used recently for the exploration of Fibonacci 
chains, whereby log-periodic oscillations of the density of states 
and a measure of topological invariants could be revealed by optical 
spectroscopy25,26. The quasiperiodic potential can be treated as a per-
turbation to the motion of free polaritons, namely, the Hamiltonian 
of this system can be written as a continuum model:

HψðxÞ ¼ $ ℏ2

2m
∇2 þ λeffVðx; βÞ

! "
ψðxÞ ð4Þ

where m is the polariton mass. The discrete modulation Vj(β), 
given by equation (2), is implemented with a piecewise 1D poten-
tial Vðx; βÞ ¼ V x=ab cðβÞ

I
, with steps of length a. In Fig. 2a–c, we 

report the calculated IPR values obtained within the continuum 
IAAF model (equation (4)) (Supplementary Section V). For β = 0 
(Fig. 2b), we observe signatures of the AA localization as a function 
of λeff. Note that, in contrast to the tight-binding model, the local-
ization does not occur simultaneously for all modes, and mobility 
edges appear in the spectrum27–30. For the lowest band, the localiza-
tion transition occurs at λeff ≈ 1 meV, at approximately twice the rel-
evant kinetic energy scale in the band (Supplementary Section VI).  
Importantly, as reported in Fig. 2a,c, the continuum model also 
exhibits the lobes of localization–delocalization transitions. Thus 
either of the two frameworks can be used for experiments.

We fabricated laterally modulated photonic wires based on 
polariton semiconductor microcavities. The sample was grown 

by molecular beam expitaxy to form a quantum well inserted 
between two high-reflectivity Bragg mirrors along the z direction 
(see Methods for further details). We processed the cavity sample 
into quasi-1D microstructures using electron-beam lithography 
and dry etching. The photonic modes (also called polaritons)  
form 1D-subbands with a distinct transverse spatial distribu-
tion (Fig. 2d). The lowest-energy subband (n = 1) presents modes 
with a maximum at the middle of the wire, while the n = 2 sub-
band shows modes with intensity maxima left and right of the 
wire centre (Supplementary Section VII). For a given transverse 
mode n, the lateral confinement energy for polaritons is given by 
UðwÞ ¼ ðℏ2π2Þ=ð2mÞ ´ n2=w2

I
(ref. 25), where w is the width of the 

wire. To implement the piecewise potential of the IAAF model 
(equation (4)), we consider etched sections (dubbed letters) of fixed 
length a = 2 μm and choose discrete values wj of their width so that 
UðwjÞ ¼ U0 þ λnVjðβÞ
I

, where U0 is a global offset determined by 
U(max(wj)). The scanning electron microscopy images in Fig. 2d 
show polariton structures implementing four values of β (top views 
are schematically represented in Fig. 2e, left). The corresponding 
potentials (Fig. 2d, right) present steps that progressively evolve 
into the two-valued Fibonacci sequence. Interestingly, due to the 
proportionality of U(w) with n2, the modulation amplitude λn for 
higher-energy subbands is increased by a factor n2 with respect to 
the n = 1 subband. It is thus possible to access larger values of λeff = 
n2λ1 when considering higher-energy subbands.

To explore the localization properties of polariton modes in these 
IAAF chains, we optically excite single wires cooled to 4 K using a 
weak non-resonant continuous-wave laser. The excitation spot is 
elongated along the wires and we analyse the spectrally resolved 
photoluminescence (PL) signal either in real or in momentum space 
(see Methods for further details). In Fig. 2f,g, we show an example 
of such measurements for β = 0 and λ1 = 0.2 meV. Polariton sub-
bands corresponding to n = 1 and n = 2 are clearly resolved. The lat-
eral modulation results in the opening of minigaps, which are four 
times larger for the n = 2 than for the n = 1 subbands, as expected. 
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(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
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z +
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ωk η̂
†
k η̂k +
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k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
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, (5)

023330-3

Hopping Strength
<latexit sha1_base64="wtAihE0fRVRWL2AzNW1rUP8V54I="></latexit>

J = 1

<latexit sha1_base64="uXx9A6y7KbjYnS9wpL5otFkAmKQ="></latexit>

↵ = 0AAH Model IPR(N) = 

<latexit sha1_base64="yf7QBHlfKaVSCjlnojX501PmLZM="></latexit> PN
n=1 | ni|4⇣PN
n=1 | ni|2

⌘2

All SPEs Extended
<latexit sha1_base64="jym5gb15AdgAoTk46WNLija370g="></latexit>

� < J
<latexit sha1_base64="XuwNPQr24hsuAmjLogIO8w4mAac="></latexit>

N0

All SPEs Localized
<latexit sha1_base64="nUsSZtNu4WFUimTPavYUH7Ps2Hs="></latexit>

� > J
<latexit sha1_base64="msBvuFEjEKV7ucMjjQOUA5vy2Dk="></latexit>

N�1

All SPEs Critical
<latexit sha1_base64="NxH0wfJ+Z73od7cNXuc4RvUvYmQ="></latexit>

� = J
<latexit sha1_base64="Enk3mA1WwjgFOPqZYVvvlCB5uDA="></latexit>

N�b, with 0 < b < 1



Properties of AAH & GAAH

READOUT OF QUASIPERIODIC SYSTEMS USING QUBITS PHYSICAL REVIEW A 103, 023330 (2021)

(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑
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ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
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(
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as
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, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by
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odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
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by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.
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nearest neighbor hopping model with André-Aubry-Harper
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has the form [43] (we take h̄ = 1 throughout)
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nĉn

+
N−1∑

n=1

(ĉ†
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Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form
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z (ĉ†
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with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂
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k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
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τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
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generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
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µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†
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+
N−1∑
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(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as
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with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)

023330-3



Dephasing Spin-Boson Solution

READOUT OF QUASIPERIODIC SYSTEMS USING QUBITS PHYSICAL REVIEW A 103, 023330 (2021)

(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as
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z +
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with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by
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generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
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ĉ†
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+
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Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i
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i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
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with gi
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τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)

023330-3

READOUT OF QUASIPERIODIC SYSTEMS USING QUBITS PHYSICAL REVIEW A 103, 023330 (2021)

(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
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mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
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the dimensions of energy such as µ, λ (including the qubit
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it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
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advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk
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mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as
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which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i
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As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i
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the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i
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s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
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with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
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From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
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ĉ†
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+
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Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form
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with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =
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k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
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τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.
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strength J , ĉ†
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an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
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henceforth we take the phase φ = 0 and choose α, λ > 0 for
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than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
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Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
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i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂
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k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
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with gi
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τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
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generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
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A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
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µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†
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+
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ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as
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with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by
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by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑
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ωk η̂
†
k η̂k +

N∑
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σ̂ i
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(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
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with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads
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From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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with αi
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k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain
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Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
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2 and (i,th(t ) =
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k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as
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which is still in the class of spin-boson models with dephasing
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As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
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From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i
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+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.
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A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
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this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
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From the expression for the covariance, Eq. (12), consider-
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.

023330-4



Two Qubits Dynamics Solution

READOUT OF QUASIPERIODIC SYSTEMS USING QUBITS PHYSICAL REVIEW A 103, 023330 (2021)

(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
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k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
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2
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z +
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k=1
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+
N∑

k=1

σ̂ i
z

(
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)
+

N∑

k=1
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(
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k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as
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)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗
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(
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)
, (9)
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, (10)

with the Lamb-shift term given by
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[
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]
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[
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])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
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. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as
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z +
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+
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,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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factor, consider the expression for the vacuum decoherence
factor !i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., !i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = µ −

2 cos(2πk/N ),−N/2 ! k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

!i,vac(t → ∞) = 4
N

N
2 −1∑

k=− N
2

1
ω2

k,0

N→∞= 4µ

(µ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor !i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡

∑N
k=1 |gi

k|4 for
each site of the GAAH chain inspired by the usual inverse

(a)

(b)

FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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factor, consider the expression for the vacuum decoherence
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Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
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at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi
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at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡
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k|4 for
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FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
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definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
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participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−(i (t ), (6)

(i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate (i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β,ωk ), where n̄(β,ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write (i(t ) = (i,vac(t ) + (i,th(t ), with
(i,vac(t ) =

∑N
k=1

|αi
k |2
2 and (i,th(t ) =

∑N
k=1 n̄(β,ωk )|αi

k|2.
As it is apparent from Eq. (7) that the decoherence fac-

tor (i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA
and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
+

N∑

k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i)*−(t )σ̂ j
z ⊗

N∏

k=1

D̂k
(
± αi

k

)
, (9)

σ̂
j

±(t ) = e±i)*+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏

k=1

D̂k
(
± α

j
k

)
, (10)

with the Lamb-shift term given by

)*±(t ) =
N∑

k=1

4
ω2

k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t(〈σ̂ i

−(0)σ̂ j
+(0)〉e−(i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉
〈
e−i)*−(t )σ̂ j

z +i)*+(t )σ̂ i
z
〉
e−[(i (t )+( j (t )]),

(12)

with the individual decoherence factors for the two qubits
(i(t ),( j (t ) given by Eq. (7) and the correlated decoherence
factor (i j (t ) reads

(i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
µ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑

n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, µ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = µ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as µ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ =

∑N
k=1 ωk η̂

†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)
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factor, consider the expression for the vacuum decoherence
factor !i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., !i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = µ −

2 cos(2πk/N ),−N/2 ! k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

!i,vac(t → ∞) = 4
N

N
2 −1∑

k=− N
2

1
ω2

k,0

N→∞= 4µ

(µ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor !i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡

∑N
k=1 |gi

k|4 for
each site of the GAAH chain inspired by the usual inverse

(a)

(b)

FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow

023330-6

AAH Model 
N = 610

SAHA, AGARWALLA, AND VENKATESH PHYSICAL REVIEW A 103, 023330 (2021)

factor, consider the expression for the vacuum decoherence
factor !i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., !i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = µ −

2 cos(2πk/N ),−N/2 ! k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

!i,vac(t → ∞) = 4
N

N
2 −1∑

k=− N
2

1
ω2

k,0

N→∞= 4µ

(µ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor !i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡

∑N
k=1 |gi

k|4 for
each site of the GAAH chain inspired by the usual inverse
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FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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factor, consider the expression for the vacuum decoherence
factor !i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., !i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = µ −

2 cos(2πk/N ),−N/2 ! k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

!i,vac(t → ∞) = 4
N

N
2 −1∑

k=− N
2

1
ω2

k,0

N→∞= 4µ

(µ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor !i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡

∑N
k=1 |gi

k|4 for
each site of the GAAH chain inspired by the usual inverse

(a)

(b)

FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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factor, consider the expression for the vacuum decoherence
factor !i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in !i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in
the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., !i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = µ −

2 cos(2πk/N ),−N/2 ! k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

!i,vac(t → ∞) = 4
N

N
2 −1∑

k=− N
2

1
ω2

k,0

N→∞= 4µ

(µ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor !i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential µ. In the rest
of the paper, we chose µ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning µ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing !i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor !i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡

∑N
k=1 |gi

k|4 for
each site of the GAAH chain inspired by the usual inverse

(a)

(b)

FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = !̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of !vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different
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FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑

p=1

(
e−#(t f

p ) − e−#(t i
p)), (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
#(t ) up to t = 1200 with a time discretization of &t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is
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FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.
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in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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FIG. 9. Correlation strength in the long-time limit for two qubits coupled to sites i and j of the GAAH model in the α-λ plane. In
(a) [i = 290, j = 690] and (b) [i = 233, j = 610] the correlation strength is large (small) in the fully delocalized (localized) regimes with no
mobility edge. In contrast, the correlation shows dependence on the site to which the qubits couple when there is a mobility edge. In (a) and
(b) system size N = 2584. In (c) [(d)] we show the linear [quadratic] scaling of the threshold time t∗ as a function of qubit separation for
parameters above the black critical line [on the black critical line]. Here, we have fixed i = N/4, j = 3N/4 and varied the system size as N to
change |i − j|.

t∗ ∼ |i − j| becomes larger, indicating that it takes longer for
the correlations to set in. In Fig. 9(d) we consider the scaling
for two points on the critical line with λ > 1 where there is a
mixture of critical and localized states, and we clearly see that
t∗ ∼ |i − j|2, i.e., the scaling is governed by the nature of the
states that help set up correlations at the fastest rate. More-
over, we find that the scaling behavior we observe is rather
insensitive to temperature. This can be anticipated from the
fact that the delocalized and critical states always have lower
energy than the localized states. Thus, using a combination of
the magnitude of the correlation and the scaling behavior of
the threshold time for correlation of the two qubits, we can
clearly extract the transport properties of the quasiperiodic
GAAH chain.

IV. CONCLUSIONS

In conclusion, we have presented a theoretical scheme to
read out the nature of on-site potential, single-particle states,
and isolated system transport properties of a noninteracting
quasiperiodic system by coupling it to probe qubit systems. A
single qubit coupled to any site of the system shows strikingly
different decoherence dynamics depending on the presence
of all delocalized or all localized states in the quasiperiodic
system. This difference in dynamics is quantifiable via the
backflow of information measure for the non-Markovianity
and captures the delocalization-localization transition of the
regular AAH model upon changing λ (with higher backflow
of information in the localized regime). In the GAAH model,
in the presence of a mobility edge, we find that the backflow
of information is site dependent for a given λ and α. De-
pending on the number of localized and delocalized states, the
dynamics will show high and low backflow at different sites.
Nonetheless, we see that there are multiple sites in the lattice
to which upon coupling a one qubit probe, we can read out the
phase diagram of the GAAH model in terms of the fraction
of localized states in the α-λ parameter plane. When the two

qubits are coupled at two distinct sites i and j, we were able to
show that there is a threshold time t∗ after which correlations
develop between initially uncorrelated qubits. More interest-
ingly, the scaling of this threshold time as a function of the
distance between the qubits, |i − j|, contains the signature of
the transport properties expected in the quasiperiodic system.
We have shown that in the regular AAH model when all
the states are delocalized, corresponding to ballistic transport,
we obtain t∗ ∼ |i − j|, when all the states are critical with
diffusive transport we get t∗ ∼ |i − j|2, and in the localized
regime with no transport we see the scaling t∗ ∼ exp(|i − j|).
In the presence of a mobility edge in the GAAH model with
the coexistence of SPEs of different nature, the scaling is
dominated by the fastest states. For instance, with a mixture
of delocalized and localized states, scaling is governed by
the delocalized states. In this manner we are able to again
extract a phase plot of the GAAH model in terms of the
different transport behavior expected. In general we found that
the initial temperature of the quasiperiodic system does not
qualitatively affect our results.

Finally, let us examine the prospects for experimentally
realizing the theoretical scheme we have proposed. Focusing
first on the decoherence dynamics of one qubit coupled to a
quasiperiodic chain, we note that multiple elements required
to implement this are already in place, especially in ultracold
atomic systems. This includes realizations of quasiperiodic
AAH and GAAH lattices [45,51,52] and experiments with
position controlled implantation of qubit impurities in ultra-
cold gases and studies of their decoherence [22,27]. In [27],
although the coupling between the impurity qubit and the
atomic gas was implemented via elastic collisions is expected
to cause dephasing, for their choice of the internal atomic
states for the qubit, dephasing was dominated by other exter-
nal noise factors. Nevertheless, they do comment that this can
be mitigated by choosing different sets of internal states for
the qubit. Thus, in summary we anticipate that, by adding a
quasiperiodic optical lattice potential for the BEC in [27], the
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FIG. 9. Correlation strength in the long-time limit for two qubits coupled to sites i and j of the GAAH model in the α-λ plane. In
(a) [i = 290, j = 690] and (b) [i = 233, j = 610] the correlation strength is large (small) in the fully delocalized (localized) regimes with no
mobility edge. In contrast, the correlation shows dependence on the site to which the qubits couple when there is a mobility edge. In (a) and
(b) system size N = 2584. In (c) [(d)] we show the linear [quadratic] scaling of the threshold time t∗ as a function of qubit separation for
parameters above the black critical line [on the black critical line]. Here, we have fixed i = N/4, j = 3N/4 and varied the system size as N to
change |i − j|.

t∗ ∼ |i − j| becomes larger, indicating that it takes longer for
the correlations to set in. In Fig. 9(d) we consider the scaling
for two points on the critical line with λ > 1 where there is a
mixture of critical and localized states, and we clearly see that
t∗ ∼ |i − j|2, i.e., the scaling is governed by the nature of the
states that help set up correlations at the fastest rate. More-
over, we find that the scaling behavior we observe is rather
insensitive to temperature. This can be anticipated from the
fact that the delocalized and critical states always have lower
energy than the localized states. Thus, using a combination of
the magnitude of the correlation and the scaling behavior of
the threshold time for correlation of the two qubits, we can
clearly extract the transport properties of the quasiperiodic
GAAH chain.

IV. CONCLUSIONS

In conclusion, we have presented a theoretical scheme to
read out the nature of on-site potential, single-particle states,
and isolated system transport properties of a noninteracting
quasiperiodic system by coupling it to probe qubit systems. A
single qubit coupled to any site of the system shows strikingly
different decoherence dynamics depending on the presence
of all delocalized or all localized states in the quasiperiodic
system. This difference in dynamics is quantifiable via the
backflow of information measure for the non-Markovianity
and captures the delocalization-localization transition of the
regular AAH model upon changing λ (with higher backflow
of information in the localized regime). In the GAAH model,
in the presence of a mobility edge, we find that the backflow
of information is site dependent for a given λ and α. De-
pending on the number of localized and delocalized states, the
dynamics will show high and low backflow at different sites.
Nonetheless, we see that there are multiple sites in the lattice
to which upon coupling a one qubit probe, we can read out the
phase diagram of the GAAH model in terms of the fraction
of localized states in the α-λ parameter plane. When the two

qubits are coupled at two distinct sites i and j, we were able to
show that there is a threshold time t∗ after which correlations
develop between initially uncorrelated qubits. More interest-
ingly, the scaling of this threshold time as a function of the
distance between the qubits, |i − j|, contains the signature of
the transport properties expected in the quasiperiodic system.
We have shown that in the regular AAH model when all
the states are delocalized, corresponding to ballistic transport,
we obtain t∗ ∼ |i − j|, when all the states are critical with
diffusive transport we get t∗ ∼ |i − j|2, and in the localized
regime with no transport we see the scaling t∗ ∼ exp(|i − j|).
In the presence of a mobility edge in the GAAH model with
the coexistence of SPEs of different nature, the scaling is
dominated by the fastest states. For instance, with a mixture
of delocalized and localized states, scaling is governed by
the delocalized states. In this manner we are able to again
extract a phase plot of the GAAH model in terms of the
different transport behavior expected. In general we found that
the initial temperature of the quasiperiodic system does not
qualitatively affect our results.

Finally, let us examine the prospects for experimentally
realizing the theoretical scheme we have proposed. Focusing
first on the decoherence dynamics of one qubit coupled to a
quasiperiodic chain, we note that multiple elements required
to implement this are already in place, especially in ultracold
atomic systems. This includes realizations of quasiperiodic
AAH and GAAH lattices [45,51,52] and experiments with
position controlled implantation of qubit impurities in ultra-
cold gases and studies of their decoherence [22,27]. In [27],
although the coupling between the impurity qubit and the
atomic gas was implemented via elastic collisions is expected
to cause dephasing, for their choice of the internal atomic
states for the qubit, dephasing was dominated by other exter-
nal noise factors. Nevertheless, they do comment that this can
be mitigated by choosing different sets of internal states for
the qubit. Thus, in summary we anticipate that, by adding a
quasiperiodic optical lattice potential for the BEC in [27], the
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(a) [i = 290, j = 690] and (b) [i = 233, j = 610] the correlation strength is large (small) in the fully delocalized (localized) regimes with no
mobility edge. In contrast, the correlation shows dependence on the site to which the qubits couple when there is a mobility edge. In (a) and
(b) system size N = 2584. In (c) [(d)] we show the linear [quadratic] scaling of the threshold time t∗ as a function of qubit separation for
parameters above the black critical line [on the black critical line]. Here, we have fixed i = N/4, j = 3N/4 and varied the system size as N to
change |i − j|.
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the correlations to set in. In Fig. 9(d) we consider the scaling
for two points on the critical line with λ > 1 where there is a
mixture of critical and localized states, and we clearly see that
t∗ ∼ |i − j|2, i.e., the scaling is governed by the nature of the
states that help set up correlations at the fastest rate. More-
over, we find that the scaling behavior we observe is rather
insensitive to temperature. This can be anticipated from the
fact that the delocalized and critical states always have lower
energy than the localized states. Thus, using a combination of
the magnitude of the correlation and the scaling behavior of
the threshold time for correlation of the two qubits, we can
clearly extract the transport properties of the quasiperiodic
GAAH chain.
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and isolated system transport properties of a noninteracting
quasiperiodic system by coupling it to probe qubit systems. A
single qubit coupled to any site of the system shows strikingly
different decoherence dynamics depending on the presence
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system. This difference in dynamics is quantifiable via the
backflow of information measure for the non-Markovianity
and captures the delocalization-localization transition of the
regular AAH model upon changing λ (with higher backflow
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in the presence of a mobility edge, we find that the backflow
of information is site dependent for a given λ and α. De-
pending on the number of localized and delocalized states, the
dynamics will show high and low backflow at different sites.
Nonetheless, we see that there are multiple sites in the lattice
to which upon coupling a one qubit probe, we can read out the
phase diagram of the GAAH model in terms of the fraction
of localized states in the α-λ parameter plane. When the two

qubits are coupled at two distinct sites i and j, we were able to
show that there is a threshold time t∗ after which correlations
develop between initially uncorrelated qubits. More interest-
ingly, the scaling of this threshold time as a function of the
distance between the qubits, |i − j|, contains the signature of
the transport properties expected in the quasiperiodic system.
We have shown that in the regular AAH model when all
the states are delocalized, corresponding to ballistic transport,
we obtain t∗ ∼ |i − j|, when all the states are critical with
diffusive transport we get t∗ ∼ |i − j|2, and in the localized
regime with no transport we see the scaling t∗ ∼ exp(|i − j|).
In the presence of a mobility edge in the GAAH model with
the coexistence of SPEs of different nature, the scaling is
dominated by the fastest states. For instance, with a mixture
of delocalized and localized states, scaling is governed by
the delocalized states. In this manner we are able to again
extract a phase plot of the GAAH model in terms of the
different transport behavior expected. In general we found that
the initial temperature of the quasiperiodic system does not
qualitatively affect our results.

Finally, let us examine the prospects for experimentally
realizing the theoretical scheme we have proposed. Focusing
first on the decoherence dynamics of one qubit coupled to a
quasiperiodic chain, we note that multiple elements required
to implement this are already in place, especially in ultracold
atomic systems. This includes realizations of quasiperiodic
AAH and GAAH lattices [45,51,52] and experiments with
position controlled implantation of qubit impurities in ultra-
cold gases and studies of their decoherence [22,27]. In [27],
although the coupling between the impurity qubit and the
atomic gas was implemented via elastic collisions is expected
to cause dephasing, for their choice of the internal atomic
states for the qubit, dephasing was dominated by other exter-
nal noise factors. Nevertheless, they do comment that this can
be mitigated by choosing different sets of internal states for
the qubit. Thus, in summary we anticipate that, by adding a
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Single Qubit: Non-markovianity of dephasing, nature of SPEs

Two Qubits: Transport properties from correlations

Experimental Implementation: Single qubit good prospect with 
ultracold atoms, multiple qubits better to also look at polaritonic 
lattices + solid state qubits
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Non-dephasing coupling: AAH and GAAH Bath Thermodynamics, 
readout of current (direct signature of transport)

Back-action of qubit on chain?
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Abstract

We study the many-body localization (MBL) properties of a chain of interacting fermions
subject to a quasiperiodic potential such that the non-interacting chain is always delocal-
ized and displays multifractality. Contrary to naive expectations, adding interactions in
this systems does not enhance delocalization, and a MBL transition is observed. Due to
the local properties of the quasiperiodic potential, the MBL phase presents specific fea-
tures, such as additional peaks in the density distribution. We furthermore investigate
the fate of multifractality in the ergodic phase for low potential values. Our analysis is
based on exact numerical studies of eigenstates and dynamical properties after a quench.
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a Fibonacci sequence never exhibit Anderson localization however, but rather display critical-
ity and multifractality (in a sense defined later) for any on-site potential strength h [38–41].
Owing to the critical, multifractal, nature of its eigenstates and to the power-law behavior of
its transport observables (discussed in Sec. 3), we can think of this model as following a line
of metal-insulator transition points, as h is varied.

Can this model host an MBL phase when interactions are added? One would naively be
tempted to answer by the negative, given that interactions generally tend to favor delocaliza-
tion [42,43], and that the non-interacting eigenstates are not localized to begin with. However,
as we shall show below, the model under study presents an MBL phase, which hosts specific
local features. The plan of the paper is as follows: in Sec. 2 we recall the Fibonacci sequence
and present its basic properties, while Sec. 3 presents the well-known properties of the non-
interacting model and in particular its multifractal properties. Moving on to the interacting
case in Sec. 4, we study this model in light of various standard MBL probes, and conclude
positively for the existence of an MBL transition. We then characterize more precisely the
thermal and localized phases of the model, studying the eigenstates properties in Sec. 5, and
dynamical properties in Sec. 6. Finally, we gather our findings and conclude in Sec. 7.

2 The Fibonacci chain

+h +h +h +h +h�h �h �h

A

A

A A

AAA

A A A A A

B

B

B B

BBB

Figure 1: The first five Fibonacci words, depicted as horizontal chains of rectangular
tiles. Applying the substitution rule � to a word yields the next, represented just
below it. Below the largest word is printed the corresponding sequence of on-site
potentials ±h.

The Fibonacci chain under study is a chain of interacting spinless fermions [Eq. (2)] subject
to an on-site binary potential (hi = ±h) varying according to the Fibonacci rule: hi = +h (resp.
hi = �h) if the ith letter the Fibonacci sequence is an A (resp. a B).

Fibonacci sequence The Fibonacci sequence is a quasiperiodic sequence of A and B letters.
To construct it, start from the letter A, and apply repetitively the substitution rule

� :

®
A! AB
B! A

(3)

to generate words of increasing length: A ! AB ! ABA ! ABAAB ! . . . . Notice that the
length of the ith word is the ith Fibonacci number, hence the name of the model. The Fibonacci
sequence is obtained by repeating the substitution procedure an infinite number of times. Fig.
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Abstract

We study the many-body localization (MBL) properties of a chain of interacting fermions
subject to a quasiperiodic potential such that the non-interacting chain is always delocal-
ized and displays multifractality. Contrary to naive expectations, adding interactions in
this systems does not enhance delocalization, and a MBL transition is observed. Due to
the local properties of the quasiperiodic potential, the MBL phase presents specific fea-
tures, such as additional peaks in the density distribution. We furthermore investigate
the fate of multifractality in the ergodic phase for low potential values. Our analysis is
based on exact numerical studies of eigenstates and dynamical properties after a quench.
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