Quantum Exceptional Points: challenges and opportunities

Yogesh N. Joglekar
Indiana University - Purdue University Indianapolis (IUPUI)

Theory group: 3-4 doctoral, I-2 undergrad, I-3 high-school students Work with experimentalists across different platforms.

What is (is not) non-Hermiticity?

- Coherent, non-unitary evolution: not Lindblad!
- Exceptional Points: degeneracies of non-Hermitian matrices.
- Classical EPs and their noise effects are understood.

W. Chen et al., Nature 548, 192 (2017)

What are "Quantum" Exceptional Points?

$$
i \partial_{t} A=B A \quad ?
$$

A: classical or quantum input and output. B: classical or quantum "Hamiltonian".
EPs in coherent, non-unitary evolution.
A: quantum density matrix in Lindblad evolution.
B: Lindblad super-operator (with an extra i).
EP: critically damped (fastest) approach to steady-state.
?: Is this equation a correct description?
Can we make quantum EPs? Yes, across multiple platforms.

Roberto Leon

Quantum input A to "classical devices" B

Passive PT dimer

Use Fock input states;
Use number-resolved output.
Use tomography to measure density matrix.

PHOTONICS Research

Exceptional points of any order in a single, lossy waveguide beam splitter by photon-numberresolved detection

Theory proposal: "quantum" EPs
Put in N -photon state in a dimer.
Measure number-resolved output.
Post-select to N -photon manifold.
Get a robust EP of order $\mathrm{N}+1$.
RLM,YNJ Photonics Research 7, 862 (2019).
YNJ, AL Nature 557, 660 (20I8); ongoing work.

"Quantum B": minimal devices

Lindblad EPs in minimal devices $(A=\rho, B=i \mathscr{L})$

$$
\partial_{t} \rho(t)=i\left[H_{0}(t), \rho(t)\right]-i \frac{\gamma(t)}{2}\left[\left\{L_{k}^{\dagger} L_{k}, \rho\right\}-2 L_{k} \rho L^{\dagger}\right]=\mathscr{L}(t) \rho(t)
$$

Density matrix reaches steady state.
L spectrum: $\left\{0, \lambda_{k}, \lambda_{k}^{*} \mid \Re \lambda_{k}<0\right\}$
Underdamped or overdamped approach.
Fastest approach occurs at EP.

No post-selection, but decaying signal. Unphysical density matrix eigenstates. Encircling mode-switches not possible.

"Quantum B": interacting materials

Hermitian systems with QPT (atoms, ions, Rydberg).
No tomography; introduce single-particle losses.
Time-periodic (Floquet) problem: EP contours.

ARTICLE
https://doiorg/10.1038/s41467-019-08596-1 OPEN
Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms

Roberto Leon

Floquet engineering of EP contours

$$
B(t)=H_{0}(t)+i \Gamma(t)=B(t+T) \text { with } T=2 \pi / \Omega
$$

Static B: isolated EPs near $\Gamma \sim H_{0}$.
Time-periodic (Floquet) case: EPs become contours.
Valid in both classical and quantum domains.

PHYSICAL REVIEW RESEARCH 3, 013135 (2021)

Parity-time symmetric systems with memory
Zacharv A. Cochran $\odot .{ }^{1}$ Avadh Saxena $\odot .{ }^{2}$ and Yogesh N. Joglekar \oplus^{1}

[^0]
Floquet engineering of Lindblad EP contours

$$
\mathscr{L}(t)=\mathscr{L}_{0}(t)+\Gamma(t)=\mathscr{L}(t+T) \text { with } T=2 \pi / \Omega
$$

Time-periodic drive for the qubit.

Also see poster by Akhil Kumar, IISER, Kolkata.
Gunderson, Jacob Muldoon, KWM,YJ PRA I03, 023718 (202I)

Time-periodic phase noise $\gamma_{z}(t)$

Q: Is this equation a correct description?

$\mathrm{T}=0$ losses (allow quantum-jump elimination);
No gain (quantum noise in amplifier).

* Equation invalid at the operator level.
(Ok at quadrature level: EPs in Heff.
\star Not OK for correlations and intensity.
Open Questions: Do quantum EPs lead to better sensors? How can we realize many-body systems EPs? What is the fate of entanglement dynamics across EPs?

Quantum input A to "classical devices" B

$$
\begin{aligned}
& A=\left|1_{L}\right\rangle \otimes\left|1_{R}\right\rangle \\
& B=-J(|L\rangle\langle L|+|R\rangle\langle R|)-i \gamma|R\rangle\langle R| \\
& 2 \text { photon HOM dip (post-selection) }
\end{aligned}
$$

Observation of PT-symmetric quantum interference
F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel \& A. Szameit \square

Nature Photonics 13, 883-887(2019) | Cite this article

Drawbacks: Post-selection means reduced data sets.
What happens if the quantum input is not Fock states?
Signatures of EPs in non-Gaussian initial states?

Quantum tomography across an EP

Kater Murch,Wash U

Quantum state tomography across the

 exceptional point in a single dissipative qubitM. Naghiloo', M. Abbasi', Yogesh N. Joglekar $\oplus^{2 *}$ and K. W. Murch $\oplus^{1,3 *}$
news \& views
NON-HERMITIAN PHYSICS
Exceptional quantum behaviour
Non-Hermitian systems with gain and loss give rise to exceptional points with exceptional properties. An experiment with superconducting qubits now offers a first step towards studying these singularities in the quantum domain. Stefan Rotter

Fig. 3 | Non-orthogonality of eigenstates in the vicinity of the EP.

Post-selection on Lindblad gives non-Hermitian H

Non-Hermitian Quantum Simulations

- Interactions+non-Hermiticity: new entanglement dynamics.
- Decoherence vs. non-Hermiticity: new way to control.

$$
H=-J\left(X_{1}+X_{2}\right)+g_{z} Z_{1} Z_{2}-i \Gamma_{1}\left(1-Z_{1}\right) / 2
$$

Lindblad + loss γ

Open question (we can potentially address):
New quantum phases from non-Hermitian interactions.

[^0]: YJ, RLM Communications Physics I, 88 (2018).

