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Organization of the talk

1 Part 1, F.B., J.Phys. A, 2021: su(1, 1)-type Lie algebra...

2 ...its ladder operators...

3 ...and the eigenvectors of the number-like operators.

4 Part 2 (maybe...), F.B., J.Phys.: Conference Series, 2021: eigenvectors and
bi-coherent states outside L2(R)...

5 ...when their products are in L1(R)...

6 ...and when they are not: weak bicoherent states.
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Two words of history

The beginning of Susy QM: H factorizable, H = BA = H†, has a SUSY partner

Hsusy = AB = H + [B,A].

There exists a well known relation between the eigenstates of H and Hsusy : let ϕ be
such that

Hϕ = Eϕ,

for E ∈ R, its eigenvalue. Then, if ϕA := Aϕ 6= 0, then

HsusyϕA = EϕA.

The eigenvectors of Hsusy can be deduced out of those of H... (which, by the way,
have to be found! And this could be not so easy!!)

If H 6= H†, then the adjoint map, †, produce a second pair of operators, H† and

H†susy , whose eigenvectors are again somehow related to those of H.

The best is when we can find, with a general strategy, the eigenvalues and the

eigenvectors of H. Then those of H†, Hsusy and H†susy can be obtained in an
automatic way.

This is what we will show in this part of the talk.
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Two more words of (recent) history

In 2018 Williams and coauthors introduced the notion of coupled SUSY (CSusy).
Roughly speaking, CSusy arises out of two operators a and b, acting on an Hilbert
space H, and two real non-zero numbers γ, δ, with δ > γ, satisfying the following:

a†a = bb† + γ11, aa† = b†b+ δ11.

Of course, we need to impose R(a) ⊂ D(a†) and viceversa, and the same for b..
These equalities are really different. One can be satisfied while the other does not hold:

a =
1√
2

(
d

dx
+ x

)
, b =

1√
2

(
d

dx
+ x

)
eix.

Trivial example: bosons. Let c be an operator on H satisfying (in the sense on
unbounded operators) the canonical commutation relation [c, c†] = 11, then the
equations above are satisfied taking a = b = c, δ = 1, γ = −1.

The operators

K+ =
1

δ − γ a
†b†, K− =

1

δ − γ ba, K0 =
1

δ − γ
(
a†a− γ

2

)
,

satisfy the following commutation rules,

[K0,K±] = ±K±, [K+,K−] = −2K0,

which are those of the su(1, 1) Lie algebra. Hence, K± act as ladder operators, while

K0 is some sort of Hamiltonian. Notice that K0 = K†0, and K†± = K∓.
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Two words of history

Main question:– how much of the ladder structure described by Williams does survive
when loosing self-adjointness?

Technical question:– Is there any algebraic approach which takes care of the domain
issues automatically also in presence of unbounded operators?

In other words:– is it possible to define a ∗-algebra containing also unbounded
operators? ...

...yes!
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The algebraic settings

In this talk we will use a particular unbounded operator algebra, the O∗-algebra
L†(D). Other possibilities exist.

Definition:

Let H be a separable Hilbert space and N0 an unbounded, densely defined, self-adjoint
operator. Let D(Nk

0 ) be the domain of the operator Nk
0 , k ≥ 0, and D the domain of

all the powers of N0, that is,

D =
⋂
k≥0

D(Nk
0 ).

This set is dense in H. We call L†(D) the ∗-algebra of all closable operators defined on
D which, together with their adjoints, mapD into itself. Here the adjoint of X ∈ L†(D),
X†, is the restriction of the adjoint of X in H (which we also indicate with X†) to D.

In D the topology is defined by the following N0-depending seminorms:

ϕ ∈ D → ‖ϕ‖n ≡ ‖Nn
0 ϕ‖,

where n ≥ 0, while the topology τ0 in L†(D) is introduced by the seminorms

X ∈ L†(D)→ ‖X‖f,k ≡ max
{
‖f(N0)XNk

0 ‖, ‖Nk
0Xf(N0)‖

}
,

where k ≥ 0 and f ∈ C, the set of all the positive, bounded and continuous functions
on R+, which are decreasing faster than any inverse power of x: L†(D)[τ0] is a
complete *-algebra.
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The algebraic settings

Hence,
∀x, y ∈ L†(D), ⇒ x†, y†, xy, yx, [x, y] ∈ L†(D).

Also, powers of x and y all belong to L†(D), which therefore is a good candidate to
work with, also in presence of unbounded operators.

A first example:– if N0 = c†c, where c = 1√
2

(
x+ d

dx

)
, then D = S(R) and we can

prove that c, c† ∈ L†(D). Hence N0 ∈ L†(D) as well.

A second example:– let now a and b be two operators on H, with domains D(a) and
D(b) respectively, a† and b† their adjoint, and let D be a dense subspace of H such
that a]D ⊆ D and b]D ⊆ D, where x] is x or x†. Of course, D ⊆ D(a]) and
D ⊆ D(b]).

Definition:

The operators (a, b) are D-pseudo-bosonic if, for all f ∈ D, we have

a b f − b a f = f.

Hence a number-like operator N = ba can be defined, N 6= N†, with N† sharing with
N all its eigenvalues, n = 0, 1, 2, 3, . . .. If a and b are similar to c and c†, via some
(unbounded) operator leaving D stable together with its inverse, then a, b and their
powers and combinations belong to L†(D).
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ECSusy

Definition:

Let d, c, r and s be four elements of L†(D), for some suitable D dense in H, and let
γ, δ be two real numbers with δ > γ. We say that (d, c, r, s; δ, γ) define an extended
coupled Susy (ECSusy), if the following equalities are satisfied:

dc = rs+ γ11, cd = sr + δ11.

Let us define the following operators, still in L†(D):

k+ =
1

δ − γ ds, k− =
1

δ − γ rc, k0 =
1

δ − γ
(
dc− γ

2
11
)
, (1)

and their superpartners

l+ =
1

δ − γ sd, l− =
1

δ − γ cr, l0 =
1

δ − γ

(
sr +

δ

2
11

)
. (2)

They obey the following commutation relations:

[k0, k±] = ±k±, [k+, k−] = −2k0, (3)

[l0, l±] = ±l±, [l+, l−] = −2l0. (4)

These look like the commutators for Kα before, but with a big difference: k+ and l+
are not the adjoint of k− and l−, and k0 and l0 are not self-adjoint.
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ECSusy

This gives us the possibility to introduce two other families of operators, pα and qα,
α = 0,±:

p0 = k†0, p± = k†∓; q0 = l†0, q± = l†∓.

They satisfy the same commutators in (3) and (4):

[p0, p±] = ±p±, [p+, p−] = −2p0; [q0, q±] = ±q±, [q+, q−] = −2q0.

Hence we conclude that an ECSusy produces four (in general) different triples of
operators obeying the same commutators of an su(1, 1) Lie algebra, but with different
relations under the adjoint operation.

In the next two slides we will deduce some consequences of these commutation rules.
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An interlude on deformed su(1, 1)

Let x±, x0 ∈ L†(D), such that

[x0, x±] = ±x±, [x+, x−] = −2x0,

but with x†+ 6= x− and x†0 6= x0. We put, with a slight abuse of notation,

x2 = x2
0 −

1

2
(x+x− + x−x+) = x2

0 + x0 − x−x+ = x2
0 − x0 − x+x−.

Notice that x2 is not really the square of an operator x (to be identified) and,
moreover, x2 is not even positive. We keep this notation since it is somehow standard.
We have

[x2, xα] = 0, α = 0,±.
We can then look for common eigenstates of, say, x2 and x0. Using again the same
notation adopted for ordinary su(1, 1), we assume the following: there exists a non
zero vector Φj,q0 ∈ D satisfying the following eigenvalue equations:{

x2Φj,q0 = j(j + 1)Φj,q0 ,
x0Φj,q0 = q0Φj,q0 ,

(5)

for some j and q0. Of course, there is no reason a priori to assume here that j and q0
are real or positive.
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An interlude on deformed su(1, 1)

The relevant point for us of these operators is the ladder nature of x±. This is easily
deduced: {

x2(x±Φj,q0 ) = j(j + 1)(x±Φj,q0 ),
x0(x±Φj,q0 ) = (q0 ± 1)(x±Φj,q0 ),

(6)

at least if Φj,q0 /∈ ker(x±). This means that x+ is a raising while x− is a lowering
operator. Using the same standard arguments for su(1, 1), we can also deduce that{

x+Φj,q0 = (q0 − j)Φj,q0+1,
x−Φj,q0 = (q0 + j)Φj,q0−1,

(7)

which are in agreement with the fact that, as it is easy to check,

[x0, x−x+] = [x0, x+x−] = 0.

More results on deformed su(1, 1) in my paper.
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Back to ECSusy

We start with the operators kα, α = 0,±. As in (5), we assume a non zero vector
ϕj,q ∈ D exists, j, q ∈ C, such that

k2ϕj,q = j(j + 1)ϕj,q , k0ϕj,q = qϕj,q . (8)

Here k2 = k2
0 + k0 − k−k+. The operators k± act on ϕj,q as ladder operators:

k+ϕj,q = (q − j)ϕj,q+1, k−ϕj,q = (q + j)ϕj,q−1, (9)

for all ϕj,q /∈ ker(k±).
Let Ij be the set of all the q′s for which ϕj,q is not annihilated by at least one between
k+ and k−: if q ∈ Ij , then ϕj,q /∈ ker(k+) or ϕj,q /∈ ker(k−), or both. We put

Fϕ(j) := {ϕj,q , ∀q ∈ Ij},

Ej = l.s.{ϕj,q , q ∈ Ij}, and Hj the closure of Ej , with respect to the norm of H. Of
course, Hj ⊆ H, for each fixed j. By construction, Fϕ(j) is a basis for Hj , with an
unique biorthonormal basis Fψ(j) := {ψj,q , ∀q ∈ Ij}. Then

〈ϕj,q , ψj,r〉 = δq,r, (10)

for all q, r ∈ Ij , and l.s.{ψj,q , q ∈ Ij} is dense in Hj .
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Back to ECSusy

The vectors ψj,q satisfy the following eigenvalue and ladder equalities:

p2ψj,q = j(j + 1)ψj,q , p0ψj,q = qψj,q ,{
p+ψj,q = (q + 1 + j)ψj,q+1,

p−ψj,q = (q − 1− j)ψj,q−1,
(11)

at least if ψj,q /∈ ker(p±).

Remark:– These equations are different from those deduced in (7). This is because
the vectors {ψj,q} are introduced here as the only biorhonormal family to {ϕj,q}. The
other possibility would be to introduce, in analogy to what we have done in (8), a
family of eigenstate of p2 and p0, {ψ̃j,q}, which, however, turns out to be
biorthogonal, but not biorthonormal, to {ϕj,q}: the difference we have with these

different procedures is in the normalization of the states: ψj,q and ψ̃j,q are
proportional to each other.

Summarizing, to construct the eigenvectors of p2 and p0 we can:–

Choice 1:– follow biorthonormality, or...

Choice 2:– ...use the commutation rules.

My choice is mixed: I use commutation rules for kα, and biorthonormality for the
other operators.
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Back to ECSusy

Many intertwining relations can be deduced. These are those for the ladder operators:
sk+ = l+s, k+d = dl+
ck− = l−c, k−r = rl−
r†p+ = q+r†, p+c† = c†q+
d†p− = q−d†, p−s† = s†q−,

while these are for the 0-operators (the non self-adjoint Hamiltonians)
l0s = s

(
k0 + 1

2
11
)
, q0r† = r†

(
p0 + 1

2
11
)

l0c = c
(
k0 − 1

2
11
)
, q0d† = d†

(
p0 − 1

2
11
)

rl0 =
(
k0 + 1

2
11
)
r, s†q0 =

(
p0 + 1

2
11
)
s†

dl0 =
(
k0 − 1

2
11
)
d, c†q0 =

(
p0 − 1

2
11
)
c†.

(12)

These equalities show that the eigenvalues of l0 differ from those of k0 by half
integers, as those of q0 from those of p0. Indeed we have, considering a vector ϕj,q
with sϕj,q 6= 0 and cϕj,q 6= 0, k0ϕj,q = qϕj,q , and

l0 (sϕj,q) = s

(
k0 +

1

2
11

)
ϕj,q =

(
q +

1

2

)
(sϕj,q) , l0 (cϕj,q) =

(
q − 1

2

)
(cϕj,q) .

In other words, sϕj,q and cϕj,q are both eigenstates of l0, with different eigenvalues.
Hence they must be connected by the ladder operators l±.
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A detailed example: D-pseudo bosons

Let a and b be two operators on H, a† and b† their adjoint, and let D, dense in H, be
such that a]D ⊆ D and b]D ⊆ D, (x] = x, x†). In general D ⊆ D(a]) and
D ⊆ D(b]).

Definition 1:

The operators (a, b) are D-pseudo bosonic (D-pb) if, for all f ∈ D, we have

a b f − b a f = f. (13)

([a, b] = 11, for simplicity). [If b = a† then we recover the CCR].

We now assume that

Assumption D-pb 1.– there exists a non-zero ϕ0 ∈ D such that aϕ0 = 0,

Assumption D-pb 2.– there exists a non-zero Ψ0 ∈ D such that b†Ψ0 = 0.

Remark:– If a = d
dx

and b = x these assumptions are not satisfied in L2(R).

Now, if (a, b) satisfy Definition 1, then ϕ0 ∈ D∞(b) and Ψ0 ∈ D∞(a†). Hence...
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A detailed example: D-pseudo bosons

ϕn :=
1√
n!
bnϕ0, Ψn :=

1√
n!
a†
n

Ψ0, (14)

n ≥ 0, can be defined and they all belong to D. We introduce FΨ = {Ψn, n ≥ 0}
and Fϕ = {ϕn, n ≥ 0}. Of course, both ϕn and Ψn belong to the domains of a], b]

and N] (here N = ba).

The following lowering and raising relations hold:
b ϕn =

√
n+ 1ϕn+1, n ≥ 0,

a ϕ0 = 0, aϕn =
√
nϕn−1, n ≥ 1,

a†Ψn =
√
n+ 1Ψn+1, n ≥ 0,

b†Ψ0 = 0, b†Ψn =
√
nΨn−1, n ≥ 1,

(15)

as well as the following eigenvalue equations:

Nϕn = nϕn, N†Ψn = nΨn, n ≥ 0.

A consequence: if 〈ϕ0,Ψ0〉 = 1, then

〈ϕn,Ψm〉 = δn,m, (16)

for all n,m ≥ 0.

Assumption D-pb 3.– Fϕ is a basis for H. (iff FΨ is a basis for H). Or...
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A detailed example: D-pseudo bosons

Assumption D-pbw 3.– Fϕ and FΨ are G-quasi bases for H, for some G dense in H
(G = D, in some cases).

This means that, ∀ f, g ∈ G,∑
〈f, ϕn〉 〈Ψn, g〉 =

∑
〈f,Ψn〉 〈ϕn, g〉 = 〈f, g〉 .

And now, we take c = r = a, d = s = b, δ = −γ = 1. Hence {kα, lα, pα, qα} become

k+ = l+ =
1

2
b2, k− = l− =

1

2
a2, k0 = l0 =

1

2

(
N +

1

2
11

)
, (17)

where N = ba, and

p+ = q+ =
1

2
a†

2
, p− = q− =

1

2
b†

2
, p0 = q0 =

1

2

(
N† +

1

2
11

)
. (18)

It is clear that the four original families collapse to two. Moreover:

k2 = p2 = − 3

16
11, (19)

which, of course, commute with all the other operators, as expected. Notice that k2

and p2 are not positive operators.
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A detailed example: D-pseudo bosons

Formula (5) is based on the assumption that an eigenstate of x2 and x0 exists: this is
the vacuum of a, ϕ0. In fact, we have

k2ϕ0 = − 3

16
ϕ0, k0ϕ0 =

1

4
ϕ0.

Hence, comparing these with (5), we have q0 = 1
4

and j(j + 1) = − 3
16

, that is

j = − 1
4

or j = − 3
4

. Formula (9) and k−ϕ0 = 0, imply that j = − 1
4

. Hence we call

ϕ− 1
4
, 1
4

:= ϕ0, (20)

so that the spectrum of k0 is bounded below (ϕ− 1
4
, 1
4
∈ ker(k−)). Acting on ϕ− 1

4
, 1
4

with (k+)m we get

ϕ− 1
4
,m+ 1

4
=

√
(2m)!

(2m− 1)!!
ϕ2m, (21)

where ϕ2m are the eigenstates of N = ba, 0!! = (−1)!! = 1 and
(2m− 1)!! = 1 · 3 · · · · (2m− 1). We find

k0ϕ− 1
4
,m+ 1

4
=

(
m+

1

4

)
ϕ− 1

4
,m+ 1

4
, (22)

k+ϕ− 1
4
,m+ 1

4
=

(
m+

1

2

)
ϕ− 1

4
,m+ 5

4
, k−ϕ− 1

4
,m+ 1

4
= mϕ− 1

4
,m− 3

4
. (23)

In particular, this last equality is true only if m ≥ 1. If m = 0 we have
k−ϕ− 1

4
, 1
4

= k−ϕ0 = 0, as already noticed.
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A detailed example: D-pseudo bosons

We can now define the set of linearly independent vectors

F(e)
ϕ

(
1

4

)
=
{
ϕ− 1

4
,m+ 1

4
, m = 0, 1, 2, 3, . . .

}
,

and the Hilbert space H(e)

− 1
4

, constructed by taking the closure of the linear span of its

vectors. Here the suffix e stands for even, since only the vectors ϕ2m belong to

F(e)
ϕ

(
1
4

)
. On the other hand, since H 3 ϕ2m+1 /∈ H(e)

− 1
4

, we have H(e)

− 1
4

⊂ H. Hence,

the set F(e)
ϕ

(
1
4

)
cannot be complete in H, and, therefore, a basis for H. Nevertheless,

by construction, H(e)

− 1
4

is an Hilbert space by itself, and F(e)
ϕ

(
1
4

)
is a basis for it. Then

an unique biorthonormal basis F(e)
ψ

(
1
4

)
=
{
ψ− 1

4
,m+ 1

4
, m = 0, 1, 2, 3, . . .

}
exists:

〈ϕ− 1
4
,m+ 1

4
, ψ− 1

4
,l+ 1

4
〉 = δm,l, (24)

where the scalar product is the one in H, and, for each f ∈ H(e)

− 1
4

,

f =
∞∑
m=0

〈ϕ− 1
4
,m+ 1

4
, f〉ψ− 1

4
,m+ 1

4
=
∞∑
m=0

〈ψ− 1
4
,m+ 1

4
, f〉ϕ− 1

4
,m+ 1

4
.
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A detailed example: D-pseudo bosons

From (21) and (15) it is clear that the vectors of this biorthonormal basis are the
following:

ψ− 1
4
,m+ 1

4
=

(2m− 1)!!√
(2m)!

ψ2m. (25)

Formulas (11) can now be explicitly checked, and we get

p2ψ− 1
4
,m+ 1

4
= − 3

16
ψ− 1

4
,m+ 1

4
, p0ψ− 1

4
,m+ 1

4
=

(
m+

1

4

)
ψ− 1

4
,m+ 1

4
, (26)

together with

p+ψ− 1
4
,m+ 1

4
= (m+ 1)ψ− 1

4
,m+ 5

4
, p−ψ− 1

4
,m+ 1

4
=

(
m− 1

2

)
ψ− 1

4
,m− 3

4
.

(27)
We stress again that the difference between these ladder equations and those in (23)
arises because, while the ϕ− 1

4
,m+ 1

4
’s are introduced using directly the deformed

su(1, 1) algebra, the ψ− 1
4
,m+ 1

4
’s are just the unique basis which is biorthonormal to

F(e)
ϕ

(
1
4

)
. However, these vectors are still eigenstates of p2 and p0, and obey

interesting ladder equations with respect to p±, even if slightly different from those in
(7).
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A detailed example: D-pseudo bosons

More explicitly:– if we repeat for the operators pα what we have done for the kα, we
get a different (but related) set of vectors. In fact:

in analogy with (20), we put ψ̃− 1
4
, 1
4

= ψ0, since b†ψ0 = 0. Then, using the first

equation in (7) (rather than the second in (11)), p+ψ̃j,q = (q − j)ψ̃j,q+1, we deduce
that

ψ̃− 1
4
,m+ 1

4
=

(2m− 1)!!√
(2m)!

ψ2m =
(2m)!

((2m− 1)!!)2
ψ− 1

4
,m+ 1

4
,

which shows the difference in the normalizations between the ψ̃− 1
4
,m+ 1

4
and the

ψ− 1
4
,m+ 1

4
. Now, while ψ̃− 1

4
,m+ 1

4
satisfies the analogous of formulas (7), ψ− 1

4
,m+ 1

4

satisfies (27), which is slightly different. On the other hand, while this last vector
satisfies (24), ψ̃− 1

4
,m+ 1

4
does not.

In conclusion, we prefer to keep biorthonormality of the sets we work with, rather than
using (7) several times.



Plan Part 1 Part 2

The odd sector

But...what about the odd indexes?

These are connected with the SUSY partner of k0

which essentially differs from k0 for an addictive constant.
Let

aϕ− 1
4
,m+ 1

4
=
√

2m

√
(2m)!

(2m− 1)!!
ϕ2m−1, bϕ− 1

4
,m+ 1

4
=

√
(2m+ 1)!

(2m− 1)!!
ϕ2m+1,

(28)
with the agreement that ϕ−1 = 0. Let us now define

ϕ− 1
4
,m+ 3

4
:= bϕ− 1

4
,m+ 1

4
=

√
(2m+ 1)!

(2m− 1)!!
ϕ2m+1, (29)

for all m ≥ 0. The reason for calling this vector in this way is because ϕ− 1
4
,m+ 3

4
is an

eigenstate of k0 with eigenvalue m+ 3
4

:

k0ϕ− 1
4
,m+ 3

4
=

(
m+

3

4

)
ϕ− 1

4
,m+ 3

4
, (30)
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The odd sector

But...what about the odd indexes? These are connected with the SUSY partner of k0

which essentially differs from k0 for an addictive constant.
Let

aϕ− 1
4
,m+ 1

4
=
√

2m

√
(2m)!

(2m− 1)!!
ϕ2m−1, bϕ− 1

4
,m+ 1

4
=

√
(2m+ 1)!

(2m− 1)!!
ϕ2m+1,

(28)
with the agreement that ϕ−1 = 0. Let us now define

ϕ− 1
4
,m+ 3

4
:= bϕ− 1

4
,m+ 1

4
=

√
(2m+ 1)!

(2m− 1)!!
ϕ2m+1, (29)

for all m ≥ 0. The reason for calling this vector in this way is because ϕ− 1
4
,m+ 3

4
is an

eigenstate of k0 with eigenvalue m+ 3
4

:

k0ϕ− 1
4
,m+ 3

4
=

(
m+

3

4

)
ϕ− 1

4
,m+ 3

4
, (30)
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The odd sector

These vectors satisfy the following raising and lowering relations:

k+ϕ− 1
4
,m+ 3

4
=

(
m+

1

2

)
ϕ− 1

4
,m+ 7

4
, k−ϕ− 1

4
,m+ 3

4
= m

2m+ 1

2m− 1
ϕ− 1

4
,m− 1

4
,

(31)
with the agreement that ϕ− 1

4
,− 1

4
= 0.

An useful comment:– It is clear that, in the same way in which a and b map
ϕ− 1

4
,m+ 1

4
into some ϕ− 1

4
,l+ 3

4
, they also map these last vectors into the first ones

(see the figure, in a moment...).
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The odd sector

In analogy with what we have done before, we put

F(o)
ϕ

(
1

4

)
=
{
ϕ− 1

4
,m+ 3

4
, m = 0, 1, 2, 3, . . .

}
,

where o stands for odd, and the related Hilbert space H(o)

− 1
4

: H(e)

− 1
4

∩H(o)

− 1
4

= ∅, and

Fϕ
(

1
4

)
:= F(e)

ϕ

(
1
4

)
∪ F(o)

ϕ

(
1
4

)
is complete in H, at least if the set Fϕ is complete.

This is true, e.g., if the D-PBs are regular, since Fϕ and Fψ are b.o. Riesz bases.

Now, since F(o)
ϕ

(
1
4

)
is a basis for H(o)

− 1
4

, we can introduce an unique b.o. basis

F(o)
ψ

(
1
4

)
= {ψ− 1

4
,m+ 3

4
, m = 0, 1, 2, 3, . . .}, whose vectors can be easily identified

using (29) and (15). We have

ψ− 1
4
,m+ 3

4
=

(2m− 1)!!√
(2m+ 1)!

ψ2m+1 =
1

2m+ 1
a†ψ− 1

4
,m+ 1

4
. (32)

In fact, with this choice,

〈ϕ− 1
4
,m+ 3

4
, ψ− 1

4
,l+ 3

4
〉 = δm,l, (33)

where the scalar product is the one in H, and, for each f ∈ H(o)

− 1
4

,

f =
∞∑
m=0

〈ϕ− 1
4
,m+ 3

4
, f〉ψ− 1

4
,m+ 3

4
=

∞∑
m=0

〈ψ− 1
4
,m+ 3

4
, f〉ϕ− 1

4
,m+ 3

4
.
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The odd sector

Repeating then what we have done for H(e), we can define the set

F(o)
ψ

(
1
4

)
= {ψ− 1

4
,m+ 3

4
, m = 0, 1, 2, 3, . . .}, and observe that

Fψ
(

1
4

)
:= F(e)

ψ

(
1
4

)
∪ F(o)

ψ

(
1
4

)
is complete in H, or it is even a Riesz basis for H,

depending on the nature of the D-PBs we are considering. More in detail, if we now
introduce the families FΦ = {Φk, k ≥ 0} and Fξ = {ξk, k ≥ 0}, where

Φk =

{
ϕ− 1

4
,j+ 1

4
, if k = 2j,

ϕ− 1
4
,j+ 3

4
, if k = 2j + 1,

and ξk =

{
ψ− 1

4
,j+ 1

4
, if k = 2j,

ψ− 1
4
,j+ 3

4
, if k = 2j + 1,

k ≥ 0, we can check that
〈Φk, ξl〉 = δk,l,

and that, ∀f, g ∈ D,

∞∑
k=0

〈f,Φk〉〈ξk, g〉 =
∞∑
k=0

〈f, ϕk〉〈ψk, g〉,
∞∑
k=0

〈f, ξk〉〈Φk, g〉 =
∞∑
k=0

〈f, ψk〉〈ϕk, g〉.

These equalities imply that FΦ and Fξ are b.o., and that they are D-quasi bases if
and only if Fϕ and Fψ are D-quasi bases.
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Some formulas

ϕ− 1
4
,m+ 1

4
=

√
(2m)!

(2m−1)!!ϕ2m ϕ− 1
4
,m+ 3

4
= bϕ− 1

4
,m+ 1

4
=

√
(2m+1)!

(2m−1)!! ϕ2m+1

ψ− 1
4
,m+ 1

4
= (2m−1)!!√

(2m)!
ψ2m ψ− 1

4
,m+ 3

4
= a†

2m+1
ψ− 1

4
,m+ 1

4
= (2m−1)!!√

(2m+1)!
ψ2m+1

aϕ− 1
4
,m+ 1

4
=
√
2m

√
(2m)!

(2m−1)!!ϕ2m−1 =
2m

2m−1ϕ− 1
4
,m− 1

4
aϕ− 1

4
,m+ 3

4
=
√
2m+ 1

√
(2m+1)!

(2m−1)!! ϕ2m = (2m+ 1)ϕ− 1
4
,m+ 1

4

bϕ− 1
4
,m+ 1

4
=

√
(2m+1)!

(2m−1)!! ϕ2m+1 = ϕ− 1
4
,m+ 3

4
bϕ− 1

4
,m+ 3

4
=

√
(2m+2)!

(2m−1)!! ϕ2m+2 = (2m+ 1)ϕ− 1
4
,m+ 5

4

a†ψ− 1
4
,m+ 1

4
=

√
(2m+1)!

(2m+1)!!
ψ2m+1 = (2m+ 1)ψ− 1

4
,m+ 3

4
a†ψ− 1

4
,m+ 3

4
=
√
2m+ 2 (2m−1)!!√

(2m+1)!
ψ2m+2 =

2m+2
2m+1

ϕ− 1
4
,m+ 5

4

b†ψ− 1
4
,m+ 1

4
= (2m−1)!!√

(2m−1)!
ψ2m+1 = (2m− 1)ψ− 1

4
,m− 1

4
b†ψ− 1

4
,m+ 3

4
= (2m−1)!!√

(2m)!
ψ2m = ψ− 1

4
,m+ 1

4

Figure: Formulas involving ladder operators
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Some more formulas

k0ϕ− 1
4
,m+ 1

4
=

(
m+ 1

4

)
ϕ− 1

4
,m+ 1

4
k+ϕ− 1

4
,m+ 1

4
=

(
m+ 1

2

)
ϕ− 1

4
,m+ 5

4
k−ϕ− 1

4
,m+ 1

4
= mϕ− 1

4
,m− 3

4

p0ψ− 1
4
,m+ 1

4
=

(
m+ 1

4

)
ψ− 1

4
,m+ 1

4
p+ψ− 1

4
,m+ 1

4
= (m+ 1)ψ− 1

4
,m+ 5

4
p−ψ− 1

4
,m+ 1

4
=

(
m− 1

2

)
ψ− 1

4
,m− 3

4

k0ϕ− 1
4
,m+ 3

4
=

(
m+ 3

4

)
ϕ− 1

4
,m+ 3

4
k+ϕ− 1

4
,m+ 3

4
=

(
m+ 1

2

)
ϕ− 1

4
,m+ 7

4
k−ϕ− 1

4
,m+ 3

4
= m 2m+1

2m−1
ϕ− 1

4
,m− 1

4

p0ψ− 1
4
,m+ 3

4
=

(
m+ 3

4

)
ψ− 1

4
,m+ 3

4
p+ψ− 1

4
,m+ 3

4
= (m+ 1) 2m+3

2m+1
ψ− 1

4
,m+ 7

4
p−ψ− 1

4
,m+ 3

4
=

(
m− 1

2

)
ψ− 1

4
,m− 1

4

Figure: Formulas involving number operators
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Deforming the deformed!

Let a and b be D-pseudo-bosonic operators in L†(D), for some suitable D. Let now
S, T ∈ L†(D) be two invertible operators, with S−1, T−1 ∈ L†(D). In the following

we will assume that T−1† = T †−1
and S−1† = S†−1

. Conditions for these to be
satisfied are discussed in literature. They are trivially true for bounded operators. If we
define now

c = SaT−1, s = SbT−1, d = TbS−1, r = TaS−1,

then these operators, which are all in L†(D), satisfy an ECSUSY with δ = −γ = 1.
Moreover

k̃α = TkαT
−1, l̃α = SkαS

−1, p̃α = T−1†pαT †, q̃α = S−1†pαS†,

where α = 0,± and where the un-tilted operators kα and pα are those in (17) and
(18).
Since ϕ− 1

4
,m+ 1

4
, ψ− 1

4
,m+ 1

4
, ϕ− 1

4
,m+ 3

4
, ψ− 1

4
,m+ 3

4
∈ D, for all m = 0, 1, 2, 3, . . ., it

follows that the following vectors are in D as well:

ϕ̃− 1
4
,m+ 1

4
= Tϕ− 1

4
,m+ 1

4
; ψ̃− 1

4
,m+ 1

4
= T−1†ψ− 1

4
,m+ 1

4
;

and
χ̃− 1

4
,m+ 3

4
= Sϕ− 1

4
,m+ 3

4
; η̃− 1

4
,m+ 3

4
= S−1†ψ− 1

4
,m+ 3

4
.
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Deforming the deformed!

They are eigenstates respectively of k̃0 and p̃0, with eigenvalue m+ 1
4

, and of l̃0 and

q̃0, with eigenvalue m+ 3
4

. Moreover, they satisfy the following ladder equations:
k̃+ϕ̃− 1

4
,m+ 1

4
=
(
m+ 1

2

)
ϕ̃− 1

4
,m+ 5

4
, k̃−ϕ̃− 1

4
,m+ 1

4
= mϕ̃− 1

4
,m− 3

4
,

p̃+ψ̃− 1
4
,m+ 1

4
= (m+ 1) ψ̃− 1

4
,m+ 5

4
, p̃−ψ̃− 1

4
,m+ 1

4
=
(
m− 1

2

)
ψ̃− 1

4
,m− 3

4
,

l̃+χ̃− 1
4
,m+ 3

4
=
(
m+ 1

2

)
χ̃− 1

4
,m+ 7

4
, l̃−χ̃− 1

4
,m+ 3

4
= m 2m+1

2m−1
χ̃− 1

4
,m− 1

4
,

q̃+η̃− 1
4
,m+ 3

4
= (m+ 1) 2m+3

2m+1
η̃− 1

4
,m+ 7

4
, q̃−η̃− 1

4
,m+ 3

4
=
(
m− 1

2

)
η̃− 1

4
,m− 1

4
,

for every m for which the lowering operators do not destroy the state. Also, they are
biorthonormal in pairs, meaning that

〈ϕ̃− 1
4
,m+ 1

4
, ψ̃− 1

4
,l+ 1

4
〉 = 〈χ̃− 1

4
,m+ 3

4
, η̃− 1

4
,l+ 3

4
〉 = δm,l, (34)

for all m, l ∈ N0, while, if S and T are not chosen in some special way, we get, for
instance, 〈ϕ̃− 1

4
,m+ 1

4
, η̃− 1

4
,l+ 3

4
〉 6= 0.
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Deforming the deformed!

Figure: The role of the ladder operators, of the adjoint map, and of the biorthonormality of the
eigenvectors.
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Is L2 the only ”good” space for Quantum Mechanics?

....and I am not speaking of changing the metric!!

More exactly:– are all physical systems described only in Hilbert (or Krein) spaces?

This is relevant mainly when dealing with unbounded operators. Otherwise Hilbert
spaces work well (in my knowledge)!

Some results exist having rigged Hilbert spaces as their essential structure: R. De La
Madrid, C. Trapani, J.-P. Antoine, A. Bohm, M. Gadella, M. del Olmo,...

Other results exist in a pure distributional domain: the axiomatic (Wightman)
approach to quantum field theory, Calcada et al,....

Recently, I introduced the concept of weak pseudo-bosons for dealing with the position
and the momentum operators, and for analysing the damped quantum harmonic
oscillator:

x̂ and D̂ = d
dx

obey [D̂, x̂] = 11 and they act as ladder operators between
distributions, and not functions. In particular, the vacuum of x̂ is ϕ0(x) = δ(x), and

acting on this with powers of D̂ produces other distributions, δ(n)(x), which are
biorthogonal (in a distributional sense), with respect to the family xn = (x̂)nΨ0(x),

where D̂Ψ0(x) = 0. Similar results can be deduced for the DQHO.
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A concrete example

Let H = L2(R), with the usual scalar product, and let

A =
d

dx
+ wA(x), B = − d

dx
+ wB(x). (35)

Here wA(x), wB(x) ∈ C∞, and wA(x) 6= wB(x). Then B† 6= A. We call these
functions superpotentials: they produce two supersymmetric Hamiltonians H1 = BA
and H2 = AB, whose eigenvectors are related as in usual SUSY QM. The fact that
H1 and H2 are SUSY partners is discussed in [Part 1]. Here this aspect is not
relevant, since with our constraint on the superpotentials (see below), we have
H2 = H1 + 11. Now, since

H1 = BA = − d2

dx2
+ q1(x)

d

dx
+ V1(x), H2 = AB = − d2

dx2
+ q1(x)

d

dx
+ V2(x),

where

q1(x) = wB(x)− wA(x), V1(x) = wA(x)wB(x)− w′A(x), V2(x) = wA(x)wB(x) + w′B(x),

we find that

[A,B] = H2 −H1 = V2(x)− V1(x) = w′A(x) + w′B(x). (36)

Hence, to have [A,B] = 11, we must have wA(x) + wB(x) = x+ k, for a generic k
which we fix in R. In this case wA(x) and wB(x) are called pseudo-bosonic
superpotentials: PBSs.
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A concrete example

The vacua of A and B† are the following:

ϕ0(x) = Nϕ exp {−sA(x)} , Ψ0(x) = NΨ exp
{
−sB(x)

}
,

where

sA(x) =

∫
wA(x)dx, sB(x) =

∫
wB(x)dx,

and Nϕ and NΨ are two normalization constants to be computed.

We are not assuming here ϕ0(x),Ψ0(x) ∈ L2(R). Still, they are both C∞ functions,
so that

ϕn(x) =
1√
n!
Bnϕ0(x), ψn(x) =

1√
n!
A†

n
ψ0(x),

n = 1, 2, 3, . . .. are C∞ functions, too, for all choices of C∞ PBSs and ∀n ≥ 0.
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A concrete example

Proposition:–

For any choice of C∞ PBSs we have

ϕn(x)

ϕ0(x)
=
ψn(x)

ψ0(x)
= pn(x, k),

for all n ≥ 0, where pn(x, k) is independent of wA(x) and wB(x) and is defined
recursively as follows:

p0(x, k) = 1, pn(x, k) =
1√
n

(
pn−1(x, k)(x+ k)− p′n−1(x, k)

)
, n ≥ 1.

More explicitly, we get

pn(x, k) =
1√

2n n!
Hn

(
x+ k√

2

)
.

Furthermore ϕn(x) Ψm(x) ∈ L1(R) and 〈Ψm, ϕn〉 = δn,m, for all n,m ≥ 0, and

Nϕn(x) = nϕn(x), N†Ψn(x) = nΨn(x),

where N = BA and N† = A†B†.
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A concrete example

In principle, without extra assumptions on the PBSs, we don’t know if the functions of
Fϕ = {ϕn(x)} and FΨ = {Ψn(x)} are square-integrable or not. Hence, it makes no
sense to check if they are biorthogonal bases, or if they are complete, in L2(R), in
general. However, some info on this side can also be deduced....
We can rewrite ϕn(x) and Ψn(x) as follows:

ϕn(x) = cn(x)ρA(x), Ψn(x) = cn(x)ρB(x), (37)

where

cn(x) =
1

21/4
en

(
x+ k√

2

)
, with en(x) =

1√
2nn!
√
π
Hn(x) e−

x2

2 , (38)

is the well known n-th eigenstate of the harmonic oscillator, and

ρA(x) = Nϕ(2π)1/4e
1
2

(
x+k√

2

)2

e−sA(x), ρB(x) = NΨ(2π)1/4e
1
2

(
x+k√

2

)2

e−sB(x),

which are independent of n. Notice that ρA(x) and ρB(x) satisfy

ρA(x) ρB(x) = 1, (39)
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Is L2 the only ”good” space for bi-coherent states?

First of all: let’s work in H:–

Let us consider two biorthogonal G -quasi bases, Fϕ̃ = {ϕ̃n ∈ H, n ≥ 0} and

FΨ̃ = {Ψ̃n ∈ H, n ≥ 0}, G some dense subset of H. Consider an increasing sequence
of real numbers αn satisfying the inequalities 0 = α0 < α1 < α2 < . . ., and let

α = sup
n
αn.

Consider two operators, A and B†, acting as lowering operators on Fϕ̃ and FΨ̃ in the
following way:

A ϕ̃n = αnϕ̃n−1, B† Ψ̃n = αnΨ̃n−1, (40)

for all n ≥ 1, with A ϕ̃0 = B† Ψ̃0 = 0. Then, putting

α0! = 1, αk! = α1α2 · · ·αk, k ≥ 1,

the following theorem holds:
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Is L2 the only ”good” space for coherent states?

Theorem, pt 1:

Assume that four strictly positive constants Aϕ, AΨ, rϕ and rΨ exist, together with
two strictly positive sequences Mn(ϕ) and Mn(Ψ), for which

lim
n→∞

Mn(ϕ)

Mn+1(ϕ)
= M(ϕ), lim

n→∞
Mn(Ψ)

Mn+1(Ψ)
= M(Ψ), (41)

where M(ϕ) and M(Ψ) could be infinity, and such that, for all n ≥ 0,

‖ϕ̃n‖ ≤ Aϕ rnϕMn(ϕ), ‖Ψ̃n‖ ≤ AΨ rnΨMn(Ψ). (42)

Then the following series:

N(|z|) =

( ∞∑
k=0

|z|2k
(αk!)2

)−1/2

, (43)

ϕ(z) = N(|z|)
∞∑
k=0

zk

αk!
ϕ̃k, Ψ(z) = N(|z|)

∞∑
k=0

zk

αk!
Ψ̃k, (44)

are all convergent inside the circle Cρ(0) in C centered in the origin of the complex

plane and of radius ρ = α min
(

1,
M(ϕ)
rϕ

,
M(Ψ)
rΨ

)
.
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Is L2 the only ”good” space for coherent states?

Theorem, pt 2:

Moreover, for all z ∈ Cρ(0),

Aϕ(z) = zϕ(z), B†Ψ(z) = zΨ(z). (45)

Suppose further that a measure dλ(r) does exist such that∫ ρ

0
dλ(r) r2k =

(αk!)2

2π
, (46)

for all k ≥ 0. Then, putting z = reiθ and calling dν(z, z) = N(r)−2dλ(r)dθ, we have∫
Cρ(0)

〈f,Ψ(z)〉 〈ϕ(z), g〉 dν(z, z) =

∫
Cρ(0)

〈f, ϕ(z)〉 〈Ψ(z), g〉 dν(z, z) = 〈f, g〉 ,

(47)
for all f, g ∈ G.
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Is L2 the only ”good” space for coherent states?

L2(R) is enough: case 1:–

Going back to ours PBSs, we see that if ρA(x), ρB(x) ∈ L∞(R), then

‖ϕn‖ = ‖cn ρA‖ ≤ ‖ρA‖∞‖cn‖ = ‖ρA‖∞, ‖Ψn‖ = ‖cn ρB‖ ≤ ‖ρB‖∞,

for all n ≥ 0. Moreover, since αn =
√
n, α =∞. Hence the theorem above holds

with the following choice:

Aϕ = ‖ρA‖∞, AΨ = ‖ρB‖∞, rϕ = rΨ = Mn(ϕ) = Mn(Ψ) = 1,

∀n ≥ 0. Then ρ =∞, and the series in (43) and (44) converge in all the complex
plane. For instance, let us take

sA(x) =
x2

4
+
kx

2
+ Φ(x), sB(x) =

x2

4
+
kx

2
− Φ(x),

where Φ(x) is any real C∞ function bounded from below and from above, i.e. when
there exist m,M such that −∞ < m ≤ Φ(x) ≤M <∞, a.e. in R. In fact, we get

‖ρA‖∞ = Nϕ(2π)1/4ek
2/4−m, ‖ρB‖∞ = NΨ(2π)1/4ek

2/4+M ,

while the PBSs are wA(x) = x
2

+ k + Φ′(x) and wB(x) = x
2

+ k − Φ′(x).
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Is L2 the only ”good” space for coherent states?

L2(R) is enough: case 2:–

Let us take sA(x) = x2

4
and sB(x) = x2

4
+ kx. In this case

ϕn(x) =
Nϕ√
2n n!

Hn

(
x+ k√

2

)
e−x

2/4, Ψn(x) =
NΨ√
2n n!

Hn

(
x+ k√

2

)
e−x

2/4−kx,

which are both square-integrable, but with diverging norms:

‖ϕn‖ '
|Nϕ|

(2|k|)1/4
e−k

2/4 e
|k|√n

n1/8
, ‖Ψn‖ '

|NΨ|
(2|k|)1/4

e3k
2/4 e

|k|√n

n1/8
,

where ' stands for except for corrections O(n−1/2). Still we can use our Theorem,
taking (for k 6= 0, the only relevant case)

Aϕ =
|Nϕ|

(2|k|)1/4
e−k

2/4, AΨ =
|NΨ|

(2|k|)1/4
e3k

2/4,

rϕ = rΨ = e|k|, Mn(ϕ) = Mn(Ψ) =
1

n1/8
.
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Is L2 the only ”good” space for coherent states?

Hence M(ϕ) = M(Ψ) = 1, ρ =∞, and the bi-coherent states are well defined in all
the complex plane, belong to L2(R), and satisfies the usual eigenvalue equations and
the weak resolution of the identity (47). In fact, taking

dλ(r) =
1

π
e−r

2
r dr, (48)

condition (1) is satisfied: ∫ ∞
0

dλ(r)r2k =
k!

2π
.

Then (2) follows from the fact that (Fϕ,FΨ) are E-quasi bases for all possible choices
of PBSs. Here

E =
{
h(x) ∈ L2(R) : h(x)ρj(x) ∈ L2(R), j = A,B

}
,

which is dense in L2(R), since it contains D(R).
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Working outside L2(R)

L2(R) is not enough

From our previous analysis it is easy to understand that we can somehow force the
system to live in L2(R), .....

....but not so much!

We could introduce a metric in L2(R) which makes some non square-integrable
function, square-integrable (by, of course, changing its meaning!), but then the
functions in its original biorthogonal set are no longer biorthogonal, or o.n. Moreover,
the adjoint maps changes, and this change depends on which metric we adopt: we
gain on one side, but we lose on the other!

We use an alternative approach, learning from our PBSs.

Let Fc = {cn(x), n ≥ 0} be an o.n. basis in L2(R), and let ρf (x) and ρg(x) be two
Lebesgue-measurable functions such that, calling

fn(x) = cn(x) ρf (x), gn(x) = cn(x) ρg(x), (49)

we have fn(x) gm(x) ∈ L1(R), for all n,m ≥ 0.
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This implies that, despite of fn(x) or gn(x) being square-integrable or not, the form
〈fn, gm〉 is always well defined. With a slight abuse of language, we still call 〈fn, gm〉
the scalar product between fn(x) and gm(x). If we take ρf (x) = ρg(x)

−1
, then

Ff = {fn(x)} and Fg = {gn(x)} are biorthonormal:

〈fn, gm〉 = δn,m. (50)

We next define

V =
{
v(x) ∈ L2(R) : v(x)ρj(x) ∈ L2(R), j = f, g

}
(51)

If ρf (x) and ρg(x) are C∞ functions, then D(R) ⊆ V, which is therefore dense in
L2(R). In our condition (Ff ,Fg) are V-quasi bases,

〈v, w〉 =
∑
n≥0

〈v, fn〉〈gn, w〉 =
∑
n≥0

〈v, gn〉〈fn, w〉, (52)

for all v(x), w(x) ∈ V, so that they are both complete in V.

But, what about bi-coherent states?
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It is clear that the assumption on ‖fn‖ and ‖gn‖, ‖ϕ̃n‖ ≤ Aϕ rnϕMn(ϕ) and

‖Ψ̃n‖ ≤ AΨ rnΨMn(Ψ), make no sense now. This is because we can easily have
‖fn‖ =∞ or ‖gn‖ =∞.
However, if we take v ∈ V, and consider the following series

Sf,v(z) =
∑
n≥0

zn

αn!
〈fn, v〉, Sg,v(z) =

∑
n≥0

zn

αn!
〈gn, v〉, (53)

then, both these series converge, for all v ∈ V, inside Cα(0). Hence we can introduce

F (z)[v] = 〈f(z), v〉 = N(|z|)
∑
n≥0

zn

αn!
〈fn, v〉,

G(z)[v] = 〈g(z), v〉 = N(|z|)
∑
n≥0

zn

αn!
〈gn, v〉,

which can be used to define f(z) and g(z) in a weak sense (like in distribution theory).

We need a topology on V: we say that a sequence {vn(x)} in V is τV -convergent to a
certain v(x) ∈ L2(R) if {vn(x)} converges to v(x) in the norm ‖.‖, and if
{ρj(x) vn(x)}, j = f, g, are Cauchy sequences in ‖.‖ and converges to ρj(x)v(x).
Then v(x) ∈ V. Hence, V is closed in τV .
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Now, if we call V ′ the set of all the continuous functionals on V, and if we consider

V0 =
{
w(x) ∈ V : w(x) ∈ D(a†) ∩D(b), a†w(x), bw(x) ∈ V

}
,

Proposition:

1. F (z) and G(z) both belong to V ′.
2. for all v(x) ∈ V0 we have, for all z ∈ Cα(0),

〈v, af(z)〉 = z〈v, f(z)〉, 〈v, b†g(z)〉 = z〈v, g(z)〉. (54)

3. Suppose that a measure dλ(r) does exist such that∫ α

0
dλ(r)r2k =

(αk!)2

2π
, (55)

for all k ≥ 0. Then, putting z = reiθ and calling dν(z, z) = N(r)−2dλ(r)dθ, we have∫
Cα(0)

〈v, f(z)〉 〈g(z), w〉 dν(z, z) =

∫
Cα(0)

〈v, g(z)〉 〈f(z), w〉 dν(z, z) = 〈v, w〉 ,

(56)
for all v, w ∈ V.

F (z) and G(z) are weak bi-coherent states.
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Suppose now to apply these results to our PBSs, identifying ϕn(x), ρA(x), Ψn(x) and
ρB(x) respectively with fn(x), ρf (x), gn(x) and ρg(x).

Since A and B are pseudo-bosonic operators, αn =
√
n,and α =∞. Condition on the

measure dλ(r) reads therefore ∫ ∞
0

dλ(r)r2k =
k!

2π
,

which is solved by dλ(r) = 1
π
e−r

2
r dr. This means that the forms F (z)[v] and

G(z)[v] are well defined for all v ∈ V and for all z ∈ C.

Moreover, D(R) ⊆ V0 ⊆ V. Hence V0 and V are in L2(R):

we are indeed working with large sets!

Conclusion:– a distributional approach can be relevant not only for eigenstates of
number-like (non selfadjoint) operators, but also for bi-coherent states for some
physical system.
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