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Outline

• PT-symmetry in coupled waveguide system in Optics

• Nonlinear Coupler

• Soliton Steering in Nonlinear Coupler

• Troubles with Conventional Nonlinear Coupler

• Non-Hermitian Physics may be the saviour! 

• Soliton Steering in Nonlinear Coupler

• Ultrashort pulse steering dynamics in PT-coupler with Kerr-nonlinearity

• Short pulse steering dynamics in PT-coupler with Saturating nonlinearity

• Conclusions 
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Basics of QM

Described by Hamiltonian H

If Energy is experimentally measurable,
energy eigenvalues of the system are Real.
H is assumed to be Hermitian: 𝐻 = 𝐻†.

QM system
Otherwise, energy eigenvalues are Complex.
H is Non-Hermitian: 𝐻 ≠ 𝐻†.

► Even a Non-Hermitian Hamiltonian can exhibit REAL eigenvalue, if H
is PT-symmetric!
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PT-Symmetry in Quantum Mechanics
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PT SYMMETRY IN QUANTUM PHYSICS: FROM A 
MATHEMATICAL CURIOSITY TO OPTICAL EXPERIMENTS

QM Optics
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• PT-symmetric if  𝑉 𝑥 = 𝑉∗(−𝑥)
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• Optical Potential: 𝑉 𝑥 = 𝑘" 𝑛$ 𝑥 + 𝑖𝑛% 𝑥

• PT-symmetric if 𝑛$ 𝑥 = 𝑛$ −𝑥 and 

𝑛% 𝑥 = −𝑛% −𝑥
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COUPLED WAVEGUIDES
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Launch condition is important in PT Systems!
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THE EXPERIMENT
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NONLINEAR COUPLER
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Input pulses appear at different output ports depending on their peak powers



Coupler: Low power optical beams (CW )

Fraction of power transferred to the second
core plotted as a function of kz

18

Power transfer to the second core occurs in a periodic fashion. The maximum power
is transferred at distances such that  , where m is an integer. The
shortest distance at which maximum power is transferred to the second core
for the first time is called the coupling length and is given by 



Coupler: Linear Pulse Switching

For with 

When 
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Nonlinear Coupler: Quasi-CW Switching
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Nonlinear Coupler: Nonlinear Switching
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Troubles with Conventional Nonlinear Coupler
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Extremely High power levels are needed for nonlinear switching in Fiber Couplers



Non-Hermitian Physics may be the saviour! 
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Different configurations of  PT-symmetric coupler: (a) Type-1, (b) Type-2 coupler.
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Some notable works on Nonlinear PT-
Coupler
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PT-Nonlinear Coupler

29



Steering Dynamics of Solitons: Type 1
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Steering Dynamics of Solitons: Type 2
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Soliton Propagation Dynamics: Conventional Coupler 
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Soliton Propagation Dynamics: 
PT Nonlinear Coupler Type 1
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Soliton Propagation Dynamics: 
PT Nonlinear Coupler Type 2 

34



Suggested Typical Parameters for 
Experimental Realizations
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Dark Soliton Steering
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Steering Dynamics of Dark Solitons
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TO SUM UP:
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Ultrashort Soliton Steering 
in PT-Nonlinear Coupler

The pulse propagation in a realistic PT-symmetric fiber-coupler is
represented by generalised coupled NLSE:

• u,v = field envelopes in the bar and cross channel
• δ! = Normalised GVD and higher-order dispersion parameters
• s = Self-steepening parameter
• R(τ) = Nonlinear response function
• κ = Normalized linear coupling coefficient
• Γ = Gain/Loss
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Which Model to Choose? 
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Effect of Intrapulse Raman Scattering (IRS)

𝑡( = 10fs
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Effect of Intrapulse Raman Scattering (IRS)
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Effect of Higher-order dispersion
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𝛿) = 0.3444
𝛿* = 0.0447
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Saturating nonlinearity (SNL)

• Critical power of switching (𝑃"#) depends on the input peak power.
• For Silica, 𝑛$ value is relatively low, thus input pulse with high peak power

is required for switching from one channel to the other.
• Use of materials such as Semiconductor doped Silica and organic polymers

with high 𝑛$ value can decrease the requirement of high input power.

Kerr-Nonlinear medium
∆𝑛%& = 𝑛$|𝐸|$

Saturating Nonlinear 
medium
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Mathematical Model
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+𝑓( 𝑣 $)𝑣 + 𝜅𝑢 = −𝑖𝛤𝑣 (2)

• 𝑓( 𝑢 $) = saturating nonlinearity function = ( &

*-. ( & (F-Model)
• Eqs. (1) and (2) are solved Numerically using SSFT method.
• All the results shown are for the Type-1 PT-symmetric coupler in the

Unbroken regime with 𝜅(0.1) > Γ(0.05).
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The pulse propagation in a PT-symmetric fiber-coupler with saturating
nonlinearity is represented by coupled NLSE:



Coupling length = 
π/2,

κ=0.1

Conventional
coupler

Type 1 PT-coupler Type 2 PT-coupler
(not shown here)

Kerr Nonlinearity 0.83 0.38 Incomplete
Saturating 
Nonlinearity

1.11 0.30 3.65,16.77

PT with Saturating Nonlinearity wins!
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Soliton evolution inside Type-1 and Type-2 PT
coupler
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Κ=0.1,Γ=0.05



Future Directions and Goals
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} To understand the physics of  Nonlinear coupler more 
deeply

} To come up with practical schemes for facilitating  
experiments

} To go beyond Fiber Coupler
} Soliton Steering and Switching in Quantum Regime? 
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THANK YOU!


