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Basics of QM

Described by Hamiltonian H

Otherwise, energy eigenvalues are Complex.

H 1s Non-Hermitian: H # H "f“

>

[f Energy 1s experimentally measurable,
energy eigenvalues of the system are Real.

H 1s assumed to be Hermitian: H = H "f”

» Even a Non-Hermitian Hamiltonian can exhibit REAL eigenvalue, it H

1s P T-symmetric!



PT-Symmetry in Quantum Mechanics
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The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and
bounded below. Replacing this condition by the weaker condition of P77 symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. These PT
symmetric theories may be viewed as analytic continuations of conventional theories from real to

complex phase space. This paper describes the unusual classical and quantum properties of these
theories. [S0031-9007(98)06371-6]
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PT SYMMETRY IN QUANTUM PHYSICS: FROM A
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Observation of parity-time symmetry in optics
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One of the fundamental axioms of quantum mechanics is (¢ > &5,), the spectrum ceases to be real and starts to involve
associated with the Hermiticity of physical observables'. In  imaginary eigenvalues. This signifies the onset of a spontaneous PT
the case of the Hamiltonian operator, this requirement not symmetry-breakin §n that is, a “phase transition’ from the exact to
only implies real eigenenergies but also guarantees probability broken-PT phase’

. 0P h2 62¢ aE(x z) 1 092
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Optical Potential: V(x) = ko(nR (x) + in; (x))

*  PT-symmetricif V(x) = V*(—x)
*  PT-symmetric if ng(x) = ng(—x) and

ny(x) = —ny(=x)
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COUPLED WAVEGUIDES
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Launch condition is important in PT Systems!

¢ Conventional system

S«

PT-symmetric system below threshold

& &

PT-symmetric system above threshold




Pump beam
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Figure 2 | Experimental set-up. An Art laser beam (wavelength 514.5 nm) is coupled into the arms of the structure fabricated on a photorefractive
LiNbO3 substrate. An amplitude mask blocks the pump beam from entering channel 2, thus enabling two-wave mixing gain only in channel 1. A CCD
camerais used to monitor both the intensity and phases at the output.

i) Optical pump TR
WU e A\ ~
::::::::5:7 = 0'6( \ ’\Z'g*'i .
Soap s
s oaft \vf’ %'-m_ (a) Front (top) and top (bottom) view of the PT-symmetric coupled system fabricated in LiNbOs. (b)
0 s Measured (normalized) intensities |, at the output facet during optical pumping as a function of
1 ®e ! "'5© o time t(normalized by the time constant t for build-up of gain). The upper/lower panel shows the situation
. as when light is coupled into channel 1 and 2, respectively. Clearly, with increasing gain, the system
" = 06 { - behaves in a nonreciprocal manner. Blue dashed lines mark the symmetry-breaking threshold. Above
S 3. 04 that, light is predominantly guided in channel 1—thus experiencing gain—and the intensity in both
> Y o2 \/ ? channels depends solely on the magnitude of the gain. The power evolution is also depicted (last
o l column) at various times.
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NONLINEAR COUPLER

Input pulses appear at different output ports depending on their peak powers
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Coupler: Low power optical beams (CW )

dA

1 i = .
(]—Z = IK'12A2+160A1
dA,

2 = iK,A; —10,A
(]Z 21531 a*)

Power Fraction

P,(L) = Pycos*(xL)

Normalized Distance
Fraction of power transferred to the second B(L)= F, Sinz(K‘L)

core plotted as a function of kz

Power transfer to the second core occurs in a periodic fashion. The maximum power
is transferred at distances such that K,z = mm/2 , where 2 1s an integer. The
shortest distance at which maximum power 1s transferred to the second core

for the first time is called the conpling length and is given by 1. = 1r/(2x,)



Coupler: Linear Pulse Switching

5 -+ 5 o712 zKAz.
2z T o a2 -

For LKL, with Lp= T02 /1B,

K(w) ~ K+ (0 — ay) K + %(a) — a)O)2K2,
A (z,T) = L [A)(T — k12)e™* + Ay(T + Kkyz)e ™07
Ay(z.T) = 3 [Ag(T — ky2)€™" — Ay(T + Ky2)e ™07
When k; =0

A(2.T) = Ag(T)cos(kp2).  Ag(2.T) = Ag(T) sin(xp2)



Nonlinear Coupler: Quasi-CW Switching
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Nonlinear Coupler: Nonlinear Switching

Ou s 9d%u )
1% il u“‘u+Kv=0
dv s

iz 2 v+ Ku=0




sty




Troubles with Conventional Nonlinear Coupler
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Extremely High power levels are needed for nonlinear switching in Fiber Couplers



Non-Hermitian Physics may be the saviour!
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Tallormg P7 -symmetric soliton switch
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In1 Out 1 In1 Out 1

Gain u
In2 Loss Out 2 In2 %n/f'—\ Out 2

(@ (b)

Ditferent configurations of PT-symmetric coupler: (a) Type-1, (b) Type-2 couplet.



Some notable works on Nonlinear PT-
Coupler
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PT-Nonlinear Coupler

Tailoring P7 -symmetric soliton switch
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(c) Steering dynamics of solitons in P7 -symmetric dimers

(a) Type 1 P7 -symmetric coupler (b) Type 2 PT-symmetric coupler



Steering Dynamics of Solitons: Type 1
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Steering Dynamics of Solitons: Type 2
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type 1 PT dimer with device length of 27



Soliton Propagation Dynamics: Conventional Coupler




Soliton Propagation Dynamics:
PT Nonlinear Coupler Type 1

Inl Gain Ot 1
In2 Loss e 2

type 1 PT symmetry configuration




Soliton Propagation Dynamics:
PT Nonlinear Coupler Type 2
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Suggested Typical Parameters for
Experimental Realizations

B, = =20 ps?/km
A = 1550 nm

TO - SOfS
LD — 12.5 cm

y =10 W=1/km

P, =856 W




Dark Soliton Steering
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Steering Dynamics of Dark Solitons

(b))

conventional coupler,

0 1
(d)
Type 1 PT-symmetric couplers.
5 6
i Tvpe 2 PT -symmetric couplers
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TO SUM UP:

We demonstrate steering dynamics of dark solitons in a parity-time (PT)-symmetric nonlinear directional cou-
pler (NLDC) in the presence of third-order dispersion (TOD) and intermodal dispersion (IMD). A complete switch
with an excellent efficiency at a very low critical power, even lower compared to the bright soliton switching, has
been observed. The numerical results show that both TOD and IMD have no effect on soliton steering in P T -
symmetric couplers with coupling length 7 /2. But, as we increase the coupling length to 277, IMD shows marginal
effects for dark soliton steering in P77 -symmetric couplers, while TOD shows no impact. Additionally, we have
also studied the phase-controlled switching in PT -symmetric couplers with two different coupling lengths and
demonstrated its advantagc over the powcr-controlled one. ©2020 Optical Society of America

https://doi.org/10.1364/JOSAB.402606




Ultrashort Soliton Steering
in PT-Nonlinear Coupler

The pulse propagation in a realistic PT-symmetric fiber-coupler 1is
represented by generalised coupled NLSE:

z— + i On (z—)nu —ilu+ (1 + is(%) (u(f, T) /_; R(t — 7)|u(€, T')2dr’> + kv =0,
+ Z O (z—) v+ ilv + (1 + z'sa%> <v(§, T) /_; R(t — (¢, T’)|2d7’) + ku = 0.

n=2

* u,v = field envelopes in the bar and cross channel

* 0p = Normalised GVD and higher-order dispersion parameters
* s = Self-steepening parameter

* R(7t) = Nonlinear response function

* K = Normalized linear coupling coetficient
* I' = Gain/Loss



Which Model to Choose?
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Effect of Intrapulse Raman Scattering (IRS)
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Effect of Intrapulse Raman Scattering (IRS)
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Effect of Higher-order dispersion
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= Unperturbed

- |RS intagral form only
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Saturating nonlinearity (SNL)

Saturating Nonlinear

Kerr-Nonlinear medium medluml 2
. 2 _ n, E

Anyp = ny|E| Anyyp = 7

14+1E2

Isat

« Critical power of switching (P,.) depends on the input peak power.

 Tor Silica, n, value is relatively low, thus input pulse with high peak power
1s required for switching from one channel to the other.

« Use of materials such as Semiconductor doped Silica and organic polymers
with high n, value can decrease the requirement of high input power.



Mathematical Model

The pulse propagation in a PT-symmetric fiber-coupler with saturating
nonlinearity 1s represented by coupled NLSE:

10%u

ou, 1 2 .y

[ E+262+f(|u| u + kv =1ilu (1)
10%v 2 _

_E_I_ Ea—2+f(|17| )U + ku = —il'v (2)

lu|?

TrsluP (F-Model)

* Eqgs. (1) and (2) are solved Numerically using SSFT method.

* All the results shown are for the Type-1 PT-symmetric coupler in the
Unbroken regime with k(0.1) > I'(0.05).

 f (|u|2) = saturating nonlinearity function =
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P'T with Saturating Nonlinearity wins!
Coupling length = Conventional Type 1 PT-coupler  Type 2 PT-coupler
/2, coupler (not shown here)
k=0.1
Kerr Nonlinearity 0.83 0.38 Incomplete
Saturating 1.11 0.30 3.65,16.77
Nonlinearity




Soliton evolution inside Type-1 and Type-2 PT
coupler

15




Future Directions and Goals

» 'To understand the physics of Nonlinear coupler more
deeply

» To come up with practical schemes for facilitating
experiments

» To go beyond Fiber Coupler

» Soliton Steering and Switching in Quantum Regime?






