EXCEPTIONAL POINTS

IN CLOSED QUANTUM SYSTEMS

international conference "Non-Hermitian Physics", March 22nd, 2021, 14:50-15:30 CET, online

Miloslav Znojil

Nuclear Physics Institute CAS, 25068 Řež, Czech Republic, University of Hradec Králové, Czech Republic, and Institute of System Science, Durban University of Technology, South Africa znojil@ujf.cas.cz, http://gemma.ujf.cas.cz/~znojil/

thanks to organizers!

PLAN OF THE TALK

I. exceptional points (EPs) in physics
II. EPs in quasi-Hermitian theory
III. illustrative harmonic oscillator example
IV. finite-dimensional benchmark Hamiltonians
V. numerical localizations of EPs
VI. trajectories of access to EPs
I. exceptional points (EPs) in physics

sample: energy eigenvalues $E=E_{n}(\gamma)$ merge at $\gamma=\gamma^{(E P)}$
traditionally, the EPs only encountered
.

in MATH of perturbation expansions

$$
\begin{gathered}
\psi_{n}(g, x)=\psi_{n}\left(g_{0}, x\right)+\left(g-g_{0}\right) \psi_{n}^{(1)}(g, x)+\left(g-g_{0}\right)^{2} \psi_{n}^{(2)}(g, x)+\ldots \\
E_{n}(g)=E_{n}\left(g_{0}\right)+\left(g-g_{0}\right) E_{n}^{(1)}(g)+\left(g-g_{0}\right)^{2} E_{n}^{(2)}(g)+\ldots
\end{gathered}
$$

which converge
iff there are no EPs inside circle $\left|g-g_{0}\right|<R$
in 1966, EPs were introduced by Tosio Kato:

in PHYSICS,

in CLASSICAL OPTICS

EPs are known as
NON-HERMITIAN DEGENERACIES

see review
Czechosl. J. Phys., Vol. 54 (2004), No. 10, p. 1039. by Michael Berry
ubiquitous EPs
helped to explain the

CLASSICAL and QUANTUM CHAOS and
PHASE TRANSITIONS
see review
Czechosl. J. Phys., Vol. 54 (2004), No. 10, p. 1091.
by W. Dieter Heiss from Stellenbosch University

NEW CHALLENGES: EPs might emerge, e.g., in cosmology:

how should one quantize the Universe shortly after BIG BANG?
let us invert the arrow of time:

and return to a small vicinity of BIG BANG
in classical picture there exists a Big Bang singularity at $t=0$:
e.g., in six-grid-point non-quantum model of the Universe we have a collapse:

CW: after quantization, Big Bang smeared to Big Bounce

$=$ avoided grid point crossing $=$ a genuine quantum phenomenon
= the EP degeneracy shifted to a complex, "unphysical" time
II. EPs in quasi-Hermitian theory

in unitary (a.k.a. "closed") systems

some

QUANTUM PHASE TRANSITIONS

may be realized
as a fall into singularity called

EXCEPTIONAL POINT

BASIC CLASSIFICATION of quantum systems

a. "open" (effective models)

$$
\underline{\text { energies }}=\text { complex, } \underline{\text { phenomena }}=\text { resonances, } \ldots
$$

$\underline{\text { theory }}=$ in a Feshbach's subspace
b. "closed" (complete description)
$\underline{\text { energies }}=$ real, $\underline{\text { phenomena }}=$ unitary evolution,\ldots
theory can be QUASI-HERMITIAN
quasi-Hermitian quantum theory
= LESS RESTRICTIVE
\exists the proof that the Big-Bounce is not unavoidable: see
[] MZ, Quantization of Big Bang in crypto- Hermitian Heisenberg picture, chapter in this book:

Springer Proceedings in Physics 184

Fabio Bagarello
Roberto Passante
Camillo Trapani Editors
Non-Hermitian
Hamiltonians
in Quantum
Physics
Selected Contributions from the 15th
International Conference on Non-Hermitian
Hamiltonians in Quantum Physics, Palermo,
Italy, 18-23 May 2015

A. the basics of formalism

NON-HERMITIAN H treated as HIDDENLY HERMITIAN

yielding an
amended Schrödinger picture
father founder: Freeman Dyson:

\Longrightarrow in such a quasi-Hermitian, "3HS" quantum theory one needs
(1) non-Hermitian Hamiltonian H given in "working space" $\mathcal{K}=\mathcal{H}^{(\text {False })}$
(2) (a suitable) Hermitizing inner-product metric $\Theta=\Omega^{\dagger} \Omega$,

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle_{\mathcal{H}}=\left\langle\psi_{1}\right| \Theta\left|\psi_{2}\right\rangle_{\mathcal{K}}
$$

(3) (a hidden) Hermiticity of all observables Λ defined in $\mathcal{H}=\mathcal{H}^{(\text {Physical })}$,

$$
\Lambda^{\dagger} \Theta=\Theta \Lambda
$$

the state of art in 2015:

B. two exactly solvable MATRIX illustrations
(1) Wheeler-DeWitt equation of canonical quantum gravity two-by-two matrix

$$
H=H^{(W D W)}(\tau)=\left[\begin{array}{cc}
0 & \exp 2 \tau \\
1 & 0
\end{array}\right] \neq H^{\dagger}
$$

inner product $\langle\cdot \mid \Theta \cdot\rangle$ inside $\mathcal{D}=(-\infty, \infty), E=E_{ \pm}= \pm \exp \tau$; the reconstruction of \mathcal{H} is explicit and exhaustive,

$$
\begin{gathered}
H=\Theta^{-1} H^{\dagger} \Theta, \quad \Theta=\Omega^{\dagger} \Omega \neq I \\
\Theta=\Theta^{(W D W)}(\tau, \beta)=\left[\begin{array}{cc}
\exp (-\tau) & \beta \\
\beta & \exp \tau
\end{array}\right]=\Theta^{\dagger}, \quad|\beta|<1 .
\end{gathered}
$$

(2) Bose-Hubbard model (Graefe et al, 2008),
the two-by-two matrix example

$$
H=H_{(B H)}^{(2)}(\gamma)=\left[\begin{array}{cc}
-i \gamma & 1 \\
1 & i \gamma
\end{array}\right]
$$

admits the inner product $\langle\cdot \mid \Theta \cdot\rangle$ inside $\mathcal{D}=(-1,1)$
supports the two boundary-point EPs $\gamma^{(E P)}= \pm 1$

$$
\Theta^{(2)}(\beta)=I^{(2)}+\left[\begin{array}{cc}
0 & \beta+i \gamma \\
\beta-i \gamma & 0
\end{array}\right], \quad-\sqrt{1-\gamma^{2}}<\beta<\sqrt{1-\gamma^{2}}
$$

C. whenever $N=\infty$, much more care is needed

Dieudonne 1960: early words of warning

the warnings were nontrivial:

in 2015, for example, David Krejcirik et al claimed that the imaginary cubic oscillator, "the fons et origo of PT-symmetric quantum mechanics",

exhibits spectral instability:
"complex eigenvalues may appear very far from the unperturbed real ones despite the norm of the perturbation is arbitrarily small"

IMPORTANT: Krejcirik et al worked in open-system regime
$=$ in auxiliary \mathcal{K} rather than in \mathcal{H}
puzzle resolved: see its closed-system reinterpretation in
[] MZ and František Rŭžička,
"Nonlinearity of perturbations in PT-symmetric quantum mechanics."
J. Phys. Conf. Ser. 1194 (2019) 012120

IN CONTRAST, we are working here in closed-system regime:
(B) flowchart

step $(\mathrm{A}):$
one picks up an unphysical but
user-friendly Hilbert space \mathcal{K} and a non-Hermitian H with real spectrum,
step (B):
one constructs an eligible metric
$\Theta=\Omega^{\dagger} \Omega \quad$ (s. t. $H^{\dagger} \Theta=\Theta H$), i.e.,
physical Hilbert space \mathcal{H}.

III. illustrative harmonic oscillator example
spiked $\mathcal{P} \mathcal{T}$-symmetric ODE (i.e., $N=\infty$)

$$
\left[-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+r^{2}\right] \psi_{n}^{(\sigma)}(\ell, r)=E_{n}^{(\sigma)}(\ell) \psi_{n}^{(\sigma)}(\ell, r), \quad n=0,1,2, \ldots, \sigma= \pm 1
$$

"coordinate" $r=x-\mathrm{i} \epsilon$ is complex, $x \in \mathbb{R}$, any parameter $\ell \in \mathbb{R}$ the model is exactly solvable (MZ, 1999):

$$
E_{n}^{(\sigma)}(\ell)=4 n-2 \sigma \alpha+2, \quad \alpha=\ell+1 / 2
$$

(abbreviate $G=\ell(\ell+1)$ and P.T.O.)
all EPs are ∞-times degenerate, every $\mathrm{EP}=\oplus E P 2$

CONSEQUENCE: Hamiltonian becomes block-diagonal at EPs: e.g.,

$$
\mathfrak{H}^{(H O)}(-1 / 4)=\left(\begin{array}{cc|cc|cc}
2 & 1 & 0 & 0 & 0 & \ldots \\
0 & 2 & 0 & 0 & 0 & \ldots \\
\hline 0 & 0 & 6 & 1 & 0 & \ldots \\
0 & 0 & 0 & 6 & 0 & \ldots \\
\hline 0 & 0 & 0 & 0 & 10 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)+\text { corrections }
$$

\exists a constructive proof of mathematical 3 HS consistence:
[] MZ, Sci. Reports 10(1) (2020) 18523,
including
\Rightarrow an exhaustive menu of correct physical Hilbert spaces, \Rightarrow accounting for all non-uniqueness of assignment $H \rightarrow \Theta(H)$

CONCLUSION: the HO system is truly exceptional because
(1) the phase transitions involve, simultaneously, all levels
(2) the HO domain $\mathcal{D}^{[H O]}$ of unitarity is "punched", multiply connected, with EPs $\in \partial \mathcal{D}^{[H O]}$ excluded,

$$
\mathcal{D}^{[H O]}=\left(-\frac{1}{4}, \frac{3}{4}\right) \cup\left(\frac{3}{4}, \frac{15}{4}\right) \cup\left(\frac{15}{4}, \frac{35}{4}\right) \cup \ldots
$$

\aleph recommended additional reading:
[] MZ, "Supersymmetry and exceptional points."
SYMMETRY 12, (2020) 892
DOI: 10.3390/sym12060892 (arXiv:2005.04508)
IV. finite-dimensional Hamiltonians with EPs
A. real-matrix models
[] MZ, "Quantum phase transitions mediated by clustered non-Hermitian degeneracies." Physical Review E (Vol. 103, No. 3, 032120)
DOI:10.1103/PhysRevE.103.032120
(arXiv:2102.12272).
model:,N-truncated E-shifted tridiagonal anharmonic oscillator (TAO)

$$
H_{(\mathrm{TAO})}^{(N)}(\lambda)=\left[\begin{array}{ccccc}
1-N & b_{1}(\lambda) & 0 & \ldots & 0 \\
-b_{1}(\lambda) & 3-N & \ddots & \ddots & \vdots \\
0 & -b_{2}(\lambda) & \ddots & b_{2}(\lambda) & 0 \\
\vdots & \ddots & \ddots & N-3 & b_{1}(\lambda) \\
0 & \cdots & 0 & -b_{1}(\lambda) & N-1
\end{array}\right]
$$

antisymmetry $=$ maximal non-Hermiticity
$\mathcal{P} \mathcal{T}$-symmetry $=$ symmetry with respect to the second diagonal
non-diagonalizable EPN limits

$$
\begin{gathered}
H_{(\mathrm{TAO})}^{(2)}\left(\lambda^{(E P 2)}\right)=\left[\begin{array}{cc}
-1 & 1 \\
-1 & 1
\end{array}\right], \quad H_{(\mathrm{TAO})}^{(3)}\left(\lambda^{(E P 3)}\right)=\left[\begin{array}{ccc}
-2 & \sqrt{2} & 0 \\
-\sqrt{2} & 0 & \sqrt{2} \\
0 & -\sqrt{2} & 2
\end{array}\right], \\
H_{(\mathrm{TAO})}^{(4)}\left(\lambda^{(E P 4)}\right)=\left[\begin{array}{cccc}
-3 & \sqrt{3} & 0 & 0 \\
-\sqrt{3} & -1 & 2 & 0 \\
0 & -2 & 1 & \sqrt{3} \\
0 & 0 & -\sqrt{3} & 3
\end{array}\right],
\end{gathered}
$$

etc

EPN degeneracy (non-clustered)

eigenvalues

$$
\lim _{\lambda \rightarrow \lambda(E P N)} E_{n}(\lambda)=\eta, \quad n=1,2, \ldots, N
$$

eigenvectors

$$
\lim _{\lambda \rightarrow \lambda^{(E P N)}}\left|\psi_{n}^{(N)}(\lambda)\right\rangle=\left|\chi^{(N)}(\lambda)\right\rangle, \quad, \quad n=1,2, \ldots, N
$$

canonical (Jordan) form of a non-diagonalizable matrix

$$
J^{(\mathbb{N})}(\eta)=\left[\begin{array}{ccccc}
\eta & 1 & 0 & \ldots & 0 \\
0 & \eta & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 0 & \eta & 1 \\
0 & \ldots & 0 & 0 & \eta
\end{array}\right]
$$

Schrödinger-like equation

$$
H_{(T A O)}^{(N)}\left(\lambda^{(E P N)}\right) Q^{(N)}=Q^{(N)} J^{(N)}(\eta)
$$

transition matrices $Q^{(N)}$ available in closed form

B. clustered non-Hermitian degeneracies

subscripts n decomposed into K non-overlapping subsets S_{k},

$$
\lim _{\lambda \rightarrow \lambda^{(E P N)}}\left|\psi_{n_{k}}^{(N)}(\lambda)\right\rangle=\left|\chi_{k}^{(N)}(\lambda)\right\rangle, \quad n_{k} \in S_{k}, \quad k=1,2, \ldots, K
$$

general anharmonic oscillator (GAO) Hamiltonians

$$
H_{(\mathrm{GAO})}^{(N)}(\lambda)=\left[\begin{array}{cccccc}
1-N & b_{1}(\lambda) & c_{1}(\lambda) & d_{1}(\lambda) & \ldots & \omega_{1}(\lambda) \\
-b_{1}(\lambda) & 3-N & b_{2}(\lambda) & c_{2}(\lambda) & \ddots & \vdots \\
-c_{1}(\lambda) & \ddots & \ddots & \ddots & \ddots & d_{1}(\lambda) \\
-d_{1}(\lambda) & \ddots & -b_{3}(\lambda) & N-5 & b_{2}(\lambda) & c_{1}(\lambda) \\
\vdots & \ddots & -c_{2}(\lambda) & -b_{2}(\lambda) & N-3 & b_{1}(\lambda) \\
-\omega_{1}(\lambda) & \ldots & -d_{1}(\lambda) & -c_{1}(\lambda) & -b_{1}(\lambda) & N-1
\end{array}\right]
$$

general Schrödinger-like equation

$$
H_{(G A O)}^{(N)}\left(\lambda^{(E P N)}\right) Q^{(N)}=Q^{(N)} \mathcal{J}^{[\mathcal{R}(N)]}(\eta)
$$

where $\mathcal{R}(N)$ marks one of partitions of $N=N_{1}+N_{2}+\ldots+N_{K}$
such that $N_{1} \geq N_{2} \geq \ldots \geq N_{K} \geq 2$ (OEIS A002865)
$K=$ clusterization index alias geometric multiplicity

$$
\mathcal{J}^{[\mathcal{R}(N)]}(\eta)=J^{\left(N_{1}\right)}(\eta) \oplus J^{\left(N_{2}\right)}(\eta) \oplus \ldots \oplus J^{\left(N_{K}\right)}(\eta)
$$

EXAMPLES:

unique ($K=1$) partitions $\mathcal{R}(2)=2$ and $\mathcal{R}(3)=3$, nontriviality: $\mathcal{R}_{1}(4)=4$ (i.e., $K=1$) or $\mathcal{R}_{2}(4)=2+2$ (i.e., $K=2$)

$$
\mathcal{J}^{[2+2]}(\eta)=\left[\begin{array}{cc|cc}
\eta & 1 & 0 & 0 \\
0 & \eta & 0 & 0 \\
\hline 0 & 0 & \eta & 1 \\
0 & 0 & 0 & \eta
\end{array}\right], \quad \mathcal{J}^{[3+2]}(\eta)=\left[\begin{array}{ccc|cc}
\eta & 1 & 0 & 0 & 0 \\
0 & \eta & 1 & 0 & 0 \\
0 & 0 & \eta & 0 & 0 \\
\hline 0 & 0 & 0 & \eta & 1 \\
0 & 0 & 0 & 0 & \eta
\end{array}\right]
$$

etc.
C. pentadiagonal Hamiltonians
one-parametric model

$$
H^{(\text {toy })}(\lambda)=\left[\begin{array}{ccccccc}
1 & 0 & \sqrt{3} g & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & \sqrt{2} g & 0 & 0 & 0 \\
-\sqrt{3} g & 0 & 5 & 0 & 2 g & 0 & 0 \\
0 & -\sqrt{2} g & 0 & 7 & 0 & \sqrt{2} g & 0 \\
0 & 0 & -2 g & 0 & 9 & 0 & \sqrt{3} g \\
0 & 0 & 0 & -\sqrt{2} g & 0 & 11 & 0 \\
0 & 0 & 0 & 0 & -\sqrt{3} g & 0 & 13
\end{array}\right] .
$$

Schrödinger equation

$$
H^{(\text {toy })}(g)\left|\psi_{n}(g)\right\rangle=E_{n}(g)\left|\psi_{n}(g)\right\rangle
$$

solvable exactly,

$$
\begin{gathered}
E_{0}(g)=7, \quad E_{ \pm 1}(g)=7 \pm \sqrt{4-g^{2}} \\
E_{ \pm 2}(g)=7 \pm 2 \sqrt{4-g^{2}}, \quad E_{ \pm 3}(g)=7 \pm 3 \sqrt{4-g^{2}} .
\end{gathered}
$$

strong-coupling dynamical regime
redefine $g=\widetilde{g}(\kappa)=2\left(1-\kappa^{2}\right)$

$$
\begin{gathered}
\widetilde{E}_{0}(\kappa)=7, \quad \widetilde{E}_{ \pm 1}(\kappa)=7 \pm 2 \sqrt{-\kappa^{4}+2 \kappa^{2}} \sim 7 \pm 2 \sqrt{2} \kappa+\mathcal{O}\left(\kappa^{3}\right) \\
\widetilde{E}_{ \pm 2}(\kappa)=7 \pm 4 \sqrt{-\kappa^{4}+2 \kappa^{2}}, \quad \widetilde{E}_{ \pm 3}(\kappa)=7 \pm 6 \sqrt{-\kappa^{4}+2 \kappa^{2}}
\end{gathered}
$$

EPN limit, $N=7$

$$
g \rightarrow g^{(E P 7)}=2
$$

$$
H^{(\text {toy })}\left(\lambda^{(E P 7)}\right)=H_{(E P 7)}^{[\text {odd }]} \oplus H_{(E P 7)}^{[\text {[even }]}
$$

$$
H_{(E P 7)}^{[o d d]}=\left[\begin{array}{cccc}
1 & 2 \sqrt{3} & 0 & 0 \\
-2 \sqrt{3} & 5 & 4 & 0 \\
0 & -4 & 9 & 2 \sqrt{3} \\
0 & 0 & -2 \sqrt{3} & 13
\end{array}\right], \quad H_{(E P 7)}^{[e v e n]}=\left[\begin{array}{ccc}
3 & 2 \sqrt{2} & 0 \\
-2 \sqrt{2} & 7 & 2 \sqrt{2} \\
0 & -2 \sqrt{2} & 11
\end{array}\right]
$$

canonical form of the Hamiltonian

$$
\mathcal{J}^{(4+3)}(\eta)=\left[\begin{array}{cccc|ccc}
\eta & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \eta & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \eta & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \eta & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \eta & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \eta & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & \eta
\end{array}\right]=\left[\begin{array}{llll}
\eta & 1 & 0 & 0 \\
0 & \eta & 1 & 0 \\
0 & 0 & \eta & 1 \\
0 & 0 & 0 & \eta
\end{array}\right] \oplus\left[\begin{array}{ccc}
\eta & 1 & 0 \\
0 & \eta & 1 \\
0 & 0 & \eta
\end{array}\right]
$$

the role of unperturbed basis is relegated to

transition-matrix

$$
Q^{(\text {toy })}=\left[\begin{array}{ccccccc}
-48 & 24 & -6 & 1 & 0 & 0 & 0 \\
0 & 8 & -4 & 1 & 8 & -4 & 1 \\
-48 \sqrt{3} & 16 \sqrt{3} & -2 \sqrt{3} & 0 & 0 & 0 & 0 \\
0 & 8 \sqrt{2} & -2 \sqrt{2} & 0 & 8 \sqrt{2} & -2 \sqrt{2} & 0 \\
-48 \sqrt{3} & 8 \sqrt{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 & 8 & 0 & 0 \\
-48 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

$H_{(\text {pent.special })}^{(N)}(\lambda)=\left[\begin{array}{c|c|c|c|c|c}1-N & 0 & c_{1}(\lambda) & 0 & \ldots & 0 \\ \hline 0 & 3-N & 0 & \ddots & \ddots & \vdots \\ \hline-c_{1}(\lambda) & 0 & \ddots & \ddots & c_{2}(\lambda) & 0 \\ \hline 0 & \ddots & \ddots & N-5 & 0 & c_{1}(\lambda) \\ \hline \vdots & \ddots & -c_{2}(\lambda) & 0 & N-3 & 0 \\ \hline 0 & \ldots & 0 & -c_{1}(\lambda) & 0 & N-1\end{array}\right]$
abbreviated as $1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{N}-1$
direct-sum decomposed

$$
\begin{gathered}
\hline 1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{~N}-1=1-\mathrm{N}, 5-\mathrm{N}, 9-\mathrm{N}, \ldots \\
H_{\text {(component one) }}^{(N)}(\lambda)=\left[\begin{array}{cccc}
1-N & c_{1}(\lambda) & 0 & \ldots \\
-c_{1}(\lambda) & 5-N & c_{3}(\lambda) & \ddots \\
0 & -c_{3}(\lambda) & 9-N, 11-\mathrm{N}, \ldots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right] \\
H_{(\text {component two) }}^{(N)}(\lambda)=\left[\begin{array}{cccc}
3-N & c_{2}(\lambda) & 0 & \cdots \\
-c_{2}(\lambda) & 7-N & c_{4}(\lambda) & \ddots \\
0 & -c_{4}(\lambda) & 11-N & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right]
\end{gathered}
$$

Lemma 1 At the even matrix dimension $N=2 J$, the decomposition of the pentadiagonal sparse-matrix model into its tridiagonal TAO components only supports the two $K=1$ EP limits with different respective energies $\eta= \pm 1$. At any one of them, the EP confluence is incomplete, involving just J levels.

Proof. $1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{N}-1=1-2 \mathrm{~J}, 3-2 \mathrm{~J}, \ldots, 2 \mathrm{~J}-1$ has central interval $(-1,1)$ which is too short; the resulting direct sum will be centrally asymmetric

$$
1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{~N}-1=1-2 \mathrm{~J}, 5-2 \mathrm{~J}, \ldots, 2 \mathrm{~J}-3 \oplus 3-2 \mathrm{~J}, 7-2 \mathrm{~J}, \ldots, 2 \mathrm{~J}-1 \text {, }
$$

Lemma 2 In the EPN limit the energies of the tridiagonal-matrix components the direct sum coincide at odd $N=2 J+1$. The EPN limit has the geometric multiplicity two.

Proof. We have
$1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{N}-1=-2 \mathrm{~J}, 2-2 \mathrm{~J}, \ldots, 2 \mathrm{~J}=-2 \mathrm{~J}, 4-2 \mathrm{~J}, \ldots, 2 \mathrm{~J} \oplus 2-2 \mathrm{~J}, 6-2 \mathrm{~J}, \ldots, 2 \mathrm{~J}-2$
and $\eta_{ \pm}=0$ due to the central symmetry. The $K=2$ clusterization takes place.

general pentadiagonal models

$$
H_{\text {(pentadiagonal) }}^{(N)}(\lambda)=\left[\begin{array}{cccccc}
1-N & b_{1}(\lambda) & c_{1}(\lambda) & 0 & \ldots & 0 \\
-b_{1}(\lambda) & 3-N & b_{2}(\lambda) & \ddots & \ddots & \vdots \\
-c_{1}(\lambda) & -b_{2}(\lambda) & \ddots & \ddots & c_{2}(\lambda) & 0 \\
0 & \ddots & \ddots & N-5 & b_{2}(\lambda) & c_{1}(\lambda) \\
\vdots & \ddots & -c_{2}(\lambda) & -b_{2}(\lambda) & N-3 & b_{1}(\lambda) \\
0 & \cdots & 0 & -c_{1}(\lambda) & -b_{1}(\lambda) & N-1
\end{array}\right]
$$

with small $b_{n}(\lambda)$ are tractable by perturbation techniques,

$$
H_{(\text {pentadiagonal })}^{(N)}(\lambda)=H_{(\text {pent.special })}^{(N)}(\lambda)+\text { small perturbations }
$$

D. general-matrix GAO Hamiltonians

TAO-component separation from GAO:

$$
H_{\text {(spec.parti.) }}^{(N)}(\lambda)=\left[\begin{array}{c|cccc|c}
1-N & 0 & 0 & \ldots & 0 & \omega_{1}(\lambda) \\
\hline 0 & 3-N & b_{2}(\lambda) & \ldots & z_{2}(\lambda) & 0 \\
0 & -b_{2}(\lambda) & \ddots & \ddots & \vdots & 0 \\
\vdots & \vdots & \ddots & N-5 & b_{2}(\lambda) & \vdots \\
0 & -z_{2}(\lambda) & \ldots & -b_{2}(\lambda) & N-3 & 0 \\
\hline-\omega_{1}(\lambda) & 0 & 0 & \ldots & 0 & N-1
\end{array}\right]
$$

decomposition $1-\mathrm{N}, 3-\mathrm{N}, \ldots, \mathrm{N}-1=1-\mathrm{N}, \mathrm{N}-1 \oplus 3-\mathrm{N}, 5-\mathrm{N}, \ldots, \mathrm{N}-3$,

$$
H_{(\text {spec.partit.) }}^{(N)}(\lambda)=\left[(N-1) \times H_{\text {(toy) }}^{(2)}(\lambda)\right] \oplus H_{(\mathrm{GAO})}^{(N-2)}(\lambda)
$$

the complete TAO decompositions:

$$
\begin{aligned}
& H_{(G A O)}^{(\mathrm{N})}\left(\lambda^{(E P N)}\right)=\widetilde{H^{\left(N_{1}\right)}}\left(\lambda^{(E P N)}\right) \oplus \widetilde{H^{\left(N_{2}\right)}}\left(\lambda^{(E P N)}\right) \oplus \ldots \oplus \widetilde{H^{\left(N_{K}\right)}}\left(\lambda^{(E P N)}\right) \\
& \widetilde{H^{\left(N_{j}\right)}}\left(\lambda^{(E P N)}\right)=c_{j} H_{(T A O)}^{\left(N_{j}\right)}\left(\lambda^{(E P N)}\right), \quad j=1,2, \ldots, K \\
& H_{(G A O)}^{(\mathrm{N})}(\lambda)=\widetilde{H^{\left(N_{1}\right)}}(\lambda) \oplus \widetilde{H^{\left(N_{2}\right)}}(\lambda) \oplus \ldots \oplus \widetilde{H^{\left(N_{K}\right)}}(\lambda)+\text { small corrections } \\
& \text { weights }=\lambda \text {-independent, }
\end{aligned}
$$

$$
\widetilde{H^{\left(N_{j}\right)}}(\lambda)=c_{j} H_{(T A O)}^{\left(N_{j}\right)}(\lambda), \quad j=1,2, \ldots, K
$$

equidistant spectrum required in the $\lambda \rightarrow 0$ limit:
mimicking the truncated harmonic oscillator:
the sample of the alternative TAO-direct-sum $K>1$ decompositions:

GAO label					$-5,-3,-1,1,3,5$
	$\mathcal{R}(6)$	j	N_{j}	c_{j}	TAO_{j} label
2	$4+2$	1	4	1	$--3,-1,1,3$
		2	2	5	$\boxed{-5,5}$
3	$2+2+2$	1	2	1	$-1,1$
		2	2	3	$\boxed{-3,3}$
		3	2	5	$-5,5$

systematics of the TAO components

$$
\left(1-N_{j}\right) c_{j},\left(3-N_{j}\right) c_{j}, \ldots,\left(N_{j}-3\right) c_{j},\left(N_{j}-1\right) c_{j} .
$$

$N=2$: no anomalous degeneracy
$H_{(T A O)}^{(2)}\left(\lambda^{(E P N)}\right)$, boxed symbol $-1,1$
the number $a(N)$ of eligible scenarios is one, $a(2)=1$
the geometric multiplicity of the spectrum is $K=1$.
$N=3$: no anomalous degeneracy, either
$a(3)=1$ and $K=1$, symbol $-2,0,2$
the simplest $K=2$ anomaly: $N=4, a(4)=2$

$$
\begin{gathered}
\boxed{-3,-1,1,3}=\boxed{-1,1} \oplus \boxed{-3,3}, \quad K=2 . \\
H_{(K=2)}^{(4)}\left(\lambda^{(E P 4)}\right)=\left[\begin{array}{rrrr}
-3 & 0 & 0 & 3 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
-3 & 0 & 0 & 3
\end{array}\right] .
\end{gathered}
$$

$N=5, a(5)=3$, two $K=2$ options: nine- and pentadiagonal
(a) $\boxed{-4,-2,0,2,4}=-2,0,2 \oplus \boxed{-4,4}$ and (b) $\boxed{-4,-2,0,2,4}=\boxed{-4,0,4} \oplus \boxed{-2,2}$

$$
\begin{gathered}
H_{(K=2, a)}^{(5)}\left(\lambda^{(E P 5)}\right)=\left[\begin{array}{rrrrr}
-4 & 0 & 0 & 0 & 4 \\
0 & -2 & \sqrt{2} & 0 & 0 \\
0 & -\sqrt{2} & 0 & \sqrt{2} & 0 \\
0 & 0 & -\sqrt{2} & 2 & 0 \\
-4 & 0 & 0 & 0 & 4
\end{array}\right] \\
H_{(K=2, b)}^{(5)}\left(\lambda^{(E P 5)}\right)=\left[\begin{array}{crrrc}
-4 & 0 & 2 \sqrt{2} & 0 & 0 \\
0 & -2 & 0 & 2 & 0 \\
-2 \sqrt{2} & 0 & 0 & 0 & 2 \sqrt{2} \\
0 & -2 & 0 & 2 & 0 \\
0 & 0 & -2 \sqrt{2} & 0 & 4
\end{array}\right] .
\end{gathered}
$$

$N=6, a(6)=3$ and the first occurrence of $K=3$

$$
\begin{aligned}
& \begin{array}{l}
--5,-3,-1,1,3,5=-3,-1,1,3 \oplus--5,5 \\
\text { and }--5,-3,-1,1,3,5=-1,1 \oplus--3,3
\end{array} \oplus-5,5: ~ l \\
& H_{(K=3)}^{(6)}\left(\lambda^{(E P 6)}\right)=\left[\begin{array}{rrrrrr}
-5 & 0 & 0 & 0 & 0 & 5 \\
0 & -3 & 0 & 0 & 3 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & -3 & 0 & 0 & 3 & 0 \\
-5 & 0 & 0 & 0 & 0 & 5
\end{array}\right] .
\end{aligned}
$$

$N=7: a(7)=6$

$$
\begin{aligned}
& -6,-4,-2,0,2,4,6=-4,-2,0,2,4 \oplus-6,6, \quad K=2, \\
& -\boxed{-6,-4,-2,0,2,4,6}=-2,0,2 \oplus \boxed{-4,4} \oplus \boxed{-6,6}, \quad K=3, \\
& -6,-4,-2,0,2,4,6=-4,0,4 \oplus-2,2 \oplus-6,6, \quad K=3, \\
& -6,-4,-2,0,2,4,6=-4,0,4 \oplus-6,-2,2,6, \quad K=2 \text {, } \\
& -6,-4,-2,0,2,4,6=-6,0,6 \oplus-2,2 \oplus-4,4, \quad K=3 .
\end{aligned}
$$

decrease of $a(N)$ at $N=8$
$a(8)=4$

$$
\begin{gathered}
-7,-5,-3,-1,1,3,5,7=-5,-3,-1,1,3,5 \oplus-7,7, \quad K=2, \\
-7,-5,-3,-1,1,3,5,7=-3,-1,1,3 \oplus-5,5 \oplus-7,7, \quad K=3, \\
-7,-5,-3,-1,1,3,5,7=-1,1 \oplus-3,3 \oplus-5,5, \oplus-7,7, \quad K=4 .
\end{gathered}
$$

Discussion

- last example is typical: fifteen-diagonal but very sparse matrix $H_{(K=4)}^{(8)}\left(\lambda^{(E P 8)}\right)$ with bi-diagonal structure.
- conjecture: a triviality of the geometric multiplicity $K=1$ correlated with (explained by) the tridiagonality of Hamiltonian matrices
- summary: we constructed the GAO $K>1$ benchmark models via the TAO-direct-sum ansatzs.

thanks for your attention

