A family of rationally extended real and PT symmetric complex potentials

Rajesh Kumar Yadav Department of Physics S. K. M. University, Dumka-India

Non-Hermitian Physics 2020 : March 22-26, 2021
ICTS-Bangalore (India)

Outline

- Introduction
- Exceptional Orthogonal Polynomials
- Rationally extended potentials
- Real potentials
- PT symmetric complex potentials
- Summary

Introduction

- Discovery of two new orthogonal polynomials (namely the exceptional Laguerre and the Jacobi polynomials) lead to the extension of known solvable potentials (both real and PT symmetric) in the form of

$$
\begin{equation*}
V_{e x t}(x)=V_{\text {con }}(x)+V_{r a t}(x) \tag{1}
\end{equation*}
$$

where $V_{\text {con }}(x)$ is a known conventional potential and $V_{\text {rat }}(x)$ is the corresponding rational term i.e.

$$
\begin{equation*}
V_{r a t}(x)=\frac{p(x)}{q(x)} \tag{2}
\end{equation*}
$$

- The energy $E_{\text {ext }, n}=E_{c o n, n}$ (iso-spectral) but the wave functions are completely different and obtained in the form of exceptional polynomials.

Exceptional Orthogonal Polynomials

- Similar to the usual polynomials, these polynomials ${ }^{1}$ also satisfy a second order differential equation of the form

$$
\begin{equation*}
y^{\prime \prime}(x)+P_{m}(x) y^{\prime}(x)+Q_{n, m}(x) y=0 ; \quad n, m=0,1,2, \ldots \tag{3}
\end{equation*}
$$

with m-dependent function $P_{m}(x)$ and m, n dependent $Q_{n, m}(x)$.

- For $m=0$, the function $P_{0}(x) \rightarrow P(x)$ and $Q_{n, 0}(x) \rightarrow Q_{n}(x)$.

The corresponding solutions will be usual orthogonal polynomials.

- For $m \geq 1$, the solutions are known as $X_{1}, X_{2} \ldots X_{m}$ exceptional orthogonal polynomials (EOPs).

[^0]
Exceptional Laguerre Polynomials

For this case:

$$
\begin{equation*}
P_{m}(x)=\frac{1}{x}\left((\alpha+1-x)-2 x \frac{L_{m-1}^{(\alpha)}(-x)}{L_{m}^{(\alpha-1)}(-x)}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n, m}(x)=\frac{1}{x}\left(n-2 \alpha \frac{L_{m-1}^{(\alpha)}(-x)}{L_{m}^{(\alpha-1)}(-x)}\right) \tag{5}
\end{equation*}
$$

Exceptional Laguerre Polynomials

Solutions:

$$
\begin{align*}
y & \rightarrow \hat{L}_{n, m}^{(\alpha)}(x) \\
& =L_{m}^{(\alpha)}(-x) L_{n-m}^{(\alpha-1)}(x)+L_{m}^{(\alpha-1)}(-x) L_{n-m-1}^{(\alpha)}(x) \tag{6}
\end{align*}
$$

where $L_{n}^{(\alpha)}(x) \rightarrow$ usual Laguerre polynomial.

Exceptional Laguerre Polynomials

Weight factor and norm:

$$
\begin{gather*}
\hat{W}_{m}^{(\alpha)}(x)=\frac{x^{\alpha} e^{-x}}{\left(L_{m}^{(\alpha-1)}(-x)\right)^{2}} \tag{7}\\
\int_{0}^{\infty}\left(\hat{L}_{n, m}^{(\alpha)}(x)\right)^{2} \hat{W}_{m}^{(\alpha)}(x) d x=\frac{(\alpha+n) \Gamma(\alpha+n-m)}{(n-m)!} \tag{8}
\end{gather*}
$$

Exceptional Jacobi Polynomials

- Here

$$
\begin{align*}
P_{m}(x) & =\left((\alpha-\beta-m+1) \frac{P_{m-1}^{(-\alpha, \beta)}(x)}{P_{m}^{(-\alpha-1, \beta-1)}(x)}\right. \\
& \left.-\left(\frac{\alpha+1}{1-x}\right)+\left(\frac{\beta+1}{1+x}\right)\right) \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
Q_{n, m}(x) & =\frac{1}{\left(1-x^{2}\right)}\left(\beta(\alpha-\beta-m+1) \frac{(1-x) P_{m-1}^{(-\alpha, \beta)}(x)}{P_{m}^{(-\alpha-1, \beta-1)}(x)}\right. \\
& +m(\alpha-\beta-m+1)+(n-m)(\alpha+\beta+n-m+1)) \tag{10}
\end{align*}
$$

Exceptional Jacobi Polynomials

Solutions:

$$
\begin{align*}
y & \rightarrow \hat{P}_{n, m}^{(\alpha, \beta)}(x) \\
& =(-1)^{m}\left[\frac{(1+\alpha+\beta+j)}{2(1+\alpha+j)}(x-1) P_{m}^{(-\alpha-1, \beta-1)}(x)\right. \\
& \times P_{j-1}^{(\alpha+2, \beta)}(x)+\frac{(1+\alpha-m)}{(\alpha+1+j)} P_{m}^{(-2-\alpha, \beta)}(x) \\
& \left.\times \quad P_{j}^{(\alpha+1, \beta-1)}(x)\right] ; \quad j=n-m \geq 0 . \tag{11}
\end{align*}
$$

where $P_{n}^{(\alpha, \beta)}(x) \rightarrow$ usual Jacobi polynomial.

Exceptional Jacobi Polynomials

Weight factor and Norm:

$$
\begin{gather*}
\hat{W}_{m}^{\alpha, \beta}=\frac{(1-x)^{\alpha}(1+x)^{\beta}}{\left[P_{m}^{(-\alpha-1, \beta-1)}(x)\right]^{2}} \tag{12}\\
\int_{-1}^{1}\left[\hat{P}_{n, m}^{(\alpha, \beta)}(x)\right]^{2} \hat{W}_{m}^{\alpha, \beta} d x=C_{n, m}^{(\alpha, \beta)}, \tag{13}
\end{gather*}
$$

with

$$
C_{n, m}^{(\alpha, \beta)}=\frac{2^{\alpha+\beta+1}(1+\alpha+n-2 m)(\beta+n) \Gamma(\alpha+2+n-m) \Gamma(\beta+n-m)}{(n-m)!(\alpha+1+n-m)^{2}(\alpha+\beta+2 n-2 m+1) \Gamma(\alpha+\beta+n-m+1)}
$$

Rationally extended potentials

- These potentials are obtained by different approaches such as SUSY or Pre-potential approach, Darböux Backlünd transformation (DBT), Group theoretic or potential algebra approach, Point canonical transformation (PCT) approach etc.
- Rational extension of most of the SIP potentials are available.
- Solutions of some of the extended potentials are not in the exact form of EOPs (e.g. Morse, Rosen-Morse, Coulomb etc).
- Extension of some of the real potentials are not possible (e.g Real Scarf-II), but PT symmetric extensions are possible.

Extended Real potentials

- Radial oscillator ${ }^{2}$: The X_{1} case

$$
\begin{align*}
V_{e x t}(r) & =V_{c o n}(r)+\frac{p(r)}{q(r)} \\
& =\frac{1}{4} \omega^{2} r^{2}+\frac{I(I+1)}{r^{2}}+\frac{4 \omega}{\omega r^{2}+2 I+1}-\frac{8 \omega(2 I+1)}{\left(\omega r^{2}+2 I+1\right)^{2}} \tag{14}
\end{align*}
$$

- The wavefunction

$$
\begin{equation*}
\psi_{n, e x t}(r) \propto \frac{r^{\ell+1} \exp \left(-\frac{\omega r^{2}}{4}\right)}{L_{1}^{\left(\ell-\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)} \hat{L}_{n+1}^{\left(\ell+\frac{1}{2}\right)}\left(\frac{\omega r^{2}}{2}\right), \tag{15}
\end{equation*}
$$

${ }^{2}$ C. Quesne, J.Phys.A 41 (2008) 392001; B. Bagchi, C. Quesne and R. Roychoudhary, Pramana J. Phys. 73(2009) 337.

Extended Real potentials

- Radial oscillator: The X_{m} case 3

$$
\begin{align*}
& \begin{aligned}
V_{e x t}^{m}(r) & =V_{c o n}(r)-\omega^{2} r^{2} \frac{L_{m-2}^{\left(\ell+\frac{3}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)}{L_{m}^{\left(\ell-\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)} \\
& +\omega\left(\omega r^{2}+2 \ell-1\right) \frac{L_{m-1}^{\left(\ell+\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)}{L_{m}^{\left(\ell-\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)} \\
& +2 \omega^{2} r^{2}\left(\frac{L_{m-1}^{\left(\ell+\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)}{L_{m}^{\left(\ell-\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)}\right)^{2}-2 m \omega
\end{aligned} \\
& \text { and } \quad \psi_{n, e x t}^{m}(r) \propto \frac{r^{\ell+1} \exp \left(-\frac{\omega r^{2}}{4}\right)}{L_{m}^{\left(\ell-\frac{1}{2}\right)}\left(-\frac{\omega r^{2}}{2}\right)} \hat{L}_{n+m}^{\left(\ell+\frac{1}{2}\right)}\left(\frac{\omega r^{2}}{2}\right)
\end{align*}
$$

${ }^{3}$ S. Odake and R. Sasaki, Phys. Lett. B, 684.

Extended Real potentials

- Scarf-I: The X_{m} case

$$
\begin{align*}
V_{\text {con }}(x)= & {\left[(A-1) A+B^{2}\right] \sec ^{2} x-B(2 A-1) \sec x \tan x-A^{2} } \\
& -\pi / 2<x<\pi / 2 ; \quad 0<B<A-1,(18) \\
V_{m, r a t}(x) & =(2 B-m-1)[2 A-1+(-2 B+1) \sin x] \\
& \times\left(\frac{P_{m-1}^{(-\alpha, \beta)}(\sin x)}{P_{m}^{(-\alpha-1, \beta-1)}(\sin x)}\right)+\frac{(-2 B-m+1)^{2}}{2} \cos ^{2} x \\
& \times\left(\frac{P_{m-1}^{(-\alpha, \beta)}(\sin x)}{P_{m}^{(-\alpha-1, \beta-1)}(\sin x)}\right)^{2}-2 m(-2 B-m-1), \\
\psi_{n, e x t}^{m}(x) \propto & \frac{(1-\sin x)^{\frac{(A-B)}{2}}(1+\sin x)^{\frac{(A+B)}{2}}}{P_{m}^{(-\alpha-1, \beta-1)}(\sin x)} \hat{P}_{n+m}^{(\alpha, \beta)}(\sin x) \tag{19}
\end{align*}
$$

Extended Real potentials

- Generalized Pöschl-Teller: The X_{m} case

$$
\begin{align*}
& V_{c o n}(x)=\left[(A+1) A+B^{2}\right] \operatorname{cosech}^{2} x-B(2 A+1) \operatorname{cosech} x \operatorname{coth} x+A^{2} \\
& 0 \leq x \leq \infty, B>A+1> \\
& V_{m, r a t}(x)=-(2 B-m+1)[2 A+1-(2 B+1) \cosh x] \\
& \times\left(\frac{P_{m-1}^{(-\alpha, \beta)}(\cosh x)}{P_{m}^{(-\alpha-1, \beta-1)}(\cosh x)}\right)+\frac{(2 B-m+1)^{2} \sinh ^{2} x}{2} \\
& \times\left(\frac{P_{m-1}^{(-\alpha, \beta)}(\cosh x)}{P_{m}^{(-\alpha-1, \beta-1)}(\cosh x)}\right)^{2}+2 m(-2 B-m-1) \\
& \psi_{n, e x t}^{m}(x) \propto \frac{(\cosh x-1)^{\frac{(B-A)}{2}}(\cosh x+1)^{-\frac{(B+A)}{2}}}{P_{m}^{(-\alpha-1, \beta-1)}(\cosh x)} \hat{P}_{n+m}^{(\alpha, \beta)}(\cosh x) \tag{20}
\end{align*}
$$

Extended PT symmetric complex potentials

- PT symmetric Scarf II potential

The well known complex and PT symmetric conventional Scarf II potential is given by

$$
V_{\text {con }}(x)=\left(-B^{2}-A(A+1)\right) \operatorname{sech}^{2} x+i B(2 A+1) \operatorname{sech} x \tanh x ; A>
$$

The bound state energy eigenvalues and the eigenfunctions are

$$
\begin{equation*}
E_{n}=-(A-n)^{2} ; \quad n=0,1,2 \ldots n_{\max }<A \tag{22}
\end{equation*}
$$

$\psi_{n}(x) \propto(\operatorname{sech} x)^{A} \exp \left(-i B \tan ^{-1}(\sinh x)\right) P_{n}^{(\alpha, \beta)}(i \sinh x)$,
with $-\infty<x<\infty$.

Extended PT symmetric complex potentials

- PT symmetric Scarf II potential: Scattering sates

$$
\begin{align*}
t_{\text {left }}^{\text {con }}(k) & =\frac{\Gamma(-A-i k) \Gamma(1+A-i k) \Gamma\left(\frac{1}{2}-B-i k\right) \Gamma\left(\frac{1}{2}+B-i k\right)}{\Gamma(-i k) \Gamma(1+i k) \Gamma^{2}\left(\frac{1}{2}-i k\right)} \\
r_{\text {left }}^{\text {con }}(k) & =t_{\text {left }}^{\text {con }}(k) \times i\left[\frac{\cos \pi A \sin \pi B}{\cosh \pi k}+\frac{\sin \pi A \cos \pi B}{\sinh \pi k}\right] \tag{24}
\end{align*}
$$

Extended PT symmetric complex potentials

- PT symmetric Scarf II potential: Scattering sates

$$
\begin{gather*}
t_{\text {right }}^{\text {usual }}(k)=t_{\text {left }}^{\text {usual }}(k) \\
r_{\text {right }}^{u s u a l}(k)=t_{\text {right }}^{\text {usual }}(k) \times i\left[-\frac{\cos (\pi A) \sin (\pi B)}{\cosh (\pi k)}+\frac{\cos (\pi B) \sin (\pi A)}{\sinh (\pi k)}\right] \tag{26}
\end{gather*}
$$

Extended PT symmetric complex potentials

- The extended PT symmetric Scarf-II (The X_{m} case)(B. Midya and B. Roy, J. Phys. A 46 (2013) 175201.) is given by

$$
\begin{aligned}
V_{m, e x t}(x) & =V_{c o n}(x)+2 m(2 B-m+1)+(2 B-m+1) \\
& \times[(-2 A-1)+(2 B+1) i \sinh x] \frac{P_{m-1}^{(-\alpha, \beta)}(i \sinh x)}{P_{m}^{(-\alpha-1, \beta-1)}(i \sinh x)} \\
& -\frac{(2 B-m+1)^{2} \cosh ^{2} x}{2}\left(\frac{P_{m-1}^{(-\alpha, \beta)}(i \sinh x)}{P_{m}^{(-\alpha-1, \beta-1)}(i \sinh x)}\right)^{2}(27)
\end{aligned}
$$

The bound state energy eigenvalues are same but the eigenfunctions are different i.e

$$
\begin{equation*}
\psi_{n, m}(x) \propto \frac{(\operatorname{sech} x)^{A} \exp \left\{-i B \tan ^{-1}(\sinh x)\right\}}{P_{m}^{(-\alpha-1, \beta-1)}(i \sinh x)} \hat{P}_{n+m}^{(\alpha, \beta)}(i \sinh x) \tag{28}
\end{equation*}
$$

Extended PT symmetric complex potentials

- The reflection and transmission amplitudes (obviously m dependent) are (N. Kumari, R. K. Yadav, A. Khare, B. Bagchi, B. P. Mandal, Annals of Physics 373 (2016) 163.)

$$
\begin{aligned}
& t_{\text {left }}(k, m)=t_{\text {left }}^{\text {usual }}(k) \times\left(\frac{\left[B^{2}-\left(i k-\frac{1}{2}\right)^{2}\right]+\left(B-i k+\frac{1}{2}\right)(1-m)}{\left[B^{2}-\left(i k+\frac{1}{2}\right)^{2}\right]+\left(B+i k+\frac{1}{2}\right)(1-m)}\right) \\
& r_{\text {left }}(k, m)=r_{\text {left }}^{\text {usual }}(k) \times\left(\frac{\left[B^{2}-\left(i k-\frac{1}{2}\right)^{2}\right]+\left(B-i k+\frac{1}{2}\right)(1-m)}{\left[B^{2}-\left(i k+\frac{1}{2}\right)^{2}\right]+\left(B+i k+\frac{1}{2}\right)(1-m)}\right)
\end{aligned}
$$

Similarly, $t_{\text {right }}(k, m)$ and $r_{\text {right }}(k, m)$ for the X_{m} case are

$$
\begin{gathered}
t_{\text {right }}(k, m)=t_{\text {efft }}(k, m) \\
r_{\text {right }}(k, m)=r_{\text {right }}^{\text {usual }}(k) \times\left(\frac{\left[B^{2}-\left(i k-\frac{1}{2}\right)^{2}\right]+\left(B-i k+\frac{1}{2}\right)(1-m)}{\left[B^{2}-\left(i k+\frac{1}{2}\right)^{2}\right]+\left(B+i k+\frac{1}{2}\right)(1-m)}\right)
\end{gathered}
$$

Three-body problems

- Calogero ${ }^{4}$ in 1969 solved a problem of three particles interacting pairwise by inverse square potential in addition to the harmonic potential $(\hbar=2 m=1)$

$$
\begin{equation*}
H=-\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}+V_{C} \tag{31}
\end{equation*}
$$

with

$$
\begin{gather*}
V_{C}=V_{H}+V_{l} \tag{32}\\
V_{H}=\frac{\omega^{2}}{8} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2} ; \quad V_{l}=g \sum_{i<j}\left(x_{i}-x_{j}\right)^{-2} . \tag{33}
\end{gather*}
$$

${ }^{4}$ F. Calogero, J. Math. Phys. 10 (1969) 2191.

Three-body problem

- Solved by defining

$$
\begin{equation*}
\rho^{2}=\frac{1}{3}\left[\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-x_{1}\right)^{2}\right], \tag{34}
\end{equation*}
$$

and using the Jacobi co-ordinates

$$
R=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right),
$$

with

$$
\begin{equation*}
x=\frac{\left(x_{1}-x_{2}\right)}{\sqrt{2}}, \quad y=\frac{\left(x_{1}+x_{2}-2 x_{3}\right)}{\sqrt{6}} . \tag{35}
\end{equation*}
$$

- In polar co-ordinates

$$
\begin{equation*}
x=\rho \sin \phi, \quad y=\rho \cos \phi ; \quad 0 \leq \rho \leq \infty, \quad 0 \leq \phi \leq 2 \pi \tag{36}
\end{equation*}
$$

Three-body problem

- We can easily show

$$
\begin{gather*}
\left(x_{1}-x_{2}\right)=\sqrt{2} \rho \sin \phi \\
\left(x_{2}-x_{3}\right)=\sqrt{2} \rho \sin (\phi+2 \pi / 3) \\
\left(x_{3}-x_{1}\right)=\sqrt{2} \rho \sin (\phi+4 \pi / 3) \tag{37}
\end{gather*}
$$

- Thus, the Schrödinger equation $H \Psi=E \Psi$ is now solvable by separation of variables as

$$
\begin{equation*}
\Psi(\rho, \phi)=R(\rho) \Phi(\phi) \tag{38}
\end{equation*}
$$

with
$R(\rho) \longrightarrow f(\rho) F(g(\rho)) \quad$ and $\quad \Phi(\phi) \longrightarrow f(\phi) F(g(\phi))$.

The Calogero-Wolfes type 3-body problems (contd...)

- In 1974 Wolfes 5 showed that a three-body problem

$$
\begin{equation*}
V_{W}(g)=g\left[\left(x_{1}+x_{2}-2 x_{3}\right)^{-2}+\left(x_{2}+x_{3}-2 x_{1}\right)^{-2}+\left(x_{3}+x_{1}-2 x_{2}\right)^{-2}\right] \tag{39}
\end{equation*}
$$

is also solvable when it is added to V_{C} with or without the inverse square potential V_{l}.

- Later on, Khare and Bhaduri ${ }^{6}$ defined different Wolfes type of interaction terms $V_{\text {int }}$ and obtained the exact solutions of a number of three body potentials in one dimension.
- Thus, we have the solution of

$$
V=V_{C}+V_{W}+V_{i n t}
$$

[^1]
The Calogero-Wolfes type 3-body problems (contd...)

- Examples of $V_{i n t}$:

$$
\begin{aligned}
& \text { (a) } \frac{3 f_{1}}{2 \sqrt{2} \rho}\left[\frac{\left(x_{1}-x_{2}\right)}{\left(x_{1}+x_{2}-2 x_{3}\right)^{2}}+\text { c.p }\right] . \\
& \text { (b) } \frac{-f_{1}}{(\sqrt{6}) \rho}\left[\frac{\left(x_{1}+x_{2}-2 x_{3}\right)}{\left(x_{1}-x_{2}\right)^{2}}+c . p\right] . \\
& \text { (c) } \frac{\sqrt{3}}{2 \rho^{2}} f_{1}\left[\frac{\left(x_{1}+x_{2}-2 x_{3}\right)}{\left(x_{1}-x_{2}\right)}+\text { c.p }\right] ; \quad\left(f_{1} \rightarrow i f_{1}\right) \\
& \text { (d) } \frac{-3 \sqrt{3}}{2 \rho^{2}} f_{1}\left[\frac{\left(x_{1}-x_{2}\right)}{\left(x_{1}+x_{2}-2 x_{3}\right)}+c . p\right] ; \quad\left(f_{1} \rightarrow i f_{1}\right)
\end{aligned}
$$

Note: The solutions of $V=V_{C}+V_{W}+V_{i n t}$ are obtained in the form of product of classical Laguerre and Jacobi orthogonal polynomials.

Rationally extended 3-body problems

- We extended the potential of the form ${ }^{7}$

$$
\begin{equation*}
V=V_{C}+V_{W}(g)+V_{i n t}+V_{r a t}^{(1)}(\mathrm{x})+V_{r a t}^{(2)}(\mathrm{x}) \tag{40}
\end{equation*}
$$

- The exact forms of $V_{r a t}^{(1)}(\mathrm{x})$ and $V_{r a t}^{(2)}(\mathrm{x})$ are

$$
\begin{gather*}
V_{r a t}^{(1)}(\mathbf{x})=\frac{a \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}+c_{1}}{\left(b \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}+c_{2}\right)^{2}}, \quad \text { and } \tag{41}\\
V_{r a t}^{(2)}(\mathbf{x})=\frac{\delta}{\rho^{2}}\left[\frac{k_{1}}{\left(k_{2}+k_{3} \xi(\mathbf{x})\right)}-\frac{k_{4}}{\left(k_{2}+k_{3} \xi(\mathbf{x})\right)^{2}}\right] . \tag{42}
\end{gather*}
$$

[^2]
RE 3-body potentials (contd...)

- Different forms ${ }^{8}$ of ξ :

> (1.a) $\frac{\sqrt{2}}{\rho^{2}}\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)$
> (1.b) $-\frac{3}{2 \sqrt{2} \rho}\left(\sum_{i<j}\left(x_{i}-x_{j}\right)^{-1}\right)^{-1}$
(2.a) $\frac{3}{2 \rho^{2}}\left[\left(x_{1}+x_{2}-2 x_{3}\right)^{-1}+c . p\right]^{-2}$
(2.b) $\left(\frac{2}{3 \sqrt{6}}\right)^{2} \frac{1}{\rho^{6}}\left[\left(x_{1}+x_{2}-2 x_{3}\right)\left(x_{2}+x_{3}-2 x_{1}\right)\left(x_{1}+x_{3}-2 x_{3}\right)\right]^{2}$
${ }^{8}$ N. Kumari, R.K.Yadav, A. Khare, B.P.Mandal, Annals of Physics, 385 (2017) 57.

RE 3-body potentials (contd...)

(3.a) $\frac{3}{\sqrt{6}} \frac{1}{\rho}\left[\left(x_{1}+x_{2}-2 x_{3}\right)^{-1}+c . p\right]^{-1}$.
(3.b) $-\frac{4}{6 \sqrt{6} \rho^{3}}\left(x_{1}+x_{2}-2 x_{3}\right)\left(x_{2}+x_{3}-2 x_{1}\right)\left(x_{1}+x_{3}-2 x_{2}\right)$.
(4) $\frac{1}{\sqrt{3}}\left[\frac{\left(x_{1}-x_{2}\right)}{\left(x_{1}+x_{2}-2 x_{3}\right)}+c . p\right]$

RE 3-body complex potential

- Let us consider a complex potential V of the form ${ }^{9}$

$$
\begin{aligned}
V & =V_{H}+V_{l}+V_{i n t}+V_{r a t}^{(1)}+V_{r a t}^{(2)} \\
& =\frac{\omega^{2}}{8} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}+g \sum_{i<j}\left(x_{i}-x_{j}\right)^{-2} \\
& +\frac{\sqrt{3}}{2 \rho^{2}} i f_{1}\left[\frac{\left(x_{1}+x_{2}-2 x_{3}\right)}{\left(x_{1}-x_{2}\right)}+\mathrm{c.p}\right]+V_{r a t}^{(1)}+V_{r a t}^{(2)} .(45)
\end{aligned}
$$

- Keeping $V_{r a t}^{(1)}$ same but different $V_{r a t}^{(2)}$ by defining new form of function ξ i.e.

$$
\begin{equation*}
\xi=\frac{1}{3 \sqrt{3}}\left(\frac{x_{1}+x_{2}-2 x_{3}}{x_{1}-x_{2}}+\text { c.p }\right), \tag{46}
\end{equation*}
$$

${ }^{9}$ N. Kumari, R.K.Yadav, A. Khare, B.P.Mandal, Annals of Physics, 385 (2017) 57.

RE 3-body complex potential (contd....)

- We get, the ϕ-dependent potential

$$
\begin{equation*}
V_{e x t}(\phi)=V_{C o n}(\phi)+V_{r a t}^{(2)}(\phi) \tag{47}
\end{equation*}
$$

with the equivalent conventional $P T$ symmetric trigonometric Eckart potential

$$
\begin{equation*}
V_{\operatorname{con}}(\phi)=\frac{9}{2} g \operatorname{cosec}^{2}(3 \phi)+\frac{9}{2} i f_{1} \cot (3 \phi) \tag{48}
\end{equation*}
$$

and the rational term

$$
\begin{equation*}
V_{r a t}^{(2)}(\phi)=\delta\left[\frac{k_{1}}{\left(k_{2}+k_{3} \cot (3 \phi)\right)}+\frac{k_{4}}{\left(k_{2}+k_{3} \cot (3 \phi)\right)^{2}}\right] . \tag{49}
\end{equation*}
$$

RE 3-body complex potential (contd....)

- The potential $V(\phi)$ is equivalent to the rationally extended $P T$ symmetric ${ }^{10}$ complex trigonometric Eckart potential ${ }^{11}$

$$
\begin{align*}
V(\phi)= & A(A-3) \operatorname{cosec}^{2}(3 \phi)+2 i B \cot (3 \phi)+ \\
& \frac{9}{A^{2}(A-3)^{2}}\left[\frac{-4 i B\left[A^{2}(A-3)^{2}-B^{2}\right]}{(i B+A(A-3) \cot (3 \phi))}\right. \\
+ & \left.\frac{2\left[A^{2}(A-3)^{2}-B^{2}\right]^{2}}{(i B+A(A-3) \cot (3 \phi))^{2}}\right] \tag{50}
\end{align*}
$$

[^3]
RE 3-body complex potential (contd....)

- The associated wavefunction $\Phi_{\ell}(\phi)$ is given by

$$
\begin{equation*}
\Phi_{\ell}(\phi) \propto \frac{(z-1)^{\frac{\alpha_{\ell}}{2}}(z+1)^{\frac{\beta_{\ell}}{2}}}{(i B+A(A-3) \cot (3 \phi))} y_{\ell}^{(A / 3, B / 3)}(z) \tag{51}
\end{equation*}
$$

with $z=i \xi=i \cot (3 \phi)$.

- with the polynomial function

$$
\begin{align*}
y_{\ell}^{(A / 3, B / 3)}(z) & =\frac{2\left(\ell+\alpha_{\ell}\right)\left(\ell+\beta_{\ell}\right)}{\left(2 \ell+\alpha_{\ell}+\beta_{\ell}\right)} q_{1}^{(A / 3, B / 3)}(z) P_{\ell-1}^{\left(\alpha_{\ell}, \beta_{\ell}\right)}(z) \\
& -\frac{2\left(1+\alpha_{1}\right)\left(1+\beta_{1}\right)}{\left(2+\alpha_{1}+\beta_{1}\right)} P_{\ell}^{\left(\alpha_{\ell}, \beta_{\ell}\right)}(z) \tag{52}
\end{align*}
$$

- where $q_{1}^{(A / 3, B / 3)}(z)=P_{p=1}^{\left(\alpha_{p}, \beta_{p}\right)}$.

RE 3-body complex potential (contd....)

- The parameters α_{ℓ} and β_{ℓ} in terms of A and B are given by

$$
\begin{align*}
& \alpha_{\ell}=-(A / 3-1+\ell)+\frac{B / 9}{(A / 3-1+\ell)} \\
& \beta_{\ell}=-(A / 3-1+\ell)-\frac{B / 9}{(A / 3-1+\ell)} \tag{53}
\end{align*}
$$

- The energy eigenvalues are same as given by Eq. (??), where λ_{l} is given by

$$
\begin{equation*}
\lambda_{\ell}^{2}=9\left(\ell+a-\frac{1}{2}\right)-\frac{9 f_{1}^{2}}{16\left(\ell+a-\frac{1}{2}\right)^{2}} ; \quad \ell=0,1,2, \ldots \tag{54}
\end{equation*}
$$

Summary

- We have considered the differential equations related with EOPs and discussed the solutions (X_{1} and X_{m}) in brief.
- The X_{m} case is more general and for $m=0$, we recover the usual cases.
- Some examples (real and PT symmetric complex) related to theses EOPs are considered and discussed their solutions
- The scattering state solutions for extended PT symmetric complex Scarf-II potentials discussed and shown that the handedness property by this extended potential is also satisfied.

Summary

- New exactly solvable rationally extended Calogero-Wolfes type three body real and complex PT symmetric problems are constructed by adding new types of rational interaction terms.
- The solutions of these extended 3-body problems are obtained as a product of the X_{1} Laguerre times X_{1} Jacobi EOPs.

Thank you for your attention

[^0]: ${ }^{1}$ D. Gomez-Ullate, N. Kamran and R. Milson, J. Math. Anal.Appl. 359 (2009) 352; J. Phys. A 43 (2010) 434016; J. Phys. A 43 (2010) 434016;

 Contemporary Mathematics 563512012.

[^1]: ${ }^{5}$ J. Wolfes J. Math. Phys. 15 (1974) 1420.
 ${ }^{6}$ A. Khare and R. K. Bhaduri, J. Phys. A 27 (1994) 2213.

[^2]: ${ }^{7}$ N. Kumari, R.K.Yadav, A. Khare, B.P.Mandal, Annals of Physics, 385 (2017) 57.

[^3]: ${ }^{10}$ By P (i.e. parity) we mean here $\phi \rightarrow \pi-\phi$ while by T (i.e. time reversal) we mean $t \rightarrow-t$ and $i \rightarrow-i$.
 ${ }^{11}$ Which is easily obtained by complex co-ordinate transformation $x \rightarrow i x$ of the rationally extended hyperbolic Eckart potential [C. Quesne, SIGMA 8 (2012) 080.]

