Coherent state structure of pseudo-Hermitian Hamiltonian systems with position-dependent effective mass

Pinaki Patra
Department of Physics
Brahmananda Keshab Chandra College
Kolkata-700108, India

March 22, 2021

Abstract

The exact solvability of pseudo-Hermitian (ηH) Hamiltonians for position-dependent effective mass systems is revised. With the aid of the supersymmetric quantum mechanics formalism, a class of (ηH) Hamiltonians can be factorized. It turns out that, under a deformed algebra of generalized position and momentum, a coherent state structure of the system exists.

Hamiltonian

- The possible states of a quantum mechanical system are described by the vectors $\left(\psi_{i}\right)$ of the Hilbert-space (\mathcal{H}) corresponding to the system (\mathcal{S}).
- Prior to a measurement, the system remains on the superposition of all the states.
- Measurement processes are described by the action of operators acting on \mathcal{H}. The eigenvalues of the operator under process appears as the experimental outcomes with some probability.
- The operators associated with the energy measurements are called the Hamiltonian (\hat{H}) of the system.
- The dynamics are governed by the Schrödinger equation

$$
\begin{equation*}
\hat{H} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t) \tag{1}
\end{equation*}
$$

Necessary properties of a measuring operator

- The expectation values should be real numbers.
- On the other hand, it is necessary to have a sharp collapse to a state after a measurement process.
- Therefore, a spectral decomposition in terms of projectors and real eigen-values are necessary for a meaningful operator.
- Probabilities are associated with the norm of the vectors. Therefore, in order to total probability to be conserved under time-evolution, the time evolution operator should be unitary.
- An example: For a time-independent self-adjoint \hat{H}, all the requirements are fulfilled. In particular, the evolution operator $(\hat{\mathcal{U}}(t))$ in this case reads $\hat{\mathcal{U}}(t)=e^{-i \hat{H} t / \hbar}$.

Role of inner products

- Adjoint operator $\hat{\mathcal{O}}$ of an operator $\hat{\mathcal{O}}$ is defined by

$$
\begin{equation*}
(u, \hat{\mathcal{O}} v)=(\hat{\overline{\mathcal{O}}} u, v) \tag{2}
\end{equation*}
$$

where (.,.) is the inner product.

- Norm $(\|w\|)$ of a vector w can be defined by $\sqrt{(w, w)}$.
- The expectation value of an operator $\hat{\mathcal{O}}$ on some state ψ is defined by the Rayleigh quotient

$$
\begin{equation*}
\langle\hat{\mathcal{O}}\rangle_{\psi}=\frac{(\psi, \hat{\mathcal{O}} \psi)}{(\psi, \psi)} \tag{3}
\end{equation*}
$$

which is real for self-adjoint $\hat{\mathcal{O}}$ (with respect to the inner product (.,.)).

Role of inner products

- For example, under the usual inner product the operator

$$
\begin{equation*}
\hat{H}=-\frac{d^{2}}{d x^{2}}+x^{2}-\gamma\left(\frac{1}{2}+x \frac{d}{d x}\right), \gamma \in \mathbb{R} \backslash\{0\} \tag{4}
\end{equation*}
$$

has the adjoint

$$
\begin{equation*}
\hat{H}^{*}=-\frac{d^{2}}{d x^{2}}+x^{2}+\gamma\left(\frac{1}{2}+x \frac{d}{d x}\right) \tag{5}
\end{equation*}
$$

Clearly $\hat{H} \neq \hat{H}^{*}$ for $\gamma \neq 0$.

- However, the operator (4) is self-adjoint under the inner product

$$
\begin{equation*}
\langle u, v\rangle:=(u, \hat{T} v) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{T}=e^{2 \gamma x^{2}} \tag{7}
\end{equation*}
$$

Pseudo Hermitian operator

- A linear operator $\hat{H}: \mathcal{H} \rightarrow \mathcal{H}$ is pseudo-hermitian, if an invertible hermitian operator $\hat{\eta}: \mathcal{H} \rightarrow \mathcal{H}$ exists, such that

$$
\begin{equation*}
\hat{H}^{\dagger}=\hat{\eta} \hat{H} \hat{\eta}^{-1} . \tag{8}
\end{equation*}
$$

- Example: The $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians are pseudo-hermitian.
- ηH operators are actually hermitians in disguise.

Position dependent effective mass Hamiltonian (Toy

 model)- We start with the Hamiltonian in $\{|x\rangle\}$ representation as

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)-\nu\left(\nu_{0}+x \frac{d}{d x}\right)+V_{0}(x) \tag{9}
\end{equation*}
$$

where the parameters $\nu, \nu_{0} \in \mathbb{R}$.

- Under the usual inner product the adjoint of \hat{H} is given by

$$
\begin{equation*}
\hat{H}^{\dagger}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)+\nu\left(\left(1-\nu_{0}\right)+x \frac{d}{d x}\right)+V_{0}(x) \tag{10}
\end{equation*}
$$

- Clearly $\hat{H} \neq \hat{H}^{\dagger}$, unless $\nu=0$.
- In order to the perturbation not able to completely destroy the original behavior of our system, we restrict that ν is sufficiently small $(|\nu| \ll 1)$.

Pseudo metric operator associated with PDEM hamiltonian

- Let the Hamiltonian \hat{H} tranforms under $\hat{\eta}$ as follows.

$$
\begin{equation*}
\hat{H}_{0}=\hat{\eta} \hat{H} \hat{\eta}^{-1} . \tag{11}
\end{equation*}
$$

- Let us consider the ansatz

$$
\begin{equation*}
\hat{\eta}=e^{\Lambda(x)} \tag{12}
\end{equation*}
$$

- Using (12) in (11), we get

$$
\begin{array}{r}
\hat{H}_{0}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)-\nu\left(\nu_{0}+x \frac{d}{d x}\right)+V_{0}(x)+ \\
 \tag{13}\\
\hbar^{2} \frac{\Lambda^{\prime}(x)}{M(x)} \frac{d}{d x}+\Lambda_{1}(x) .
\end{array}
$$

Pseudo metric operator associated with PDEM hamiltonian

$$
\begin{equation*}
\Lambda_{1}(x)=\left(\nu x-\frac{\hbar M^{\prime}}{2 M^{2}}\right) \Lambda^{\prime}-\frac{\hbar^{2}}{2 M}\left(\Lambda^{\prime}\right)^{2} \tag{14}
\end{equation*}
$$

- Since, we wish to construct a choice for Λ so that \hat{H}_{0} becomes self-adjoint, we choose

$$
\begin{equation*}
\Lambda^{\prime}(x)=\frac{\nu}{\hbar^{2}} x M(x) \tag{15}
\end{equation*}
$$

- That means, we shall use

$$
\begin{equation*}
\Lambda(x)=\lambda_{0}+\frac{\nu}{\hbar^{2}} \int x M(x) d x \tag{16}
\end{equation*}
$$

The integration constant λ_{0} can be set to any value including zero.

Equivalent hermitian Hamiltonian

- Now the choice of $\Lambda(x)$ in (15), reduces \hat{H}_{0} as

$$
\begin{equation*}
\hat{H}_{1}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)-\nu \nu_{0}+V_{1}(x) \tag{17}
\end{equation*}
$$

- Where

$$
\begin{equation*}
V_{1}(x)=V_{0}(x)+\frac{\nu^{2}}{2 \hbar^{2}} M(x) x^{2}-\frac{\nu}{2 \hbar} \frac{M^{\prime}(x)}{M(x)} x . \tag{18}
\end{equation*}
$$

- For constant mass case, \hat{H}_{1} is an one dimensional (1-D) harmonic oscillator (HO) placed in an external potential $V_{0}(x)$. Therefore (17) can be regarded as a 1-D HO with position dependent effective mass (PDEM) under the potential $V_{0}(x)$.

Eigenstate of the equivalent Hamiltonian

- The time-independent Schrödinger equation for position dependent effective mass $M(x)$ reads

$$
\begin{equation*}
-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x} \tilde{\psi}_{n}(x)\right)+\tilde{V}(x) \tilde{\psi}_{n}(x)=\tilde{E}_{n} \tilde{\psi}_{n}(x) \tag{19}
\end{equation*}
$$

Where

$$
\begin{equation*}
\tilde{V}(x)=V_{1}(x) \tag{20}
\end{equation*}
$$

- Let the equation (19) is equivalent to the following Schrödinger equation for constant mass

$$
\begin{equation*}
-\frac{\hbar^{2}}{2} \frac{d^{2}}{d y^{2}} \psi_{n}(y)+V(y) \psi_{n}(y)=E_{n} \psi_{n}(y) \tag{21}
\end{equation*}
$$

We have set the constant mass to unity.

Eigenstate of the equivalent Hamiltonian

- If the transformation rules from the old PDEM system to the new constant mass system are given by

$$
\begin{array}{r}
y=f(x) \\
\psi_{n}(y)=g(x) \tilde{\psi}_{n}(x) \tag{23}
\end{array}
$$

- The compatibility of (21) and (19) gives

$$
\begin{array}{r}
f^{\prime}(x)=\sqrt{M(x)}, \\
g(x)=m^{-\frac{1}{4}}(x), \\
E_{n}=\tilde{E}_{n}, \\
\tilde{V}(x)=V(f(x))+\frac{\hbar^{2}}{8 M}\left[\frac{M^{\prime \prime}}{M}-\frac{7}{4}\left(\frac{M^{\prime}}{M}\right)^{2}\right] . \tag{27}
\end{array}
$$

Toy model

- Let us consider that the constant mass case is a simple harmonic oscillator with potential

$$
\begin{equation*}
V(y)=\frac{1}{2} \beta^{2} y^{2} \tag{28}
\end{equation*}
$$

where β is a constant.

- In order to get the exact form of original potential of our system, we have to confine ourselves for a particular choice of PDEM.
- Let us consider

$$
\begin{equation*}
M(x)=\frac{m_{0}}{(1+\beta x)^{\frac{4}{3}}} . \tag{29}
\end{equation*}
$$

- $M(x)$ can be reduced to the constant mass $\left(m_{0}\right)$ case for the limit $\beta \rightarrow 0$.

Eigenstate of the equivalent Hamiltonian

- The choice of mass (29), gives

$$
\begin{equation*}
f(x)=\frac{3}{\beta} \sqrt{m_{0}}(1+\beta x)^{\frac{1}{3}} . \tag{30}
\end{equation*}
$$

- From (27), one can write

$$
\begin{equation*}
\tilde{V}(x)=\frac{9}{2} m_{0}(1+\beta x)^{\frac{2}{3}} . \tag{31}
\end{equation*}
$$

- Comparing (27) with (18), we get

$$
\begin{equation*}
V_{0}(x)=\frac{9 m_{0}}{2 \beta^{2}}(1+\beta x)^{\frac{2}{3}}-\frac{2 \nu \beta x}{3 \hbar(1+\beta x)}-\frac{m_{0} \nu^{2} x^{2}}{2 \hbar^{2}(1+\beta x)^{\frac{4}{3}}} \tag{32}
\end{equation*}
$$

Eigenstate of the equivalent Hamiltonian

- The PDEM system is equivalent to the constant mass harmonic oscillator (21).
- The normalized eigen-states for constant mass harmonic oscillator (21) are given by

$$
\begin{equation*}
\psi_{n}(y)=\left(\frac{\beta}{\pi \hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^{n} n!}} H_{n}\left(\frac{1}{\sqrt{\hbar}} \sqrt{\beta} y\right) e^{-\frac{\beta}{2 \hbar} y^{2}} \tag{33}
\end{equation*}
$$

with the eigenvalues

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \beta \tag{34}
\end{equation*}
$$

Where $H_{n}(\zeta)$ are the Hermite polynomials of order n.

Eigenstate of the equivalent Hamiltonian

- from (23) and (26), we can say that the original PDEM system has the eigenfunctions

$$
\begin{equation*}
\tilde{\psi}_{n}(x)=\frac{1}{g(x)} \psi_{n}(f(x)) \tag{35}
\end{equation*}
$$

with the eigen-values

$$
\begin{equation*}
\tilde{E}_{n}=\left(n+\frac{1}{2}\right) \hbar \beta \tag{36}
\end{equation*}
$$

- In order to construct the coherent states, let us first calculate the ground state $\tilde{\psi}_{0}(x)$, which reads

$$
\begin{equation*}
\tilde{\psi}_{0}(x)=\left(\frac{\beta m_{0}}{\pi \hbar}\right)^{\frac{1}{4}}(1+\beta x)^{-\frac{1}{3}} \exp \left[-\frac{9 m_{0}}{2 \hbar \beta}(1+\beta x)^{\frac{2}{3}}\right] \tag{37}
\end{equation*}
$$

Coherent state by SUSY

- Let us consider the following auxiliary hamiltonian corresponding to our system in order to solve it by SUSY.

$$
\begin{equation*}
\hat{H}_{1}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)+V_{1}(x) \tag{38}
\end{equation*}
$$

- Let us relate the problem with a similar hamiltonian with different potential (partner potential)

$$
\begin{equation*}
\hat{H}_{2}=-\frac{\hbar^{2}}{2} \frac{d}{d x}\left(\frac{1}{M(x)} \frac{d}{d x}\right)+V_{2}(x) \tag{39}
\end{equation*}
$$

- Now we seek for an intertwining relation

$$
\begin{equation*}
\hat{A} \hat{H}_{1}=\hat{H}_{2} \hat{A} \tag{40}
\end{equation*}
$$

Coherent state by SUSY

- Let us take the ansatz

$$
\begin{equation*}
\hat{A}=\frac{1}{\sqrt{2}}\left(a(x) \frac{d}{d x} a(x)+\phi(x)\right) . \tag{41}
\end{equation*}
$$

- The commutation relation between \hat{A} and \hat{A}^{\dagger} is

$$
\begin{equation*}
\left[\hat{A}, \hat{A}^{\dagger}\right]=\frac{\phi^{\prime}(x)}{\sqrt{M(x)}} \tag{42}
\end{equation*}
$$

- From intertwining relation, we get

$$
\begin{array}{r}
a(x)=\frac{1}{(M(x))^{\frac{1}{4}}}, \\
V_{2}(x)=V_{1}(x)+\frac{1}{\sqrt{M(x)}} \phi^{\prime}(x), \tag{44}
\end{array}
$$

Coherent state by SUSY

$$
\begin{equation*}
K^{\prime}+M\left(\frac{1}{M}\right)^{\prime} K-K^{2}+(v-2 \lambda M)=0 . \tag{45}
\end{equation*}
$$

- Where

$$
\begin{array}{r}
\phi(x)=K a^{2}-a a^{\prime}, \\
v(x)=2 M(x) V_{1}(x) . \tag{47}
\end{array}
$$

λ is an integration constant.

- $K(x)$ is related to the ground state $u=\psi_{0}$ by

$$
\begin{gather*}
K(x)=-\frac{u^{\prime}}{u} . \tag{48}\\
\therefore K(x)=\frac{\beta}{3(1+\beta x)}+\frac{3 m_{0}}{\hbar(1+\beta x)^{\frac{1}{3}}} . \tag{49}
\end{gather*}
$$

Coherent state by SUSY

- The explicit form of $\phi(x)$ is

$$
\begin{equation*}
\phi(x)=\frac{\beta}{3 \sqrt{m_{0}}}\left[\frac{1}{(1+\beta x)^{\frac{1}{3}}}-\frac{1}{(1+\beta x)^{\frac{11}{6}}}+\frac{9 m_{0}}{\hbar \beta}(1+\beta x)^{\frac{1}{3}}\right] . \tag{50}
\end{equation*}
$$

One can now construct the eigen-states $(|\alpha\rangle)$ of \hat{A} directly.

$$
\begin{equation*}
|\alpha\rangle=\frac{c_{1}}{\zeta^{\frac{2}{3}}} \exp \left[\frac{3 \sqrt{2 m_{0}}}{\beta} \zeta^{\frac{1}{3}}-\frac{9 m_{0}}{2 \hbar \beta} \zeta^{\frac{2}{3}}-\frac{2}{9} \zeta^{-\frac{3}{2}}\right] . \tag{51}
\end{equation*}
$$

Where

$$
\begin{equation*}
\zeta=1+\beta x, \tag{52}
\end{equation*}
$$

and c_{1} is constant.

Conclusions

- We have seen that the coherent state structure can be constructed for position dependent effective mass (PDEM) in the ηH hamiltonian scenario.
- First step is to find a metric operator associated with the hamiltonian, in order to make it self-adjoint.
- Then the eigen-states of the system is constructed with the help of an equivalent constant mass system.
- Annihilation operator can be constructed for the PDEM system with the aid of supersymmetric quantum mechanics.
- The eigen-states of the annihilation operator are the desired coherent state.

