Pseudo-unitary transformations and solvable

 models of vector non-linear Schrodinger equation with balanced loss and gain.Pijush K. Ghosh

Visva-Bharati

March 22, 2021
Non-hermitian Physics (Online) ICTS-TIFR, Bengaluru

Ref.: PKG, arXiv:2008.12252[nlin.SI]
Group Members: Puspendu Roy \& Supriyo Ghosh

outline

(1) Nonlinear Schrödinger Equation(NLSE)
(2) $\mathcal{P} \mathcal{T}$ Symmetry inspired generalized NLSE

- NLSE in $\mathcal{P T}$ symmetric external complex potential
- Non-local NLSE (Ablowitz \& Musslimani; Sinha \& Ghosh)
- \checkmark NLSE with balanced loss-gain(BLG)
(3) Formalism: N-component vector NLSE with BLG

4 Mapping via pseudo-unitary transformation
(5) Example: Two-component VNLSE
(6) Generalizations
(7) Epilogue

$$
i \psi_{t}=-\psi_{x x}+\delta \underbrace{\left(\psi^{*} \psi\right) \psi}_{\text {nonlinearity }}, \delta \in \Re
$$

$\psi(x, t)$ is a complex scalar field and $\psi_{t} \equiv \frac{\partial \psi}{\partial t}, \quad \psi_{x x} \equiv \frac{\partial^{2} \psi}{\partial x^{2}}$

- Relevance: Optics, Bose-Einstein Condensation(BEC), plasma physics, gravity waves, α-helix protein dynamics
- Mathematical Structure:
- Hamiltonian: $\mathcal{H}=\psi_{x}^{*} \psi_{x}+\frac{\delta}{2}\left(\psi^{*} \psi\right)^{2}$
- Classical System: Integrable, Solvable, Solitons (Ref.: Zakharov \& Shabat, Sov. Phys. JETP 34, 62 (1972))
- Quantum System: δ-function Bose gas, Integrable, Lieb-Liniger model, Exact correlation functions, Tonks-Girardeu gas

$$
i \psi_{t}=-\psi_{x x}+\underbrace{V(x, t)}_{\text {potential }} \psi+\delta\left(\psi^{*} \psi\right) \psi
$$

- Complex potential $V(x, t)$ is $\mathcal{P} \mathcal{T}$ symmetric

$$
\mathcal{P}: x \rightarrow-x, \mathcal{T}: t \rightarrow-t, \mathcal{P} \mathcal{T}: V(x, t) \rightarrow V(x, t)
$$

- $\delta=0$: Quantum bound and scattering states for several V.
- $\delta \neq 0$: Stable Nonlinear modes exist
- Novel features: Self-trapping, unidirectional soliton flow, non-reciprocity, exceptional point, $\mathcal{P} \mathcal{T}$-phase transitions, ... (Ref.: Konotop et. al., Rev. Mod. Phys. 88, 035002 (2016))

$$
i \psi_{t}=-\psi_{x x}+\delta \underbrace{\left\{\psi^{*}(-x, t) \psi(x, t)\right\}}_{\text {non-locality }} \psi
$$

- Stationery state: Self-induced potential is $\mathcal{P T}$-symmetric

$$
\mathcal{P} \mathcal{T}\left\{\psi^{*}(-x, 0) \psi(x, 0)\right\}=\left\{\psi^{*}(-x, 0) \psi(x, 0)\right\}
$$

- Both bright \& dark solitons for $\delta<0$
- $\psi(x, t), \psi^{*}(-x, t)$ are treated as independent fields

$$
\begin{align*}
& \left\{\psi(x, t), \psi^{*}(-y, t)\right\}=-i \delta(x-y) \tag{1}\\
& \mathcal{H}=\psi_{x}^{*}(-x, t) \psi_{x}(x, t)+\frac{\delta}{2}\left(\psi^{*}(-x, t) \psi(x, t)\right)^{2} \tag{2}
\end{align*}
$$

- \mathcal{H} is complex-valued, while $H=\int d x \mathcal{H}$ is real valued
- Integrable, solutions via inverse-scattering transformation
- Corresponding discrete NLSE as well as multicomponent generalization of NLSE are integrable

NLSE with gain/loss

$$
i \psi_{t}+\underbrace{i \Gamma \psi}_{\text {loss } / \text { gain }}=-\psi_{x x}+\delta\left(\psi^{*} \psi\right) \psi
$$

- Density $\rho=\psi^{*} \psi$ and Current $J=-i\left(\psi^{*} \psi_{x}-\psi \psi_{x}^{*}\right)$
- Continuity equation: $\frac{\partial \rho}{\partial t}+J_{x}=-2 \Gamma \rho$
- For well behaved field ψ and power $N \equiv \int d x \rho$

$$
\frac{d N}{d t}=-2 \Gamma N \Rightarrow N=N_{0} e^{-2 \Gamma t}
$$

- N decays for $\Gamma>0$ and grows for $\Gamma<0$
- Complex scalar fields $\psi_{1}(x, t), \psi_{2}(x, t)$ and $\psi=\binom{\psi_{1}}{\psi_{2}}, \Gamma>0$

$$
\begin{aligned}
& i \psi_{1, t}-\underbrace{i \Gamma \psi_{1}}_{\text {gain }}-\underbrace{\beta^{*} \psi_{2}}_{L C}=-\psi_{1, x x}-\delta \underbrace{\left(\Psi^{\dagger} M_{1} \Psi\right)}_{N L C} \psi_{1} \\
& i \psi_{2, t}+\underbrace{i \Gamma \psi_{2}}_{\text {loss }}-\underbrace{\beta \psi_{1}}_{L C}=-\psi_{2, x x}-\underbrace{\delta\left(\Psi^{\dagger} M_{2} \Psi\right)}_{N L C} \psi_{2}
\end{aligned}
$$

- $M_{i}^{T}=M_{i}, \forall i$; Optics: NLC contains self-phase modulation, cross-phase modulation and four-wave mixing terms
- $\mathcal{P}: \Psi \rightarrow \sigma_{1} \Psi=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \Psi, \mathcal{T}: t \rightarrow-t, i \rightarrow-i$
- $\delta=0: \mathcal{P} \mathcal{T}$ symmetric
- $\delta \neq 0: \mathcal{P} \mathcal{T}$ symmetric for $M_{2}=\sigma_{1} M_{1} \sigma_{1}$
- Features: Solitons, Breathers, Power oscillations, solitionic switch, exceptional points
- Compact notation for Two-component NLSE with BLG for $M_{1}=M_{2} \equiv M ; \sigma_{ \pm}=\frac{1}{2}\left(\sigma_{1} \pm i \sigma_{2}\right), \sigma_{1,2,3}=$ Pauli matrices

$$
i \Psi_{t}-[\underbrace{\left(\beta \sigma_{-}+\beta^{*} \sigma_{+}\right)}_{\substack{B \\(L C)}}+i \underbrace{}_{\substack{C \\ \Gamma_{3} \sigma_{3}}}] \Psi=-\Psi_{x x}-\delta \underbrace{\left(\Psi^{\dagger} M \Psi\right) \Psi}_{N L C}
$$

- Consider $N \times N$ matrices $B, C, A:=B+i C$ and M :
$B^{\dagger}=B, C^{\dagger}=C, M^{\dagger}=M, A^{\dagger} \neq A, \operatorname{Tr}(C)=0$
- B, C, M may be expressed in terms of $S U(N)$ generators
- N-component VNLSE with BLG:

$$
i \underbrace{\left(I \partial_{t}+i A\right)}_{D_{0}} \Psi=-\Psi_{x x}-\delta\left(\Psi^{\dagger} M \Psi\right) \Psi
$$

- D_{0} resembles temporal component of covariant derivative with complex gauge potential A

Hamiltonian Formalism

- \mathcal{H} is complex-valued \Rightarrow Non-hermitian Quantum \mathcal{H}

$$
\mathcal{H}=\underbrace{\Psi_{x}^{\dagger} M \Psi_{x}-\frac{\delta}{2}\left(\Psi^{\dagger} M \psi\right)^{2}}_{\text {real valued }}+\underbrace{\Psi^{\dagger} M A \Psi}_{\text {complex valued }}
$$

- The effect of BLG is contained in the term $\mathcal{M} \equiv \Psi^{\dagger} M A \Psi$
- Non-hermiticity is introduced via mass term for $\mathcal{P T}$ symmetric relativistic Field Theory also
- \mathcal{M} and hence, \mathcal{H} is real valued for M-pseudo-hermitian A
- With suitable quantization condition hermitian quantum \mathcal{H}
- $E=\int d t d x \mathcal{H}$ may not be bounded from below even for $\delta<0$.
- $E \geq 0$ for M-pseudo-hermitian A and positive-definite M

Brief Review: Pseudo-unitary Matrices

- η-Pseudo-hermitian matrix $\hat{O}: \hat{O}^{\dagger}=\eta \hat{O} \eta^{-1}$
- \hat{O} admits entirely real eigenvalues for a positive-definite η_{+}
- Quasi-hermiticity: $\hat{\mathcal{O}}=\rho \hat{O} \rho^{-1}, \rho:=\sqrt{\eta_{+}}$
- $\hat{\mathcal{O}}$ is hermitian in a vector space endowed with the metric η_{+}
- Pseudo-unitary matrix:

$$
U^{\dagger} \eta U=\eta
$$

- Representation of U :

$$
U:=e^{i \hat{O}}, \hat{O}^{\dagger}=\eta \hat{O} \eta^{-1}
$$

- U is non-unitary as well as non-pseudo-unitary, whenever \hat{O} is non-pseudo-hermitian
- Non-unitary transformation :

$$
\Psi=U \Phi(t, x), \quad U(t)=e^{-i A t}
$$

- Equation satisfied by Φ

$$
i \Phi_{t}=-\Phi_{x x}-\delta\left(\Phi^{\dagger} G \Phi\right) \Phi, G=U^{\dagger} M U
$$

- Pseudo-unitary transformation:
- $U^{\dagger} M U=M \Rightarrow A^{\dagger}=M A M^{-1}$
- Solvable Manakov system of VNLSE up to a unitary rotation followed by a scaling

$$
\begin{equation*}
i \Phi_{t}=-\Phi_{x x}-\delta\left(\Phi^{\dagger} M \Phi\right) \Phi \tag{3}
\end{equation*}
$$

What if A is NOT M-pseudo-hermitian?

- Time-independent M: NLC of the transformed equation becomes time-dependent
- Time-dependent M : time-dependence of NLC gets modified
- Specific time-dependence of M

$$
\begin{aligned}
& M(t)=\sum_{j=0}^{N^{2}-1} \alpha_{j} U^{\dagger}(-t) \lambda_{j} U(-t) \\
& G=U^{\dagger}(t) M(t) U(t)=\sum_{j=0}^{N^{2}-1} \alpha_{j} \lambda_{j}, \quad \lambda_{0} \equiv I
\end{aligned}
$$

- Non-autonomous equation is mapped to solvable Manakov system

$$
i \Psi_{t}-[\underbrace{\left(\beta^{*} \sigma_{+}+\beta \sigma_{-}\right)+i \Gamma \sigma_{3}}_{A}] \Psi=-\Psi_{x x}-\delta\left(\Psi^{\dagger} M \Psi\right) \Psi
$$

- Positive-definite $M=\alpha_{0} I+\alpha \sigma_{-}+\alpha^{*} \sigma^{+}$for $\alpha_{0}>|\alpha|$
- Condition for M-pseudo-hermitian A :

$$
\frac{\alpha_{0}}{|\alpha|}=\frac{|\beta|}{\Gamma} \sin \left(\theta_{\alpha}-\theta_{\beta}\right)>1, \quad \alpha=|\alpha| e^{i \theta_{\alpha}}, \beta=|\beta| e^{i \theta_{\beta}},
$$

- The pseudo-unitary operator:

$$
U=I \cos (\theta t)-\frac{i A}{\theta} \sin (\theta t) \text { for } \theta \equiv \sqrt{|\beta|^{2}-\Gamma^{2}} \neq 0
$$

- Consistency Conditions:
- $-|\beta|<\Gamma<|\beta|: U$ is periodic in time.
- 「 $>0: 0<\theta_{\alpha}-\theta_{\beta}<\pi, \Gamma<0: \pi<\theta_{\alpha}-\theta_{\beta}<2 \pi$

Exact One Soliton Solution for $\delta=1$

- Power $P \equiv \Psi^{\dagger} \Psi$ oscillates with time for $\Gamma \neq 0$

$$
\begin{aligned}
& P=\frac{2 \kappa^{2} W^{\dagger} W}{\left|W^{\dagger} M W\right|} \operatorname{sech}^{2}[\kappa(x-v t)] N(t) \\
& N(t)=1+N_{1} \sin ^{2}(\theta t)+N_{2} \sin (2 \theta t)
\end{aligned}
$$

- $W=$ arbitrary 2 -component complex vector, $\kappa, v=$ constant
- N_{1} and N_{2} are W, Γ, β dependent constants
- $N_{1}=N_{2}=0$ for $\Gamma=0$: No power oscillation without BLG
- Period of oscillation increases as $\Gamma \rightarrow|\beta|$
- P is unbounded for $\Gamma \geq|\beta|$
- 「 can be used as a controlling parameter for oscillation
- Solvable model of $2 m$-component VNLSE with pair-wise BLG:

$$
A_{2 m}=I_{m} \otimes A, M_{2 m}=I_{m} \otimes M, U_{2 m}=I_{m} \otimes U
$$

Each component interacts with all other components via NLC

- Time-dependent loss-gain term $A(t): U(t)=e^{-i \int^{t} A\left(t^{\prime}\right) d t^{\prime}}$
- Adding potential V and allowing space-time modulated NLC

$$
i\left(I \partial_{t}+i A\right) \Psi=-\Psi_{x x}+V(x, t) \Psi-\delta(x, t)\left(\Psi^{\dagger} M \Psi\right) \Psi
$$

- Non-unitary transformation: $\Psi=U \Phi$

$$
i \partial_{t} \Phi=-\Phi_{x x}+V(x, t) \Phi-\delta(x, t)\left(\Phi^{\dagger} G \Phi\right) \Phi
$$

- Similarity transformation (Juan Belmonte-Beitia et al, Phys.Rev.Lett. 98, 064102 (2007)) to Manakov System

Summary, Discussions \& Future Directions

- Summary \& Discussions
- A class of VNLSE with BLG is mapped via pseudo-unitary transformation to the same equation without the BLG term
- Solvable models of VNLSE with BLG may be constructed via the mapping.
- Specific examples are constructed with analytic expression for power oscillation
- Various generalizations are discussed
- Future Directions
- Solvable models for $N>2$ with non-pair-wise balancing of BLG terms
- Similar mapping for VNLSE with BLG and Kerr nonlinearity?
- Quantization of \mathcal{H}
- Extension: Discrete VNLSE with BLG, oligomers and other lattice models

