On the mod p cohomology for GL_2 (II) (joint with Haoran Wang)

Yongquan Hu
Morningside Center of Mathematics

I.C.T.S. - T.I.F.R. December 4, 2020

Main results (II)

2 The proofs

Notation. Keep (mostly) the notation in the talk of Haoran Wang.

- $L = F_v$ for v|p, unramified extension over \mathbb{Q}_p of degree f;
- $\varpi_L \in \mathcal{O}_L \subset L$, $\mathbb{F}_q \cong \mathcal{O}_L/\varpi_L$;
- $G = GL_2(L)$, Z = center, $P = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$, $\overline{P} = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$;
- $K = GL_2(\mathcal{O}_L)$, I = Iwahori;
- ullet $K_1=\mathrm{Ker}(K
 ightarrow \mathrm{GL}_2(\mathbb{F}_q)),\ I_1=$ pro-p-Iwahori, $Z_1=Z\cap K_1$;
- $\bar{\rho}: \operatorname{Gal}(\bar{L}/L) \to \operatorname{GL}_2(\mathbb{F})$ cont., where \mathbb{F}/\mathbb{F}_p finite (will be reducible non-split and strongly generic in main results);
- $\pi(\bar{\rho})=$ smooth admissible representation of G corresponding to some globalization of $\bar{\rho}$ in mod p cohomology (i.e. $\pi_v^D(\bar{r})$ in Haoran's talk).

Already know (based on work of Buzzard-Diamond-Jarvis and Breuil-Pašk $\bar{\mathbf{u}}$ nas):

- Gee, Emerton-Gee-Savitt : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$
- EGS : $\pi(\bar{\rho})^{l_1}$
- HW, LMS, Le : $\pi(\bar{\rho})^{K_1} = D_0(\bar{\rho})$
- HW, BHHMS : $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^2]$, $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^3]$, and Gelfand-Kirillov dimension
- Breuil-Diamond, H., Dotto-Le: (partial) local-global compatibility.

Already know (based on work of Buzzard-Diamond-Jarvis and Breuil-Pašk $\bar{\mathbf{u}}$ nas):

- Gee, Emerton-Gee-Savitt : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$
- EGS : $\pi(\bar{\rho})^{l_1}$
- HW, LMS, Le : $\pi(\bar{\rho})^{K_1} = D_0(\bar{\rho})$
- HW, BHHMS : $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^2]$, $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^3]$, and Gelfand-Kirillov dimension
- Breuil-Diamond, H., Dotto-Le: (partial) local-global compatibility.

Question: the structure of $\pi(\bar{\rho})$ as a representation of $G = GL_2(L)$?

Already know (based on work of Buzzard-Diamond-Jarvis and Breuil-Paškūnas) :

- Gee, Emerton-Gee-Savitt : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$
- EGS : $\pi(\bar{\rho})^{l_1}$
- HW, LMS, Le : $\pi(\bar{\rho})^{K_1} = D_0(\bar{\rho})$
- HW, BHHMS : $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^2]$, $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^3]$, and Gelfand-Kirillov dimension
- Breuil-Diamond, H., Dotto-Le: (partial) local-global compatibility.

Question: the structure of $\pi(\bar{\rho})$ as a representation of $G = GL_2(L)$? e.g.

Is it finitely generated? Is it of finite length?

Already know (based on work of Buzzard-Diamond-Jarvis and Breuil-Paškūnas) :

- Gee, Emerton-Gee-Savitt : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$
- EGS : $\pi(\bar{\rho})^{l_1}$
- HW, LMS, Le : $\pi(\bar{\rho})^{K_1} = D_0(\bar{\rho})$
- HW, BHHMS : $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^2]$, $\pi(\bar{\rho})[\mathfrak{m}_{K_1}^3]$, and Gelfand-Kirillov dimension
- Breuil-Diamond, H., Dotto-Le: (partial) local-global compatibility.

Question: the structure of $\pi(\bar{\rho})$ as a representation of $G = GL_2(L)$? e.g.

Is it finitely generated? Is it of finite length?

Remark: In general, not known "f.g. ⇒ finite length".

(i) $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.

- (i) $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.
- (ii) $\pi(\bar{\rho})$ has finite length, precisely :
 - If $\bar{\rho}$ is irreducible, then $\pi(\bar{\rho})$ is irreducible.

- (i) $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.
- (ii) $\pi(\bar{\rho})$ has finite length, precisely :
 - If $\bar{\rho}$ is irreducible, then $\pi(\bar{\rho})$ is irreducible.
 - If $\bar{\rho} = \chi_1 \oplus \chi_2$, then $\pi(\bar{\rho})$ is semisimple, of length f+1, and isomorphic to $\bigoplus_{i=0}^f \pi_i$, where π_0, π_f are principal series :

$$\pi_0 = \operatorname{Ind}_{\overline{P}}^{\underline{G}} \chi_1 \omega^{-1} \otimes \chi_2, \quad \pi_f = \operatorname{Ind}_{\overline{P}}^{\underline{G}} \chi_2 \omega^{-1} \otimes \chi_1$$

and π_i supersingular for $1 \leq i \leq f-1$.

- (i) $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.
- (ii) $\pi(\bar{\rho})$ has finite length, precisely :
 - If $\bar{\rho}$ is irreducible, then $\pi(\bar{\rho})$ is irreducible.
 - If $\bar{\rho} = \chi_1 \oplus \chi_2$, then $\pi(\bar{\rho})$ is semisimple, of length f+1, and isomorphic to $\bigoplus_{i=0}^f \pi_i$, where π_0, π_f are principal series :

$$\pi_0 = \operatorname{Ind}_{\overline{P}}^{\underline{G}} \chi_1 \omega^{-1} \otimes \chi_2, \quad \pi_f = \operatorname{Ind}_{\overline{P}}^{\underline{G}} \chi_2 \omega^{-1} \otimes \chi_1$$

and π_i supersingular for $1 \le i \le f - 1$.

• If $\bar{
ho}=\left(\begin{smallmatrix}\chi_1 & * \\ 0 & \chi_2\end{smallmatrix}\right)$ is nonsplit, then $\pi(\bar{
ho})$ has a Jordan-Hölder filtration :

$$\pi_0 - \pi_1 - \cdots - \pi_{f-1} - \pi_f$$

and
$$\pi(\bar{\rho}^{\mathrm{ss}}) = \pi(\bar{\rho})^{\mathrm{ss}}$$
.

Example. $L=\mathbb{Q}_p$, $\bar{\rho}|_{I(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)}=\left(\begin{smallmatrix}\omega_0^{r+1}&*\\0&1\end{smallmatrix}\right)$ with $1\leq r\leq p-3$ and $*\neq 0$, then

- $W(\bar{\rho}) = \{\operatorname{Sym}^r \mathbb{F}^2\}$
- $\begin{array}{l} \bullet \ \ D_0(\bar{\rho}) = \\ \left(\operatorname{Sym}^r \mathbb{F}^2 \longrightarrow \operatorname{Sym}^{p-1-r} \mathbb{F}^2 \otimes \operatorname{\mathsf{det}}^r \bigoplus \operatorname{Sym}^{p-3-r} \mathbb{F}^2 \otimes \operatorname{\mathsf{det}}^{r+1}\right) \end{array}$
- $\pi(\bar{\rho}) = (\pi_0 \pi_1).$

Main results

Keep the global hypotheses in Haoran's talk. Assume $\bar{\rho} = \left(\begin{smallmatrix} \chi_{\mathbf{1}} & * \\ 0 & \chi_{\mathbf{2}} \end{smallmatrix} \right)$ is reducible non-split and strongly generic.

Theorem A (H.-Wang, 2020)

As a *G*-representation, $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.

Main results

Keep the global hypotheses in Haoran's talk. Assume $\bar{\rho} = \left(\begin{smallmatrix} \chi_{\mathbf{1}} & * \\ 0 & \chi_{\mathbf{2}} \end{smallmatrix} \right)$ is reducible non-split and strongly generic.

Theorem A (H.-Wang, 2020)

As a *G*-representation, $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$.

Theorem B (H.-Wang, 2020)

If f=2, then $\pi(\bar{\rho})$ has length 3, of the form

$$\pi_0 - \pi_1 - \pi_2$$

with π_0, π_2 principal series and π_1 supersingular.

We have $\operatorname{End}_{G}(\pi(\bar{\rho})) = \mathbb{F}$.

We have $\operatorname{End}_{\mathcal{G}}(\pi(\bar{\rho})) = \mathbb{F}$.

Remark. This corresponds to the fact $\operatorname{End}_{\operatorname{Gal}}(\bar{\rho}) = \mathbb{F}$.

We have $\operatorname{End}_G(\pi(\bar{\rho})) = \mathbb{F}$.

Remark. This corresponds to the fact $\operatorname{End}_{\operatorname{Gal}}(\bar{\rho}) = \mathbb{F}$. It would be interesting to study its deformation problem, e.g. compute $\operatorname{Ext}_G^1(\pi(\bar{\rho}), \pi(\bar{\rho}))$.

We have $\operatorname{End}_G(\pi(\bar{\rho})) = \mathbb{F}$.

Remark. This corresponds to the fact $\operatorname{End}_{\operatorname{Gal}}(\bar{\rho}) = \mathbb{F}$. It would be interesting to study its deformation problem, e.g. compute $\operatorname{Ext}^1_G(\pi(\bar{\rho}),\pi(\bar{\rho}))$.

Proof. To $\pi(\bar{\rho})$ we associate the Diamond diagram

$$D(\bar{\rho}) := (D_0(\bar{\rho})^{l_1} \hookrightarrow D_0(\bar{\rho})).$$

Taking restriction gives

$$\operatorname{End}_{\mathcal{G}}(\pi(\bar{\rho})) \to \operatorname{End}_{\mathcal{DIAG}}(D(\bar{\rho}))$$

which is injective because of Theorem A. By Breuil-Paškūnas, one knows $\operatorname{End}_{\mathcal{DIAG}}(D(\bar{\rho})) = \mathbb{F}$. \square

Main results (II)

2 The proofs

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

• Recall : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$; always contains the 'ordinary' weight : $\sigma_0 = (r_0, \dots, r_{f-1})$.

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

- Recall : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$; always contains the 'ordinary' weight : $\sigma_0 = (r_0, \dots, r_{f-1})$.
- The structure of $D_0(\bar{\rho})$ shows that any irred. $\pi' \subset \pi(\bar{\rho})$ must contain σ_0 (as $\bar{\rho}$ is non-split!);

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

- Recall : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$; always contains the 'ordinary' weight : $\sigma_0 = (r_0, \dots, r_{f-1})$.
- The structure of $D_0(\bar{\rho})$ shows that any irred. $\pi' \subset \pi(\bar{\rho})$ must contain σ_0 (as $\bar{\rho}$ is non-split!);
- Weight cycling argument shows that $\langle G.\sigma_0 \rangle$ is a principal series;

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

- Recall : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$; always contains the 'ordinary' weight : $\sigma_0 = (r_0, \dots, r_{f-1})$.
- The structure of $D_0(\bar{\rho})$ shows that any irred. $\pi' \subset \pi(\bar{\rho})$ must contain σ_0 (as $\bar{\rho}$ is non-split!);
- Weight cycling argument shows that $\langle G.\sigma_0 \rangle$ is a principal series;

Proof: By Frobenius, $\langle G.\sigma_0 \rangle$ is a quotient of c-Ind $_{KZ}^G \sigma_0$ which carries an action of $\mathbb{F}[T]$ (Hecke algebra of Barthel-Livné).

Choose $v_0 \in \sigma_0^h$ of character χ_0 . If $T(v_0) = 0$, then some JH factor of $\operatorname{Ind}_I^K \chi_0^s$ other than σ_0 will be in $\operatorname{soc}_K \pi(\bar{\rho})$, hence in $W(\bar{\rho})$, but it is not the case.

Multiplicity one implies $T(v_0) = \lambda v_0$ for $\lambda \in \mathbb{F}^{\times}$. \square

Step 1. Show the *G*-socle of $\pi(\bar{\rho})$ is equal to π_0 .

- Recall : $\operatorname{soc}_K \pi(\bar{\rho}) = \bigoplus_{\sigma \in W(\bar{\rho})} \sigma$; always contains the 'ordinary' weight : $\sigma_0 = (r_0, \dots, r_{f-1})$.
- The structure of $D_0(\bar{\rho})$ shows that any irred. $\pi' \subset \pi(\bar{\rho})$ must contain σ_0 (as $\bar{\rho}$ is non-split!);
- Weight cycling argument shows that $\langle G.\sigma_0 \rangle$ is a principal series;

Proof: By Frobenius, $\langle G.\sigma_0 \rangle$ is a quotient of c-Ind $_{KZ}^G \sigma_0$ which carries an action of $\mathbb{F}[T]$ (Hecke algebra of Barthel-Livné). Choose $v_0 \in \sigma_0^h$ of character χ_0 . If $T(v_0) = 0$, then some JH factor of

Choose $v_0 \in \sigma_0^-$ of character χ_0 . If $I(v_0) = 0$, then some JH factor of $\operatorname{Ind}_I^K \chi_0^s$ other than σ_0 will be in $\operatorname{soc}_K \pi(\bar{\rho})$, hence in $W(\bar{\rho})$, but it is not the case.

Multiplicity one implies $T(v_0) = \lambda v_0$ for $\lambda \in \mathbb{F}^{\times}$. \square

• Compute ordinary part $\operatorname{Ord}_P(\pi(\bar{\rho}))$ (H., Breuil-Ding : semisimplicity)

$$\operatorname{Ext}^{2f}_{\Lambda}(\pi(\bar{\rho})^{\vee}, \Lambda) \cong \pi(\bar{\rho})^{\vee} \otimes (\operatorname{twist}).$$

$$\operatorname{Ext}^{2f}_{\Lambda}(\pi(\bar{\rho})^{\vee}, \Lambda) \cong \pi(\bar{\rho})^{\vee} \otimes (\operatorname{twist}).$$

Proof: M_{∞} is flat over R_{∞} which is a regular local ring. Get a Koszul complex resolution of $\pi(\bar{\rho})^{\vee}$. Also need self-duality of Emerton's completed cohomology.

$$\operatorname{Ext}^{2f}_{\Lambda}(\pi(\bar{\rho})^{\vee},\Lambda) \cong \pi(\bar{\rho})^{\vee} \otimes (\operatorname{twist}).$$

Proof: M_{∞} is flat over R_{∞} which is a regular local ring. Get a Koszul complex resolution of $\pi(\bar{\rho})^{\vee}$. Also need self-duality of Emerton's completed cohomology.

Since $\operatorname{Ext}^{2f}_{\Lambda}(\pi_0^{\vee}, \Lambda) \cong \pi_f^{\vee} \otimes (\operatorname{twist})$ (Kohlhaase), we get

• The G-cosocle of $\pi(\bar{\rho})$ is π_f .

$$\operatorname{Ext}^{2f}_{\Lambda}(\pi(\bar{\rho})^{\vee},\Lambda) \cong \pi(\bar{\rho})^{\vee} \otimes (\operatorname{twist}).$$

Proof: M_{∞} is flat over R_{∞} which is a regular local ring. Get a Koszul complex resolution of $\pi(\bar{\rho})^{\vee}$. Also need self-duality of Emerton's completed cohomology.

Since $\operatorname{Ext}^{2f}_{\Lambda}(\pi_0^{\vee}, \Lambda) \cong \pi_f^{\vee} \otimes (\operatorname{twist})$ (Kohlhaase), we get

• The G-cosocle of $\pi(\bar{\rho})$ is π_f . (**Rk** : the cosocle of a smooth admissible rep. could be 0.)

$$\operatorname{Ext}^{2f}_{\Lambda}(\pi(\bar{\rho})^{\vee}, \Lambda) \cong \pi(\bar{\rho})^{\vee} \otimes (\operatorname{twist}).$$

Proof: M_{∞} is flat over R_{∞} which is a regular local ring. Get a Koszul complex resolution of $\pi(\bar{\rho})^{\vee}$. Also need self-duality of Emerton's completed cohomology.

Since $\operatorname{Ext}^{2f}_{\Lambda}(\pi_0^{\vee}, \Lambda) \cong \pi_f^{\vee} \otimes (\operatorname{twist})$ (Kohlhaase), we get

- The *G*-cosocle of $\pi(\bar{\rho})$ is π_f . (**Rk** : the cosocle of a smooth admissible rep. could be 0.)
- A subspace $\tau \subset \pi(\bar{\rho})$ generates $\pi(\bar{\rho})$ as G-representation **iff**

$$\tau \hookrightarrow \pi(\bar{\rho}) \twoheadrightarrow \pi_f$$

is non-zero.

Criterion

Let $\tau \subset \pi(\bar{\rho})|_{I}$. If for some i, some character $\chi: I \to \mathbb{F}^{\times}$, the composition

$$\operatorname{Ext}_I^i(\chi,\tau) \stackrel{\beta_i}{\to} \operatorname{Ext}_I^i(\chi,\pi(\bar{\rho})) \stackrel{\gamma_i}{\to} \operatorname{Ext}_I^i(\chi,\pi_f)$$

is non-zero, then $\pi(\bar{\rho})$ can be generated by τ as G-representation.

Criterion

Let $\tau \subset \pi(\bar{\rho})|_{I}$. If for some i, some character $\chi: I \to \mathbb{F}^{\times}$, the composition

$$\operatorname{Ext}_I^i(\chi,\tau) \stackrel{\beta_i}{\to} \operatorname{Ext}_I^i(\chi,\pi(\bar{\rho})) \stackrel{\gamma_i}{\to} \operatorname{Ext}_I^i(\chi,\pi_f)$$

is non-zero, then $\pi(\bar{\rho})$ can be generated by τ as G-representation.

We will find an explicit $\tau(\bar{\rho})$ which is multiplicity free (as *I*-rep.) satisfying Criterion, so that $\pi(\bar{\rho}) = \langle G.\tau(\bar{\rho}) \rangle$.

Criterion

Let $\tau \subset \pi(\bar{\rho})|_{I}$. If for some i, some character $\chi: I \to \mathbb{F}^{\times}$, the composition

$$\operatorname{Ext}_I^i(\chi,\tau) \stackrel{\beta_i}{\to} \operatorname{Ext}_I^i(\chi,\pi(\bar{\rho})) \stackrel{\gamma_i}{\to} \operatorname{Ext}_I^i(\chi,\pi_f)$$

is non-zero, then $\pi(\bar{\rho})$ can be generated by τ as G-representation.

We will find an explicit $\tau(\bar{\rho})$ which is multiplicity free (as *I*-rep.) satisfying Criterion, so that $\pi(\bar{\rho}) = \langle G.\tau(\bar{\rho}) \rangle$. How to deduce that $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$?

Criterion

Let $\tau \subset \pi(\bar{\rho})|_{I}$. If for some i, some character $\chi: I \to \mathbb{F}^{\times}$, the composition

$$\operatorname{Ext}_I^i(\chi,\tau) \stackrel{\beta_i}{\to} \operatorname{Ext}_I^i(\chi,\pi(\bar{\rho})) \stackrel{\gamma_i}{\to} \operatorname{Ext}_I^i(\chi,\pi_f)$$

is non-zero, then $\pi(\bar{\rho})$ can be generated by τ as G-representation.

We will find an explicit $\tau(\bar{\rho})$ which is multiplicity free (as *I*-rep.) satisfying Criterion, so that $\pi(\bar{\rho}) = \langle G.\tau(\bar{\rho}) \rangle$. How to deduce that $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$?

Proof. Know $\operatorname{Im}(\tau(\bar{\rho}) \to \pi_f) \cap \pi_f^{I_1} \neq 0$. Note $\pi_f^{I_1} \cong \chi_f \oplus \chi_f^s$. Check χ_f^s does not occur in $\tau(\bar{\rho})$ (by construction), and check $\chi_f \in \tau(\bar{\rho}) \cap D_0(\bar{\rho})$. \square

Step 2 (cont'd).

Criterion

Let $\tau \subset \pi(\bar{\rho})|_{I}$. If for some i, some character $\chi: I \to \mathbb{F}^{\times}$, the composition

$$\operatorname{Ext}_I^i(\chi,\tau) \stackrel{\beta_i}{\to} \operatorname{Ext}_I^i(\chi,\pi(\bar{\rho})) \stackrel{\gamma_i}{\to} \operatorname{Ext}_I^i(\chi,\pi_f)$$

is non-zero, then $\pi(\bar{\rho})$ can be generated by τ as G-representation.

We will find an explicit $\tau(\bar{\rho})$ which is multiplicity free (as *I*-rep.) satisfying Criterion, so that $\pi(\bar{\rho}) = \langle G.\tau(\bar{\rho}) \rangle$. How to deduce that $\pi(\bar{\rho})$ is generated by $D_0(\bar{\rho})$?

Proof. Know $\operatorname{Im}(\tau(\bar{\rho}) \to \pi_f) \cap \pi_f^{I_1} \neq 0$. Note $\pi_f^{I_1} \cong \chi_f \oplus \chi_f^s$. Check χ_f^s does not occur in $\tau(\bar{\rho})$ (by construction), and check $\chi_f \in \tau(\bar{\rho}) \cap D_0(\bar{\rho})$. \square

<u>I-rep.</u> vs <u>K-rep.</u> : difficult to write down a minimal injective resolution of $D_0(\bar{\rho})$. For I-rep., can first construct a resolution for the *graded* module, then lift.

Lemma

Take i=2f, $\chi=\chi_0^s$ where $\chi_0:=\sigma_0^{I_1}$, then γ_{2f} is isomorphism.

Proof • Construct isomorphisms

$$\operatorname{Ext}_{I}^{2f}(\chi_{0}^{s},\pi(\bar{\rho})) \xrightarrow{\sim} \operatorname{Ext}_{K}^{2f}(\operatorname{Ind}_{I}^{K}\chi_{0}^{s},\pi(\bar{\rho})) \xrightarrow{(2)} \operatorname{Ext}_{K}^{2f}(\sigma_{0},\pi(\bar{\rho})) \xrightarrow{(3)} \operatorname{Ext}_{G}^{2f+1}(\pi_{0},\pi(\bar{\rho}))$$

where (1) induced by Frobenius; (2) by $\sigma_0 \hookrightarrow \operatorname{Ind}_I^K \chi_0^s$; (3) by (Barthel-Livné)

$$0 \to \text{c-Ind}_{KZ}^G \sigma_0 \overset{T-\lambda_0}{\to} \text{c-Ind}_{KZ}^G \sigma_0 \to \pi_0 \to 0.$$

Surjectivity of (2) (3) : $\operatorname{injdim}_{\kappa} \pi(\bar{\rho}) = 2f$.

Lemma

Take i=2f, $\chi=\chi_0^s$ where $\chi_0:=\sigma_0^{I_1}$, then γ_{2f} is isomorphism.

Proof • Construct isomorphisms

$$\operatorname{Ext}_{l}^{2f}(\chi_{0}^{\mathfrak{s}},\pi(\bar{\rho})) \overset{(1)}{\overset{\sim}{\sim}} \operatorname{Ext}_{K}^{2f}(\operatorname{Ind}_{l}^{K}\chi_{0}^{\mathfrak{s}},\pi(\bar{\rho})) \overset{(2)}{\overset{\rightarrow}{\longrightarrow}} \operatorname{Ext}_{K}^{2f}(\sigma_{0},\pi(\bar{\rho})) \overset{(3)}{\overset{\rightarrow}{\longrightarrow}} \operatorname{Ext}_{G}^{2f+1}(\pi_{0},\pi(\bar{\rho}))$$

where (1) induced by Frobenius; (2) by $\sigma_0 \hookrightarrow \operatorname{Ind}_I^K \chi_0^s$; (3) by (Barthel-Livné)

$$0 \to \operatorname{c-Ind}_{KZ}^G \sigma_0 \stackrel{T - \lambda_0}{\to} \operatorname{c-Ind}_{KZ}^G \sigma_0 \to \pi_0 \to 0.$$

Surjectivity of (2) (3) : $\operatorname{injdim}_{\kappa} \pi(\bar{\rho}) = 2f$.

Actually all are isom. for reason of dimensions (= 1). Idem. for π_f .

Lemma

Take i=2f, $\chi=\chi_0^s$ where $\chi_0:=\sigma_0^{I_1}$, then γ_{2f} is isomorphism.

Proof • Construct isomorphisms

$$\operatorname{Ext}^{2f}_{l}(\chi_{0}^{s},\pi(\bar{\rho})) \overset{(1)}{\overset{\sim}{\longrightarrow}} \operatorname{Ext}^{2f}_{K}(\operatorname{Ind}_{l}^{K}\chi_{0}^{s},\pi(\bar{\rho})) \overset{(2)}{\overset{\sim}{\longrightarrow}} \operatorname{Ext}^{2f}_{K}(\sigma_{0},\pi(\bar{\rho})) \overset{(3)}{\overset{\rightarrow}{\longrightarrow}} \operatorname{Ext}^{2f+1}_{G}(\pi_{0},\pi(\bar{\rho}))$$

where (1) induced by Frobenius; (2) by $\sigma_0 \hookrightarrow \operatorname{Ind}_I^K \chi_0^s$; (3) by (Barthel-Livné)

$$0 \to \text{c-Ind}_{KZ}^G \sigma_0 \overset{T-\lambda_0}{\to} \text{c-Ind}_{KZ}^G \sigma_0 \to \pi_0 \to 0.$$

Surjectivity of (2) (3) : $\operatorname{injdim}_{\kappa} \pi(\bar{\rho}) = 2f$.

Actually all are isom. for reason of dimensions (= 1). Idem. for π_f .

• Spectral sequence (Emerton) $\Rightarrow \operatorname{Ext}_G^{2f+1}(\pi_0, V) \cong \operatorname{Ext}_T^{f+1}(\chi_0, R^f \operatorname{Ord}_P V).$

Lemma

Take i=2f, $\chi=\chi_0^s$ where $\chi_0:=\sigma_0^{I_1}$, then γ_{2f} is isomorphism.

Proof • Construct isomorphisms

$$\operatorname{Ext}_{l}^{2f}(\chi_{0}^{\mathfrak{s}},\pi(\bar{\rho})) \overset{(1)}{\overset{\sim}{\sim}} \operatorname{Ext}_{K}^{2f}(\operatorname{Ind}_{l}^{K}\chi_{0}^{\mathfrak{s}},\pi(\bar{\rho})) \overset{(2)}{\overset{\rightarrow}{\longrightarrow}} \operatorname{Ext}_{K}^{2f}(\sigma_{0},\pi(\bar{\rho})) \overset{(3)}{\overset{\rightarrow}{\longrightarrow}} \operatorname{Ext}_{G}^{2f+1}(\pi_{0},\pi(\bar{\rho}))$$

where (1) induced by Frobenius; (2) by $\sigma_0 \hookrightarrow \operatorname{Ind}_I^K \chi_0^s$; (3) by (Barthel-Livné)

$$0 \to \operatorname{c-Ind}_{KZ}^G \sigma_0 \stackrel{T - \lambda_0}{\to} \operatorname{c-Ind}_{KZ}^G \sigma_0 \to \pi_0 \to 0.$$

Surjectivity of (2) (3) : $\operatorname{injdim}_{\kappa} \pi(\bar{\rho}) = 2f$.

Actually all are isom. for reason of dimensions (= 1). Idem. for π_f .

- Spectral sequence (Emerton) $\Rightarrow \operatorname{Ext}_G^{2f+1}(\pi_0, V) \cong \operatorname{Ext}_T^{f+1}(\chi_0, R^f \operatorname{Ord}_P V)$.
- $R^f \operatorname{Ord}_P \pi(\bar{\rho}) \to R^f \operatorname{Ord}_P \pi_f$ is surjective, as $R^{f+1} \operatorname{Ord}_P = 0$. Again an isom.

Assume $\bar{\rho}$ is maximally non-split, equiv. $W(\bar{\rho}) = \{\sigma_0\}$.

Assume $\bar{\rho}$ is maximally non-split, equiv. $W(\bar{\rho}) = \{\sigma_0\}$.

Consider the following situation:

- $(R, \mathfrak{m}) = \text{noetherian local ring}, \underline{x} := (x_1, \dots, x_n) \text{ with } x_i \in \mathfrak{m}$
- $K_{\bullet}(\underline{x},R) = \text{Koszul complex} : \cdots \to K_2 \stackrel{d_2}{\to} K_1 \stackrel{d_1}{\to} K_0 \to 0$, with $K_i \cong R^{\binom{n}{i}}$
- $\beta_{\bullet}: K_{\bullet}(\underline{x}, R) \to F_{\bullet}$, with $F_{\bullet} = \text{complex of free } R\text{-modules}$.

Assume $\bar{\rho}$ is maximally non-split, equiv. $W(\bar{\rho}) = \{\sigma_0\}$.

Consider the following situation:

- $(R, \mathfrak{m}) = \text{noetherian local ring}, \underline{x} := (x_1, \dots, x_n) \text{ with } x_i \in \mathfrak{m}$
- $K_{\bullet}(\underline{x},R) = \text{Koszul complex} : \cdots \to K_2 \stackrel{d_2}{\to} K_1 \stackrel{d_1}{\to} K_0 \to 0$, with $K_i \cong R^{\binom{n}{i}}$
- $\beta_{\bullet}: K_{\bullet}(\underline{x}, R) \to F_{\bullet}$, with $F_{\bullet} = \text{complex of free } R\text{-modules}$.

Lemma (Serre, 1956)

Assume

- (a) x_1, \ldots, x_n are linearly independent mod \mathfrak{m}^2 ;
- (b) $\beta_0: K_0 \to F_0$ is a direct summand.

Then $\beta_i: K_i \to F_i$ is a direct summand for all $0 \le i \le n$.

Recall M_{∞} is flat over R_{∞} (regular). Get Koszul resolution P_{\bullet} of $\pi(\bar{\rho})^{\vee}$. Also can construct a minimal projective resolution Q_{\bullet} of $\tau(\bar{\rho})^{\vee}$. The inclusion $\tau(\bar{\rho}) \hookrightarrow \pi(\bar{\rho})$ induces a projection $\epsilon : \pi(\bar{\rho})^{\vee} \twoheadrightarrow \tau(\bar{\rho})^{\vee}$ and

$$\beta: P_{\bullet} \to Q_{\bullet}$$
.

Recall M_{∞} is flat over R_{∞} (regular). Get Koszul resolution P_{\bullet} of $\pi(\bar{\rho})^{\vee}$. Also can construct a minimal projective resolution Q_{\bullet} of $\tau(\bar{\rho})^{\vee}$. The inclusion $\tau(\bar{\rho}) \hookrightarrow \pi(\bar{\rho})$ induces a projection $\epsilon : \pi(\bar{\rho})^{\vee} \twoheadrightarrow \tau(\bar{\rho})^{\vee}$ and

$$\beta: P_{\bullet} \to Q_{\bullet}$$
.

To apply Lemma of Serre, find some finite dimensional I-representation λ such that

$$R := \operatorname{End}_{I}(\lambda) \cong \mathbb{F}[\![x_{1}, \ldots, x_{2f}]\!]/(x_{i}, 1 \leq i \leq 2f)^{2}.$$

Apply $\operatorname{Hom}_I(-,\lambda)^{\vee}$, get a morphism of complexes of *R*-modules

$$\beta: \operatorname{Hom}_{I}(P_{\bullet}, \lambda)^{\vee} \to \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee}.$$

Recall M_{∞} is flat over R_{∞} (regular). Get Koszul resolution P_{\bullet} of $\pi(\bar{\rho})^{\vee}$. Also can construct a minimal projective resolution Q_{\bullet} of $\tau(\bar{\rho})^{\vee}$. The inclusion $\tau(\bar{\rho}) \hookrightarrow \pi(\bar{\rho})$ induces a projection $\epsilon : \pi(\bar{\rho})^{\vee} \twoheadrightarrow \tau(\bar{\rho})^{\vee}$ and

$$\beta: P_{\bullet} \to Q_{\bullet}$$
.

To apply Lemma of Serre, find some finite dimensional I-representation λ such that

$$R := \operatorname{End}_{I}(\lambda) \cong \mathbb{F}[\![x_{1}, \dots, x_{2f}]\!]/(x_{i}, 1 \leq i \leq 2f)^{2}.$$

Apply $\operatorname{Hom}_I(-,\lambda)^{\vee}$, get a morphism of complexes of *R*-modules

$$\beta: \operatorname{Hom}_{I}(P_{\bullet}, \lambda)^{\vee} \to \operatorname{Hom}_{I}(Q_{\bullet}, \lambda)^{\vee}.$$

- (a) holds because $\pi(\bar{\rho})[\mathfrak{m}_h^3]$ is multiplicity free : "full tangent space"
- (b) holds by construction of $\tau(\bar{\rho})$ (i.e. $\tau(\bar{\rho})$ can not be too *small*).

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Step 1. (H. 2017) $\pi(\bar{\rho})/\pi_0$ admits a unique irreducible subrepresentation, which has to be supersingular; denote it by π_1 . In fact,

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Step 1. (H. 2017) $\pi(\bar{\rho})/\pi_0$ admits a unique irreducible subrepresentation, which has to be supersingular; denote it by π_1 . In fact,

 $\pi_1 := \text{subrep. of } \pi(\bar{\rho})/\pi_0 \text{ generated by its } K\text{-socle.}$

• If $\operatorname{Ext}_G^1(\pi', \pi_0) \neq 0$ with π' non-supersingular, then $\pi' \cong \pi_0$;

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Step 1. (H. 2017) $\pi(\bar{\rho})/\pi_0$ admits a unique irreducible subrepresentation, which has to be supersingular; denote it by π_1 . In fact,

- If $\operatorname{Ext}^1_G(\pi',\pi_0) \neq 0$ with π' non-supersingular, then $\pi' \cong \pi_0$;
- No extension $(\pi_0 \pi_0)$ embeds in $\pi(\bar{\rho})$, because $\operatorname{Ord}_P(\pi(\bar{\rho}))$ is semisimple (H., Breuil-Ding).

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Step 1. (H. 2017) $\pi(\bar{\rho})/\pi_0$ admits a unique irreducible subrepresentation, which has to be supersingular; denote it by π_1 . In fact,

- If $\operatorname{Ext}_G^1(\pi', \pi_0) \neq 0$ with π' non-supersingular, then $\pi' \cong \pi_0$;
- No extension $(\pi_0 \pi_0)$ embeds in $\pi(\bar{\rho})$, because $\operatorname{Ord}_P(\pi(\bar{\rho}))$ is semisimple (H., Breuil-Ding).
- Determine $\operatorname{soc}_{K}(\pi(\bar{\rho})/\pi_{0})$ and show π_{1} is irreducible (compute $H^{1}(K_{1},\pi_{0})$; exclude weights contributing to π_{0} π_{0}).

Already know : $\pi(\bar{\rho}) = \pi_0 - V - \pi_2$. Need to show V is irreducible.

Step 1. (H. 2017) $\pi(\bar{\rho})/\pi_0$ admits a unique irreducible subrepresentation, which has to be supersingular; denote it by π_1 . In fact,

- If $\operatorname{Ext}_G^1(\pi', \pi_0) \neq 0$ with π' non-supersingular, then $\pi' \cong \pi_0$;
- No extension $(\pi_0 \pi_0)$ embeds in $\pi(\bar{\rho})$, because $\operatorname{Ord}_P(\pi(\bar{\rho}))$ is semisimple (H., Breuil-Ding).
- Determine $\operatorname{soc}_{K}(\pi(\bar{\rho})/\pi_{0})$ and show π_{1} is irreducible (compute $H^{1}(K_{1},\pi_{0})$; exclude weights contributing to π_{0} π_{0}).

$$\implies$$
 obtain $(\pi_0 - \pi_1) \hookrightarrow \pi(\bar{\rho})$.

Step 2. Denote $Q := \pi(\bar{\rho})/(\pi_0 - \pi_1)$. The explicit structure of $D_0(\bar{\rho})$ shows

$$\operatorname{Im}(D_0(\bar{\rho}) \to Q) = \sigma_2,$$

where $\sigma_2 = (p - 3 - r_0, p - 3 - r_1)$ (up to twist).

Step 2. Denote $Q := \pi(\bar{\rho})/(\pi_0 - \pi_1)$. The explicit structure of $D_0(\bar{\rho})$ shows

$$\operatorname{Im}(D_0(\bar{\rho}) \to Q) = \sigma_2,$$

where $\sigma_2 = (p - 3 - r_0, p - 3 - r_1)$ (up to twist).

By Theorem **A**, Q can be generated by σ_2 , i.e.

$$\operatorname{c-Ind}_{KZ}^G \sigma_2 \twoheadrightarrow Q.$$

Lemma

Let Q be a quotient of c-Ind $_{KZ}^G \sigma_2$. Assume the G-cosocle of Q is irreducible and isomorphic to c-Ind $_{KZ}^G \sigma_2/(T-\lambda)$ for some $\lambda \in \mathbb{F}^{\times}$. Then

$$Q \cong \operatorname{c-Ind}_{KZ}^G \sigma_2/(T-\lambda)^n$$
, some $n \ge 1$.

Lemma

Let Q be a quotient of c-Ind $_{KZ}^G \sigma_2$. Assume the G-cosocle of Q is irreducible and isomorphic to c-Ind $_{KZ}^G \sigma_2/(T-\lambda)$ for some $\lambda \in \mathbb{F}^{\times}$. Then

$$Q \cong \operatorname{c-Ind}_{KZ}^G \sigma_2/(T-\lambda)^n$$
, some $n \ge 1$.

To finish the proof, we need to show n=1. If not, the self-duality of $\pi(\bar{\rho})$ would imply $\pi_0 - \cdots - \pi_0$ (n copies) embeds in $\pi(\bar{\rho})$, a contradiction.

Thank you!