On the mod p cohomology for GL_2 (I) (joint with Yongquan Hu)

Haoran Wang

Yau Mathematical Sciences Center, Tsinghua University

International Centre for Theoretical Sciences of the Tata Institute of Fundamental Research, 2020/12

Plan of the talk

- 1 Background
- 2 Some known results
- 3 Main results (I)
- 4 Sketch of proof

Notations

Let p be a prime number.

 F/\mathbb{Q} a totally real extension in which p is unramified.

D a quaternion algebra over F which is split at all places above p and at exactly one infinite place.

 $\mathbb F$ a sufficiently large finite extension of $\mathbb F_p$.

 $\overline{r}: \mathrm{Gal}(\overline{F}/F) \to \mathrm{GL}_2(\mathbb{F})$ a continuous absolutely irreducible totally odd modular representation.

Notations

 $K \subset (D \otimes_F \mathbb{A}_{F,f})^{\times}$ open compact subgroup.

 X_K/F = the associated Shimura curve of level K. It is a smooth projective algebraic curve over F.

 $H^1_{et}(X_K \times_F \overline{F}, \mathbb{F}) \mod p$ étale cohomology of X_K .

$$\pi^D(\overline{r}) = \operatorname{Hom}_{\operatorname{Gal}(\overline{F}/F)} \left(\overline{r}, \varinjlim_K H^1_{\operatorname{et}}(X_K \times_F \overline{F}, \mathbb{F}(1)) \right).$$

 $\pi^D(\overline{r})$ is a smooth representation of $(D \otimes_F \mathbb{A}_{F,f})^{\times}$ over \mathbb{F} .

The local factor at v

Conjecture (Buzzard-Diamond-Jarvis)

There is a decomposition "à la Flath"

$$\pi^D(\overline{r}) = \otimes'_w \pi^D_w(\overline{r}),$$

where the restricted tensor product is taken over all finite places of F, $\pi_w^D(\overline{r})$ is a smooth admissible $(D\otimes_F F_w)^\times$ -representation over $\mathbb F$.

We fix a place v|p.

Goal

Understand the smooth admissible $GL_2(F_v)$ -representation $\pi_v^D(\bar{r})$.

The local factor at v

Expectation

We expect $\pi_v^D(\overline{r})$ should only depend on $\overline{r}|_{\operatorname{Gal}(\overline{F}_v/F_v)}$ (shouldn't depend on F, D, \overline{r} etc.)

Breuil-Diamond, Emerton-Gee-Savitt defined the "local factor" $\pi_{\nu}^{D}(\bar{r})$ at ν in an "ad hoc" way under the following assumptions on \bar{r} .

Assumptions on \overline{r}

- $p \geq 7$, $\overline{r}|_{\operatorname{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ is absolutely irreducible;
- $\overline{r}|_{\operatorname{Gal}(\overline{F}_w/F_w)}$ is non-scalar if D ramifies at w;
- \bullet $\overline{r}|_{\operatorname{Gal}(\overline{F}_w/F_w)}$ satisfies some weak generic condition for w|p.

Gelfand-Kirillov dimension

Let
$$f := [F_{\nu} : \mathbb{Q}_p]$$
. $K := \mathrm{GL}_2(\mathcal{O}_{F_{\nu}})$, $K_1 := \ker(\mathrm{GL}_2(\mathcal{O}_{F_{\nu}}) \twoheadrightarrow \mathrm{GL}_2(\mathbb{F}_{p^f}))$.

Definition/Theorem

Let π be a smooth admissible representation of $\mathrm{GL}_2(F_{\nu})$ over $\mathbb F$. There is a unique integer $0 \leq \mathrm{GK}(\pi) \leq \dim_{\mathbb Z_p} K_1$ such that there are real numbers $a \leq b$ with

$$a \leq rac{\dim_{\mathbb{F}} \pi^{K_1^{p^n}}}{p^{n ext{GK}(\pi)}} \leq b, \ \ orall n \geq 1.$$

Example

f = 1, GK(Principal Series)= GK(Supersingular) = 1 (Paškūnas, Morra) General f, GK(Principal Series) = f.

We write $\overline{\rho} := \overline{r}|_{\operatorname{Gal}(\overline{F}_v/F_v)}$ and $\pi(\overline{\rho}) := \pi_v^D(\overline{r})$. $\pi(\overline{\rho})$ is of central character $\omega^{-1} \det(\overline{r}|_{\operatorname{Gal}(\overline{F}_v/F_v)})$.

Theorem (Breuil, Colmez, Emerton, Kisin, Paškūnas...)

Assume $F=\mathbb{Q}$ and $D=\mathrm{GL}_2,$ then $\pi(\overline{\rho})$ is explicitly known. In particular,

- (1) $GK(\pi(\overline{\rho})) = 1$.
- (2) $\pi(\overline{\rho})$ depends only on $\overline{\rho}$.
- (3) $\pi(\overline{\rho})$ is of finite length.

Recall F_{ν}/\mathbb{Q}_p unramified of degree f.

Let $W(\overline{\rho})$ be the set of Serre weights of $\overline{\rho}$.

The weight part of Serre's conjecture:

Theorem. (Gee, Gee-Kisin, Gee-Liu-Savitt, Emerton-Gee-Savitt)

 $\operatorname{soc}_K \pi(\overline{\rho})$ depends only on $\overline{\rho}$. In fact,

$$\operatorname{soc}_{K}(\pi(\overline{\rho})) = \bigoplus_{\sigma \in W(\overline{\rho})} \sigma.$$

$$I := \{g \in K, g \equiv \left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right) \mod p\} = \mathsf{Iwahori} \ \mathsf{subgroup}$$

$$I_1 := \{g \in K, \ g \equiv \left(egin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \mod p\} = \text{pro-p-lwahori subgroup}$$

$$Z=$$
 center of $\mathrm{GL}_2(F_{\nu}),\ Z_1=Z\cap K_1.\ Z_1$ acts trivially on $\pi(\overline{\rho}).$

 $\mathfrak{m}_{I_1}=$ the maximal ideal of Iwasawa algebra $\mathbb{F}[[I_1/Z_1]].$

Theorem (Emerton-Gee-Savitt)

The I/I_1 -representation $\pi(\overline{\rho})^{I_1} = \pi(\overline{\rho})[\mathfrak{m}_{I_1}]$ is explicitly known and depends only on $\overline{\rho}$.

Definition of $D_0(\overline{\rho})$

Let
$$\Gamma = K/K_1 \cong \operatorname{GL}_2(\mathbb{F}_{p^f})$$
.

Definition/Theorem (Breuil-Paškūnas)

There exists a unique finite dimensional representation $D_0(\overline{\rho})$ of Γ over $\mathbb F$ such that

- $(1) \operatorname{soc}_{\Gamma} D_0(\overline{\rho}) \cong \bigoplus_{\sigma \in W(\overline{\rho})} \sigma$
- (2) each $\sigma \in W(\overline{\rho})$ only occurs once as a Jordan-Hölder factor of $D_0(\overline{\rho})$
- (3) $D_0(\overline{\rho})$ is maximal for the properties (1) and (2).

Moreover, $D_0(\overline{\rho})$ is explicit and is multiplicity free.

Example of $D_0(\overline{\rho})$

Example (f = 1)

Let $\overline{\rho}$ be reducible and $\overline{\rho}|_{I_{\mathbb{Q}_p}}\sim\left(\begin{array}{cc}\omega^{r+1}&*\\0&1\end{array}\right),\ *
eq 0.$ Then

$$\mathcal{D}_0(\overline{\rho}) = \operatorname{Sym}^r \mathbb{F}^2 - \left(\operatorname{Sym}^{\rho-1-r} \mathbb{F}^2 \otimes \mathsf{det}^r \oplus \operatorname{Sym}^{\rho-3-r} \mathbb{F}^2 \otimes \mathsf{det}^{r+1}\right)$$

 $\mathfrak{m}_{\mathcal{K}_1}=$ the maximal ideal of Iwasawa algebra $\mathbb{F}[[\mathcal{K}_1/\mathcal{Z}_1]].$

Theorem (Hu-W., Le-Morra-Schraen, Le)

The finite dimensional Γ-representation

$$\pi(\overline{\rho})^{K_1} = \pi(\overline{\rho})[\mathfrak{m}_{K_1}]$$

depends only on $\overline{\rho}$. In fact,

$$\pi(\overline{\rho})[\mathfrak{m}_{K_1}] = D_0(\overline{\rho}).$$

Hence it is multiplicity free.

Main results: assumptions on $\overline{\rho}$

Let $I_{F_{\nu}}$ be the inertia subgroup of $Gal(\overline{F}_{\nu}/F_{\nu})$.

 ω_f is Serre's fundamental character of I_{F_v} of level f.

Definition

If $\overline{\rho}$ is reducible, say $\overline{\rho}$ is strongly generic if

$$|\overline{
ho}|_{I_{F_{oldsymbol{
u}}}} \sim \left(egin{array}{c} \omega_f^{\sum_{i=0}^{t-1}
ho'(r_i+1)} & * \ 0 & 1 \end{array}
ight) \otimes \eta,$$

with $2 \le r_i \le p - 5$ for each i.

From now on we assume $\overline{\rho}$ is reducible non-split strongly generic.

Definition of $\widetilde{D}_0(\overline{\rho})$

Let
$$\widetilde{\Gamma} = \mathbb{F}[[K]]/\mathfrak{m}_{K_1}^2$$
.

Definition/Theorem (Hu-W. 2020)

There exists a unique finite dimensional representation $\widetilde{D}_0(\overline{\rho})$ of $\widetilde{\Gamma}$ over \mathbb{F} such that

- $(1) \operatorname{soc}_{\widetilde{\Gamma}} \widetilde{D}_0(\overline{\rho}) = \operatorname{soc}_{\Gamma} D_0(\overline{\rho}) = \bigoplus_{\sigma \in W(\overline{\rho})} \sigma$
- (2) each $\sigma \in W(\overline{\rho})$ only occurs once as a Jordan-Hölder factor of $\widetilde{D}_0(\overline{\rho})$
- (3) $\widetilde{D}_0(\overline{\rho})$ is maximal for the properties (1) and (2).

Moreover, $\widetilde{D}_0(\overline{\rho})$ is multiplicity free.

Example of $\widetilde{D}_0(\overline{ ho})$

Remark

When $\overline{\rho}$ is semi-simple, similar result is also obtained by Breuil-Herzig-Hu-Morra-Schraen 2020.

Example. (f=1)

Let $\overline{
ho}$ be reducible and $\overline{
ho}|_{I_{\mathbb{Q}_p}}\sim\left(egin{array}{cc}\omega^{r+1}&*\\0&1\end{array}
ight),\,*
eq0$. Then

$$\begin{split} \widetilde{D}_0(\overline{\rho}) &= \operatorname{Sym}^r - \left(\operatorname{Sym}^{p-1-r} \otimes \operatorname{det}^r \oplus \operatorname{Sym}^{p-3-r} \otimes \operatorname{det}^{r+1}\right) \\ &- \left(\operatorname{Sym}^{r-2} \otimes \operatorname{det} \oplus \operatorname{Sym}^{r+2} \otimes \operatorname{det}^{-1}\right) - \left(\operatorname{Sym}^{p+1-r} \otimes \operatorname{det}^{r-1} \oplus \operatorname{Sym}^{p-5-r} \otimes \operatorname{det}^{r+2}\right) \end{split}$$

Main results

Maintain the assumptions we have made on \overline{r} and $\overline{\rho}$. Assume further

• the framed deformation ring of $\overline{r}|_{\mathrm{Gal}(\overline{F}_w/F_w)}$ over the Witt vectors $W(\mathbb{F})$ is formally smooth for $w \nmid p$ such that either D or \overline{r} ramifies.

Theorem (Hu-W.2020)

- (i) $GK(\pi(\overline{\rho})) = f$.
- (ii) The finite dimensional $\widetilde{\Gamma}$ -representation $\pi(\overline{\rho})[\mathfrak{m}_{K_1}^2]$ depends only on $\overline{\rho}$. In fact,

$$\pi(\overline{\rho})[\mathfrak{m}_{K_1}^2] = \widetilde{D}_0(\overline{\rho}).$$

Hence it is multiplicity free.

Remark.

- (1) Breuil-Herzig-Hu-Morra-Schraen (2020) proved similar results for $\overline{\rho}$ semi-simple, even for "non-minimal case".
- (2) Gee-Newton proved $GK(\pi(\overline{\rho})) \ge f$ (without the assumptions on $\overline{\rho}$).
- (3) To prove $GK(\pi(\overline{\rho})) \le f$, we apply the "Control Theorem" obtained by Breuil-Herzig-Hu-Morra-Schraen (2020)
- (4) BHHMS need to compute the potentially crystalline deformation ring of $\overline{\rho}$ of **Hodge-Tate weights** (2,-1), while we need the results of Le on the potentially crystalline deformation ring of $\overline{\rho}$ of **Hodge-Tate weights** (1,0).

Sketch of proof: the first reduction

Theorem A

For any $\sigma \in W(\overline{\rho})$, σ occurs only once as a Jordan-Hölder factor of $\pi(\overline{\rho})[\mathfrak{m}_{K_1}^2]$.

Theorem A is equivalent to:

Theorem B

For any $\sigma \in W(\overline{\rho})$,

$$\dim_{\mathbb{F}} \operatorname{Hom}_{K}(\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma), \pi(\overline{\rho})) = 1,$$

where $\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma)$ is a projective envelope of σ in the category of $\widetilde{\Gamma}$ -modules.

Thm. $A \Rightarrow (ii)$:

We assume Thm. A.

By the definition of $\widetilde{D}_0(\overline{\rho})$ (it is the largest representation with the properties (1) and (2))

$$\pi(\overline{\rho})[\mathfrak{m}_{K_1}^2] \subseteq \widetilde{D}_0(\overline{\rho}).$$

The projectivity of $M_{\infty}|_{\mathcal{K}}$ and the multiplicity freeness of $\widetilde{D}_0(\overline{\rho})$ gives

$$\widetilde{D}_0(\overline{\rho}) \subseteq \pi(\overline{\rho})[\mathfrak{m}_{K_1}^2]$$

Thm. $A \Rightarrow (i)$:

Thanks to Gee-Newton, it suffices to prove $GK(\pi(\overline{\rho})) \leq f$.

Breuil-Herzig-Hu-Morra-Schraen: Pass to the Iwahori subgroup representation.

Proposition A

If $\pi(\overline{\rho})[\mathfrak{m}_{K_1}^2]$ is multiplicity free, then $\pi(\overline{\rho})[\mathfrak{m}_{I_1}^3]$ is multiplicity free (as *I*-representation).

The Control Theorem of [BHHMS]

Control Theorem (Breuil-Herzig-Hu-Morra-Schraen, 2020)

Let π be a smooth admissible representation of I/Z_1 . If $\pi[\mathfrak{m}_{f_1}^3]$ is multiplicity free, then $GK(\pi) \leq f$.

Thm. A + Prop. A + Control Thm. \Rightarrow (i).

A word on the proof of the Control Theorem: (see Prop. 6 of Prof. Breuil's talk in this conference)

The condition " $\pi[\mathfrak{m}_{h_1}^3]$ is multiplicity free" implies that $\operatorname{gr}_{\mathfrak{m}_{h_1}}\pi^{\vee}$ is a finitely generated module over $\mathbb{F}[(X_i,Y_i)_{1\leq i\leq f}]/(X_iY_i)$.

Thm. $A \Leftrightarrow Thm. B \Leftrightarrow Thm. C$

Recall: to prove Thm. A, it is equivalent to prove Thm. B: For any $\sigma \in W(\overline{\rho})$,

$$\dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma), \pi(\overline{\rho})) = 1.$$

When $\overline{\rho}$ is **indecomposable**, the Diamond diagrams associated to $\overline{\rho}$ are indecomposable, then Thm. B is equivalent to

Theorem C

There exists $\sigma \in W(\overline{\rho})$ such that

$$\dim_{\mathbb{F}} \operatorname{Hom}_{\mathcal{K}}(\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma), \pi(\overline{\rho})) = 1.$$

The patching module M_{∞}

Using Taylor-Wiles-Kisin patching method, Caraiani-Emerton-Gee-Geraghty-Paškūnas-Shin constructed:

 $R_{\infty} =$ a power series ring over a tensor product of local deformation rings = a power series ring over $W(\mathbb{F})$ (under the assumptions on \overline{r}).

 $\mathfrak{m}_{\infty}=$ the maximal ideal of $R_{\infty}.$

 $M_{\infty}=$ the patched module, a finitely generated $R_{\infty}[\mathrm{GL}_2(F_{\nu})]$ -module, $M_{\infty}|_{\mathcal{K}}$ is projective. We use the "minimal" version of M_{∞} (Dotto-Le).

$$\pi(\overline{\rho})^{\vee} = M_{\infty}/\mathfrak{m}_{\infty}.$$

Thm. $C \Leftrightarrow Thm. D$

By the projectivity of $M_{\infty}|_{K}$, M_{∞} defines an exact functor on K-representations over $\mathbb F$:

$$V \mapsto M_{\infty}(V) := \operatorname{Hom}_{K}(M_{\infty}, V^{\vee})^{\vee}.$$

We have

$$\operatorname{Hom}_{\mathbb{F}}(M_{\infty}(V)/\mathfrak{m}_{\infty},\mathbb{F})\cong \operatorname{Hom}_{K}(V,\pi(\overline{\rho})).$$

Hence Thm. C is equivalent to

Theorem D

There exists $\sigma \in W(\overline{\rho})$ such that $M_{\infty}(\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma))$ is a cyclic R_{∞} -module, (equivalently a quotient of R_{∞}).

Proof of Thm. D

We prove Thm. D for $\sigma_0 = (r_0, r_1, \dots, r_{f-1})$ the "ordinary Serre weight".

Proposition

There is a quotient V of $\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma_0)$ such that $M_{\infty}(\operatorname{Proj}_{\widetilde{\Gamma}}(\sigma_0))$ is R_{∞} -cyclic if and only if $M_{\infty}(V)$ is R_{∞} -cyclic.

There is an exact sequence

$$0 \to M_{\infty}(V) \to M_{\infty}(V^{\mathrm{ord}}) \oplus M_{\infty}(\mathrm{Proj}_{\Gamma}(\sigma_{0})) \to M_{\infty}(\sigma_{0}) \to 0,$$

where V^{ord} is a K-representation which captures the information of Emerton's ordinary part of a smooth $\mathrm{GL}_2(F_{\nu})$ -representation over $\mathbb F$.

Proof of Thm. D

Let $\overline{R}_{\infty} = R_{\infty} \otimes_{W(\mathbb{F})} \mathbb{F}$.

- Gee+Emerton-Gee-Savitt: $M_{\infty}(\sigma_0)$ is a cyclic \overline{R}_{∞} -module; $I^{\sigma_0} := \operatorname{Ann}_{\overline{R}_{\infty}}(M_{\infty}(\sigma_0)) = \text{the reduction mod } p \text{ of the ideal of } R_{\infty}$ giving the crystalline deformation ring associated to σ_0 at v.
- Hu, Breuil-Ding: $M_{\infty}(V^{\mathrm{ord}})$ is a cyclic \overline{R}_{∞} -module. Let $I^{\mathrm{ord}} := \mathrm{Ann}_{\overline{R}_{\infty}}(M_{\infty}(V^{\mathrm{ord}}))$. $I^{\mathrm{ord}} \supseteq I^{\mathrm{red}} =$ the ideal of \overline{R}_{∞} which at v gives the reducible deformations of $\overline{\rho}$.
- Le: $M_{\infty}(\operatorname{Proj}_{\Gamma}(\sigma_0))$ is a cyclic \overline{R}_{∞} -module. $I^{\operatorname{tame},\sigma_0} := \operatorname{Ann}_{\overline{R}_{\infty}}(M_{\infty}(\operatorname{Proj}_{\Gamma}(\sigma_0)) = \text{the reduction mod } p \text{ of the ideal of } R_{\infty} \text{ which at } v \text{ gives the multi-tame type deformations of } \overline{\rho}.$

Proof of Thm. D

Hence we have an exact sequence

$$0 \to M_\infty(V) \to \overline{R}_\infty/I^{\mathrm{ord}} \oplus \overline{R}_\infty/I^{\mathrm{tame},\sigma_0} \to \overline{R}_\infty/I^{\sigma_0} \to 0.$$

Proposition

$$I^{\text{ord}} + I^{\text{tame},\sigma_0} = I^{\sigma_0}$$
.

Theorem D then follows from the following easy lemma:

Lemma

Let (R, \mathfrak{m}) be a noetherian local ring, $I_1, I_2 \subseteq I_0 \subseteq \mathfrak{m}$. Then

$$\ker(R/I_1 \oplus R/I_2 \twoheadrightarrow R/I_0)$$
 is cyclic over R iff $I_0 = I_1 + I_2$

Consequence

Theorem (Gee-Newton)

Since R_{∞} is a power series ring over $W(\mathbb{F})$,

$$GK(\pi(\overline{\rho})) = f$$
 is equivalent to M_{∞} is flat over R_{∞} .

Corollary

Let $x:R_\infty o \mathcal O'$ be a local morphism of $W(\mathbb F)$ -algebras. Set

$$\Pi(x)^0 := \operatorname{Hom}_{\mathcal{O}'}^{\mathrm{cont}}(M_{\infty} \otimes_{R_{\infty},x} \mathcal{O}',\mathcal{O}')$$

and $\Pi(x) := \Pi(x)^0 \otimes_{\mathcal{O}'} E'$. Then $\Pi(x)$ is a **nonzero** admissible unitary Banach representation of $\mathrm{GL}_2(F_v)$ over E' with $\mathrm{GL}_2(F_v)$ -invariant unit ball $\Pi(x)^0$ which lifts $\pi(\overline{\rho}) \otimes_{\mathbb{F}} \mathbb{F}'$.