On Sharifi's conjectures and generalizations

Emmanuel Lecouturier (joint work with Jun Wang)

YMSC and Tsinghua University

Talk at the ICTS On 1st december 2020

▶ Relation between the geometry of GL_2/\mathbb{Q} modulo an Eisenstein ideal and the arithmetic of GL_1/\mathbb{Q} .

- ▶ Relation between the geometry of GL_2/\mathbb{Q} modulo an Eisenstein ideal and the arithmetic of GL_1/\mathbb{Q} .
- ▶ This relation was already studied by Ribet, Mazur, Wiles etc.

- ▶ Relation between the geometry of GL_2/\mathbb{Q} modulo an Eisenstein ideal and the arithmetic of GL_1/\mathbb{Q} .
- ▶ This relation was already studied by Ribet, Mazur, Wiles etc.
- Sharifi makes this relation completely explicit.

- ▶ Relation between the geometry of GL_2/\mathbb{Q} modulo an Eisenstein ideal and the arithmetic of GL_1/\mathbb{Q} .
- ▶ This relation was already studied by Ribet, Mazur, Wiles etc.
- Sharifi makes this relation completely explicit.
- ► Today: review of Sharifi's conjectures, known results about these, and generalizations to Bianchi 3-manifolds.

 $ightharpoonup \mathbb{Z}' = \mathbb{Z}[\frac{1}{2}], \ N \geq 1, \ X_1(N)$ usual modular curve, $\zeta_N = exp(\frac{2i\pi}{N}).$

- $ightharpoonup \mathbb{Z}' = \mathbb{Z}[rac{1}{2}], \ \mathcal{N} \geq 1, \ X_1(\mathcal{N})$ usual modular curve, $\zeta_{\mathcal{N}} = exp(rac{2i\pi}{\mathcal{N}}).$
- ▶ $C_1(N)$ cusps of $X_1(N)$ not above the cusp ∞ of $X_0(N)$.

- $ightharpoonup \mathbb{Z}' = \mathbb{Z}[rac{1}{2}], \ N \geq 1, \ X_1(N)$ usual modular curve, $\zeta_N = exp(rac{2i\pi}{N}).$
- ▶ $C_1(N)$ cusps of $X_1(N)$ not above the cusp ∞ of $X_0(N)$.
- ▶ $H_1(X_1(N), C_1(N), \mathbb{Z}')$ relative singular homology. $H_1(X_1(N), C_1(N), \mathbb{Z}')^+$ fixed part by complex conjugation.

- $ightharpoonup \mathbb{Z}' = \mathbb{Z}[rac{1}{2}], \ N \geq 1, \ X_1(N)$ usual modular curve, $\zeta_N = exp(rac{2i\pi}{N}).$
- ▶ $C_1(N)$ cusps of $X_1(N)$ not above the cusp ∞ of $X_0(N)$.
- ▶ $H_1(X_1(N), C_1(N), \mathbb{Z}')$ relative singular homology. $H_1(X_1(N), C_1(N), \mathbb{Z}')^+$ fixed part by complex conjugation.
- $ightharpoonup K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}])$ Quillen's K_2 .

- $ightharpoonup \mathbb{Z}' = \mathbb{Z}[\frac{1}{2}], \ N \geq 1, \ X_1(N)$ usual modular curve, $\zeta_N = exp(\frac{2i\pi}{N})$.
- ▶ $C_1(N)$ cusps of $X_1(N)$ not above the cusp ∞ of $X_0(N)$.
- ▶ $H_1(X_1(N), C_1(N), \mathbb{Z}')$ relative singular homology. $H_1(X_1(N), C_1(N), \mathbb{Z}')^+$ fixed part by complex conjugation.
- $ightharpoonup K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}])$ Quillen's K_2 .
- Sharifi constructed an explicit map $\varpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ \to (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+.$

- $ightharpoonup \mathbb{Z}' = \mathbb{Z}[\frac{1}{2}], \ N \geq 1, \ X_1(N)$ usual modular curve, $\zeta_N = exp(\frac{2i\pi}{N})$.
- ▶ $C_1(N)$ cusps of $X_1(N)$ not above the cusp ∞ of $X_0(N)$.
- ▶ $H_1(X_1(N), C_1(N), \mathbb{Z}')$ relative singular homology. $H_1(X_1(N), C_1(N), \mathbb{Z}')^+$ fixed part by complex conjugation.
- $ightharpoonup K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}])$ Quillen's K_2 .
- Sharifi constructed an explicit map $\varpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ \to (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+.$
- ▶ Need generators and relations for $H_1(X_1(N), C_1(N), \mathbb{Z}')^+$.

▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.

- ▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.
- Manin's trick of continued fractions: generated by the $\{g(0), g(\infty)\}$ for $g \in \Gamma_1(N) \setminus SL_2(\mathbb{Z})$.

- ▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.
- Manin's trick of continued fractions: generated by the $\{g(0), g(\infty)\}$ for $g \in \Gamma_1(N) \setminus SL_2(\mathbb{Z})$.
- $\begin{array}{l} \blacktriangleright \ \, \mathsf{Identification} \\ \Gamma_1(\textit{N}) \backslash \mathsf{SL}_2(\mathbb{Z}) \simeq \{[u,v], u,v \in \mathbb{Z} \, / \, \! \! N \, \mathbb{Z}, \mathsf{gcd}(u,v,\textit{N}) = 1\}. \\ \binom{s}{u} \quad t \\ \nu \mapsto [u,v]. \end{array}$

- ▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.
- Manin's trick of continued fractions: generated by the $\{g(0), g(\infty)\}$ for $g \in \Gamma_1(N) \setminus SL_2(\mathbb{Z})$.
- $\begin{array}{l} \text{Identification} \\ \Gamma_1(\textit{N}) \backslash \operatorname{SL}_2(\mathbb{Z}) \simeq \{[u,v], u,v \in \mathbb{Z} \, / \, N \, \mathbb{Z}, \gcd(u,v,\textit{N}) = 1\}. \\ \binom{s}{u} \quad v \mapsto [u,v]. \end{array}$
- Relations: [u, v] + [-v, u] = 0 and [u, v] + [v, -(u + v)] + [-(u + v), u] = 0.

- ▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.
- Manin's trick of continued fractions: generated by the $\{g(0), g(\infty)\}$ for $g \in \Gamma_1(N) \setminus SL_2(\mathbb{Z})$.
- ldentification $\Gamma_1(N) \setminus \mathsf{SL}_2(\mathbb{Z}) \simeq \{[u,v], u,v \in \mathbb{Z} \, / \, N \, \mathbb{Z}, \mathsf{gcd}(u,v,N) = 1\}.$ $\begin{pmatrix} s & t \\ u & v \end{pmatrix} \mapsto [u,v].$
- Relations: [u, v] + [-v, u] = 0 and [u, v] + [v, -(u + v)] + [-(u + v), u] = 0.
- ► $H_1(X_1(N), C_1(N), \mathbb{Z})$ generated by the Manin symbols [u, v] with $u, v \neq 0$.

- ▶ $H_1(X_1(N), \text{cusps}, \mathbb{Z})$ generated by the modular symbols $\{\alpha, \beta\}$ $(\alpha, \beta \in \mathbb{P}^1(\mathbb{Q}))$.
- Manin's trick of continued fractions: generated by the $\{g(0), g(\infty)\}$ for $g \in \Gamma_1(N) \setminus SL_2(\mathbb{Z})$.
- Identification $\Gamma_1(N) \backslash \operatorname{SL}_2(\mathbb{Z}) \simeq \{[u,v], u,v \in \mathbb{Z} \, / \, N \, \mathbb{Z}, \operatorname{gcd}(u,v,N) = 1\}.$ $\begin{pmatrix} s & t \\ u & v \end{pmatrix} \mapsto [u,v].$
- Relations: [u, v] + [-v, u] = 0 and [u, v] + [v, -(u + v)] + [-(u + v), u] = 0.
- ▶ $H_1(X_1(N), C_1(N), \mathbb{Z})$ generated by the Manin symbols [u, v] with $u, v \neq 0$.
- ▶ Complex conjugation : $[u, v] \rightarrow [-u, v]$.

► Sharifi's map:

$$arpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ o (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+$$

$$[u, v] \to \{1 - \zeta_N^u, 1 - \zeta_N^v\}.$$

Sharifi's map:

$$arpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ o (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+$$

$$[u, v] \to \{1 - \zeta_N^u, 1 - \zeta_N^v\}.$$

▶ Here, $\{\cdot,\cdot\}$ is the Steinberg product. It is bilinear and satisfies $\{x,1-x\}=0$ (Steinberg relations).

Sharifi's map:

$$arpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ o (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+$$

$$[u, v] \to \{1 - \zeta_N^u, 1 - \zeta_N^v\}.$$

- ▶ Here, $\{\cdot,\cdot\}$ is the Steinberg product. It is bilinear and satisfies $\{x,1-x\}=0$ (Steinberg relations).
- ▶ Fact: ϖ_N is well-defined (exercise using Steinberg relations).

Sharifi's map:

$$arpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ o (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+$$

$$[u, v] \to \{1 - \zeta_N^u, 1 - \zeta_N^v\}.$$

- ► Here, $\{\cdot, \cdot\}$ is the Steinberg product. It is bilinear and satisfies $\{x, 1-x\} = 0$ (Steinberg relations).
- ▶ Fact: ϖ_N is well-defined (exercise using Steinberg relations).
- ▶ Problem: the LHS is infinite, whereas the RHS is a finite group.

Sharifi's map:

$$arpi_N: H_1(X_1(N), C_1(N), \mathbb{Z}')^+ o (K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}')^+$$

$$[u, v] \to \{1 - \zeta_N^u, 1 - \zeta_N^v\}.$$

- ► Here, $\{\cdot, \cdot\}$ is the Steinberg product. It is bilinear and satisfies $\{x, 1-x\} = 0$ (Steinberg relations).
- ▶ Fact: ϖ_N is well-defined (exercise using Steinberg relations).
- ▶ Problem: the LHS is infinite, whereas the RHS is a finite group.

▶ We work with dual Hecke operators T_{ℓ}^* , $\langle \ell \rangle^*$ (for $\ell \nmid N$) and U_{ℓ}^* (for $\ell \mid N$).

- ▶ We work with dual Hecke operators T_{ℓ}^* , $\langle \ell \rangle^*$ (for $\ell \nmid N$) and U_{ℓ}^* (for $\ell \mid N$).
- Consider the Eisenstein ideal I_N generated by the $T_\ell^*-1-\ell\langle\ell\rangle^*$ and U_ℓ^*-1 .

- ▶ We work with dual Hecke operators T_{ℓ}^* , $\langle \ell \rangle^*$ (for $\ell \nmid N$) and U_{ℓ}^* (for $\ell \mid N$).
- Consider the Eisenstein ideal I_N generated by the $T_\ell^* 1 \ell \langle \ell \rangle^*$ and $U_\ell^* 1$.
- Conjecture (Sharifi, 2010'):
 - 1. (Eisenstein quotient) ϖ_N is killed by I_N .
 - 2. (Isomorphism) ϖ_N induces by restriction an isomorphism

$$H_1(X_1(N),\mathbb{Z}')^+/I_N \xrightarrow{\sim} (K_2(\mathbb{Z}[\zeta_N])\otimes \mathbb{Z}')^+$$
 .

- ▶ We work with dual Hecke operators T_{ℓ}^* , $\langle \ell \rangle^*$ (for $\ell \nmid N$) and U_{ℓ}^* (for $\ell \mid N$).
- Consider the Eisenstein ideal I_N generated by the $T_\ell^* 1 \ell \langle \ell \rangle^*$ and $U_\ell^* 1$.
- ► Conjecture (Sharifi, 2010'):
 - 1. (Eisenstein quotient) ϖ_N is killed by I_N .
 - 2. (Isomorphism) ϖ_N induces by restriction an isomorphism

$$H_1(X_1(N),\mathbb{Z}')^+/I_N \xrightarrow{\sim} (K_2(\mathbb{Z}[\zeta_N]) \otimes \mathbb{Z}')^+$$
 .

▶ Both sides are finite groups with an action of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, and the map is anti-equivariant for this action.

- ▶ We work with dual Hecke operators T_{ℓ}^* , $\langle \ell \rangle^*$ (for $\ell \nmid N$) and U_{ℓ}^* (for $\ell \mid N$).
- Consider the Eisenstein ideal I_N generated by the $T_\ell^* 1 \ell \langle \ell \rangle^*$ and $U_\ell^* 1$.
- Conjecture (Sharifi, 2010'):
 - 1. (Eisenstein quotient) ϖ_N is killed by I_N .
 - 2. (Isomorphism) ϖ_N induces by restriction an isomorphism

$$H_1(X_1(N),\mathbb{Z}')^+/I_N \xrightarrow{\sim} (K_2(\mathbb{Z}[\zeta_N]) \otimes \mathbb{Z}')^+$$
.

- ▶ Both sides are finite groups with an action of $(\mathbb{Z}/N\mathbb{Z})^{\times}$, and the map is anti-equivariant for this action.
- Necessary to restrict to absolute homology to get the isomorphism.

▶ Take $N = p^n$ prime power $(p \ge 3)$. Then

$$(\mathcal{K}_2(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^+ \simeq (\mathsf{Pic}(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^-(1)$$
.

▶ Take $N = p^n$ prime power $(p \ge 3)$. Then

$$(\mathcal{K}_2(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^+ \simeq (\mathsf{Pic}(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^-(1)$$
.

► Inverse limit over *n*:

$$\varprojlim_n H_1(X_1(p^n),\mathbb{Z}')^+/I_{p^n} \xrightarrow{\sim} X^-(1)$$

where $X = \varprojlim_n \operatorname{Pic}(\mathbb{Z}[\zeta_{p^n}])$ is the classical Iwasawa module.

▶ Take $N = p^n$ prime power $(p \ge 3)$. Then

$$(\mathcal{K}_2(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^+ \simeq (\mathsf{Pic}(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^-(1)$$
.

► Inverse limit over *n*:

$$\varprojlim_n H_1(X_1(p^n),\mathbb{Z}')^+/I_{p^n} \xrightarrow{\sim} X^-(1)$$

where $X = \varprojlim_n \operatorname{Pic}(\mathbb{Z}[\zeta_{p^n}])$ is the classical Iwasawa module.

▶ Both sides have the same characteristic ideal: the (equivariant) p-adic L-function.

▶ Take $N = p^n$ prime power $(p \ge 3)$. Then

$$(\mathcal{K}_2(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^+ \simeq (\mathsf{Pic}(\mathbb{Z}[\zeta_{p^n}])\otimes \mathbb{Z}/p^n\,\mathbb{Z})^-(1)$$
.

► Inverse limit over *n*:

$$\varprojlim_n H_1(X_1(p^n),\mathbb{Z}')^+/I_{p^n} \xrightarrow{\sim} X^-(1)$$

where $X = \varprojlim_n \operatorname{Pic}(\mathbb{Z}[\zeta_{p^n}])$ is the classical Iwasawa module.

- Both sides have the same characteristic ideal: the (equivariant) p-adic L-function.
- ▶ We see that Sharifi's conjecture implies the IMC.

Known results

▶ Many people worked around this conjecture: Sharifi, Stevens-Busuioc, Wake-Wang-Ericson, Ohta, Fukaya-Kato, L.-Wang (probably others missing)... and very recently Sharifi-Venkatesh (2020).

Known results

- ▶ Many people worked around this conjecture: Sharifi, Stevens-Busuioc, Wake-Wang-Ericson, Ohta, Fukaya-Kato, L.-Wang (probably others missing)... and very recently Sharifi-Venkatesh (2020).
- ► Today we briefly survey the works of Fukaya–Kato, L.–Wang and Sharifi–Venkatesh.

The work of Fukaya–Kato (2012, unpublished)

Fukaya–Kato proved the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p $(p \ge 5)$ and $p \mid N$.

The work of Fukaya–Kato (2012, unpublished)

- Fukaya-Kato proved the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p $(p \ge 5)$ and $p \mid N$.
- ▶ Roughly, their strategy is to define a Hecke equivariant map $z_N: H_1(X_1(N), C_1(N), \mathbb{Z}_p) \to K_2(Y_1(N)_{\mathbb{Z}[\frac{1}{N}]}) \otimes \mathbb{Z}_p$ sending [u, v] to $\{g_{0, \frac{u}{N}}, g_{0, \frac{v}{N}}\}$, and then "specialize at ∞ " to get ϖ_N .

The work of Fukaya–Kato (2012, unpublished)

- Fukaya-Kato proved the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p $(p \ge 5)$ and $p \mid N$.
- ▶ Roughly, their strategy is to define a Hecke equivariant map $z_N: H_1(X_1(N), C_1(N), \mathbb{Z}_p) \to K_2(Y_1(N)_{\mathbb{Z}[\frac{1}{N}]}) \otimes \mathbb{Z}_p$ sending [u, v] to $\{g_{0, \frac{u}{N}}, g_{0, \frac{v}{N}}\}$, and then "specialize at ∞ " to get ϖ_N .
- ▶ Here, $g_{0,\frac{u}{N}}$ is the usual Siegel unit in $\mathcal{O}(Y_1(N))^{\times} \otimes \mathbb{Z}[\frac{1}{6N}]$. The "leading term" at infinity is $1 \zeta_N^u$.

The work of Fukaya–Kato (2012, unpublished)

- Fukaya–Kato proved the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p $(p \ge 5)$ and $p \mid N$.
- ▶ Roughly, their strategy is to define a Hecke equivariant map $z_N: H_1(X_1(N), C_1(N), \mathbb{Z}_p) \to K_2(Y_1(N)_{\mathbb{Z}[\frac{1}{N}]}) \otimes \mathbb{Z}_p$ sending [u, v] to $\{g_{0, \frac{u}{N}}, g_{0, \frac{v}{N}}\}$, and then "specialize at ∞ " to get ϖ_N .
- ▶ Here, $g_{0,\frac{u}{N}}$ is the usual Siegel unit in $\mathcal{O}(Y_1(N))^{\times} \otimes \mathbb{Z}[\frac{1}{6N}]$. The "leading term" at infinity is $1 \zeta_N^u$.
- ► They need to go to the p-adic tower, take ordinary parts and apply some p-adic regulator.

▶ We almost prove the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p ($p \ge 5$), where the level N is a prime such that $p \mid N-1$.

- ▶ We almost prove the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p ($p \ge 5$), where the level N is a prime such that $p \mid N-1$.
- More precisely: we prove the Eisenstein quotient in $K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}_p / K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p$. Note that $K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p = (\mathbb{Z}/N\mathbb{Z})^{\times} \otimes \mathbb{Z}_p$

- ▶ We almost prove the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p ($p \ge 5$), where the level N is a prime such that $p \mid N-1$.
- More precisely: we prove the Eisenstein quotient in $K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}_p / K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p$. Note that $K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p = (\mathbb{Z}/N\mathbb{Z})^{\times} \otimes \mathbb{Z}_p$
- We basically follow the same ideas as Fukaya–Kato, with some extra difficulties because the p-adic regulator has some kernel.

- ▶ We almost prove the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p ($p \ge 5$), where the level N is a prime such that $p \mid N-1$.
- More precisely: we prove the Eisenstein quotient in $K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}_p / K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p$. Note that $K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p = (\mathbb{Z}/N\mathbb{Z})^{\times} \otimes \mathbb{Z}_p$
- We basically follow the same ideas as Fukaya–Kato, with some extra difficulties because the p-adic regulator has some kernel.
- Our main motivation to study this case was the study of Mazur's Eisenstein ideal. Basically, we deduce an explicit description of

$$I \cdot H_1(X_0(N), \mathbb{Z}_p)^+ / I^2 \cdot H_1(X_0(N), \mathbb{Z}_p)^+$$

where I is Mazur's Eisenstein ideal, under some assumption.

- ▶ We almost prove the Eisenstein quotient conjecture with coefficients in \mathbb{Z}_p ($p \ge 5$), where the level N is a prime such that $p \mid N-1$.
- More precisely: we prove the Eisenstein quotient in $K_2(\mathbb{Z}[\zeta_N, \frac{1}{N}]) \otimes \mathbb{Z}_p / K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p$. Note that $K_2(\mathbb{Z}[\frac{1}{N}]) \otimes \mathbb{Z}_p = (\mathbb{Z}/N\mathbb{Z})^{\times} \otimes \mathbb{Z}_p$
- ▶ We basically follow the same ideas as Fukaya–Kato, with some extra difficulties because the p-adic regulator has some kernel.
- Our main motivation to study this case was the study of Mazur's Eisenstein ideal. Basically, we deduce an explicit description of

$$I \cdot H_1(X_0(N), \mathbb{Z}_p)^+ / I^2 \cdot H_1(X_0(N), \mathbb{Z}_p)^+$$

where I is Mazur's Eisenstein ideal, under some assumption.

▶ The assumption is that $\prod_{k=1}^{\frac{N-1}{2}} k^k$ vanishes in $(\mathbb{Z}/N\mathbb{Z})^{\times} \otimes \mathbb{Z}_p$. This quantity was discovered by Merel (1996).

▶ They prove that the restriction of ϖ_N to $H_1(X_1(N), \mathbb{Z}')$ is Eisenstein except possibly for $U_\ell^* - 1$ $(\ell \mid N)$.

- ▶ They prove that the restriction of ϖ_N to $H_1(X_1(N), \mathbb{Z}')$ is Eisenstein except possibly for $U_\ell^* 1$ $(\ell \mid N)$.
- It seems to me that we may avoid having to restrict to $H_1(X_1(N), \mathbb{Z}')$ (to be checked).

- ▶ They prove that the restriction of ϖ_N to $H_1(X_1(N), \mathbb{Z}')$ is Eisenstein except possibly for $U_\ell^* 1$ ($\ell \mid N$).
- It seems to me that we may avoid having to restrict to $H_1(X_1(N), \mathbb{Z}')$ (to be checked).
- ▶ Contrary to Fukaya–Kato, their proof do not use Siegel units. It uses the motivic cohomology of \mathbb{G}_m^2 .

- ▶ They prove that the restriction of ϖ_N to $H_1(X_1(N), \mathbb{Z}')$ is Eisenstein except possibly for $U_\ell^* 1$ ($\ell \mid N$).
- It seems to me that we may avoid having to restrict to $H_1(X_1(N), \mathbb{Z}')$ (to be checked).
- Contrary to Fukaya–Kato, their proof do not use Siegel units. It uses the motivic cohomology of \mathbb{G}_m^2 .
- They also (independently) get results for the map z_N about Siegel units (again, they do not consider U_ℓ^*). They use the motivic cohomology of \mathcal{E}^2 where \mathcal{E} is the universal elliptic curve over $Y_1(N)$.

► The only other case where Manin-type symbols are available is the Bianchi case.

- ► The only other case where Manin-type symbols are available is the Bianchi case.
- ▶ $\mathfrak{h}_3 = \{(z,t) \in \mathbb{C} \times \mathbb{R}_{>0}\}$ upper-half space, with isometric action of $\mathsf{GL}_2(\mathbb{C})$.

- ► The only other case where Manin-type symbols are available is the Bianchi case.
- ▶ $\mathfrak{h}_3 = \{(z,t) \in \mathbb{C} \times \mathbb{R}_{>0}\}$ upper-half space, with isometric action of $GL_2(\mathbb{C})$.
- $ightharpoonup K = \mathbb{Q}(i).$

- ► The only other case where Manin-type symbols are available is the Bianchi case.
- ▶ $\mathfrak{h}_3 = \{(z,t) \in \mathbb{C} \times \mathbb{R}_{>0}\}$ upper-half space, with isometric action of $GL_2(\mathbb{C})$.
- $ightharpoonup K = \mathbb{Q}(i).$
- $\blacktriangleright \ \mathfrak{h}_3^* = \mathfrak{h}_3 \cup \mathbb{P}^1(K).$

- ► The only other case where Manin-type symbols are available is the Bianchi case.
- ▶ $\mathfrak{h}_3 = \{(z,t) \in \mathbb{C} \times \mathbb{R}_{>0}\}$ upper-half space, with isometric action of $\mathsf{GL}_2(\mathbb{C})$.
- $ightharpoonup K = \mathbb{Q}(i).$
- $\blacktriangleright \mathfrak{h}_3^* = \mathfrak{h}_3 \cup \mathbb{P}^1(K).$
- $ightharpoonup N \in \mathbb{Z}_{>0}, \ \mathfrak{X}_1(N) = \Gamma_1(N\mathcal{O}_K) \backslash \mathfrak{h}_3^*.$

- ► The only other case where Manin-type symbols are available is the Bianchi case.
- ▶ $\mathfrak{h}_3 = \{(z,t) \in \mathbb{C} \times \mathbb{R}_{>0}\}$ upper-half space, with isometric action of $\mathsf{GL}_2(\mathbb{C})$.
- $ightharpoonup K = \mathbb{Q}(i).$
- $\blacktriangleright \mathfrak{h}_3^* = \mathfrak{h}_3 \cup \mathbb{P}^1(K).$
- $ightharpoonup N \in \mathbb{Z}_{>0}, \ \mathfrak{X}_1(N) = \Gamma_1(N\mathcal{O}_K) \backslash \mathfrak{h}_3^*.$
- ▶ Cremona gave a presentation by Manin symbols [u, v] of $H_1(\mathfrak{X}_1(N), C_1(N), \mathbb{Z})$, where $u, v \in \mathcal{O}_K/N\mathcal{O}_K$, gcd(u, v, N) = 1 and u, v non-divisible by N.

 $ightharpoonup K_N = \text{ray class field of conductor } N \text{ of } K.$

- $ightharpoonup K_N = \text{ray class field of conductor } N \text{ of } K.$
- ▶ If $\alpha \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, $\alpha \neq 0$, we define some elliptic unit $\mathcal{E}(\alpha)$.

- $ightharpoonup K_N = \text{ray class field of conductor } N \text{ of } K.$
- ▶ If $\alpha \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, $\alpha \neq 0$, we define some elliptic unit $\mathcal{E}(\alpha)$.
- ▶ Theorem (L.–Wang) The map $\Pi_N: H_1(\mathfrak{X}_1(N), C_1(N), \mathbb{Z}) \to K_2(\mathcal{O}_{K_N}[\frac{1}{N}])$ sending [u, v] to $\{\mathcal{E}(\frac{u}{N}), \mathcal{E}(\frac{v}{N})\}$ is well-defined.

- $ightharpoonup K_N = \text{ray class field of conductor } N \text{ of } K.$
- ▶ If $\alpha \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, $\alpha \neq 0$, we define some elliptic unit $\mathcal{E}(\alpha)$.
- ▶ Theorem (L.–Wang) The map $\Pi_N: H_1(\mathfrak{X}_1(N), C_1(N), \mathbb{Z}) \to K_2(\mathcal{O}_{K_N}[\frac{1}{N}])$ sending [u, v] to $\{\mathcal{E}(\frac{u}{N}), \mathcal{E}(\frac{v}{N})\}$ is well-defined.
- Conjecture (L.-Wang): The map Π_N is killed by $T_{\pi} \operatorname{Norm}(\pi) \langle \pi \rangle$ for irreducible elements $\pi \nmid N$.

- $ightharpoonup K_N = \text{ray class field of conductor } N \text{ of } K.$
- ▶ If $\alpha \in \frac{1}{N} \mathbb{Z} / \mathbb{Z}$, $\alpha \neq 0$, we define some elliptic unit $\mathcal{E}(\alpha)$.
- ▶ Theorem (L.–Wang) The map $\Pi_N: H_1(\mathfrak{X}_1(N), C_1(N), \mathbb{Z}) \to K_2(\mathcal{O}_{K_N}[\frac{1}{N}])$ sending [u, v] to $\{\mathcal{E}(\frac{u}{N}), \mathcal{E}(\frac{v}{N})\}$ is well-defined.
- ► Conjecture (L.-Wang): The map Π_N is killed by $T_{\pi} \operatorname{Norm}(\pi) \langle \pi \rangle$ for irreducible elements $\pi \nmid N$.
- ▶ One can prove the conjecture for $\pi = 1 + i$.

What about other fields?

▶ The same works for $K = \mathbb{Q}(i\sqrt{3})$. Basically we make use of the extra units to get very simple Manin relations.

What about other fields?

- ▶ The same works for $K = \mathbb{Q}(i\sqrt{3})$. Basically we make use of the extra units to get very simple Manin relations.
- ► The method of Sharifi–Venkatesh should prove the conjecture for *K* of class number 1.

What about other fields?

- ▶ The same works for $K = \mathbb{Q}(i\sqrt{3})$. Basically we make use of the extra units to get very simple Manin relations.
- ► The method of Sharifi–Venkatesh should prove the conjecture for *K* of class number 1.
- ► For arbitrary K, there is no explicit presentation of the homology, and Hecke operators are more complicated. This is work in progress with Venkatesh.

Thanks for your attention!