Modular representations of GL_n and tensor products of Galois representations

C. Breuil, F. Herzig, Y. Hu, S. Morra and B. Schraen

I.C.T.S. - T.I.F.R.

December 1, 2020

Contents

Introduction

- Statement of the main conjecture

Introduction

2 Statement of the main conjecture

• p = prime number

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F

•
$$G/F^+=$$
 unitary group s. t.
$$\left\{ \begin{array}{l} G\times_{F^+}F=\mathrm{GL}_n & (n\geq 2) \\ G(F_w^+)\cong U_n(\mathbb{R}) & \forall \ w|\infty \end{array} \right.$$

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F
- $G/F^+=$ unitary group s. t. $\begin{cases} G\times_{F^+}F=\operatorname{GL}_n & (n\geq 2) \\ G(F_w^+)\cong U_n(\mathbb{R}) & \forall \ w|\infty \end{cases}$ (in particular $G(F_w^+)\cong\operatorname{GL}_n(F_w), \ w|p)$

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F
- $G/F^+=$ unitary group s. t. $\begin{cases} G\times_{F^+}F=\operatorname{GL}_n & (n\geq 2)\\ G(F_w^+)\cong U_n(\mathbb{R}) & \forall \ w|\infty \end{cases}$ (in particular $G(F_w^+)\cong\operatorname{GL}_n(F_w),\ w|p)$
- v|p = fixed place of F

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F
- $G/F^+=$ unitary group s. t. $\begin{cases} G\times_{F^+}F=\operatorname{GL}_n & (n\geq 2) \\ G(F_w^+)\cong U_n(\mathbb{R}) & \forall \ w|\infty \end{cases}$ (in particular $G(F_w^+)\cong\operatorname{GL}_n(F_w), \ w|p)$
- v|p = fixed place of F
- $\omega = \text{mod } p \text{ cyclo char. of } Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \text{ or } Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p).$

- p = prime number
- \mathbb{F} = "big" finite field of characteristic p (coefficient field)
- F^+ = totally real number field
- $F = \text{totally imag. quad. ext. of } F^+$, any w|p in F^+ splits in F
- $G/F^+=$ unitary group s. t. $\begin{cases} G\times_{F^+}F=\mathrm{GL}_n & (n\geq 2) \\ G(F_w^+)\cong U_n(\mathbb{R}) & \forall \ w|\infty \end{cases}$ (in particular $G(F_w^+)\cong \mathrm{GL}_n(F_w), \ w|p)$
- v|p = fixed place of F
- $\omega = \text{mod } p \text{ cyclo char. of } Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \text{ or } Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p).$

General aim:

Study certain smooth admissible representations of $GL_n(F_v)$ over \mathbb{F} associated to automorphic (for G) mod p Galois representations.

Let:

• $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν

Let:

- $\mathbb{A}_{F^+}^{\infty, v}$ = finite adèles of F^+ outside v
- $U^{\nu} = \text{compact open subgroup of } G(\mathbb{A}_{F^+}^{\infty,\nu})$

Let:

- $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

Let:

- $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$S(U^{\nu}, \mathbb{F}) := \{f : G(F^{+}) \setminus G(\mathbb{A}_{F^{+}}^{\infty, \nu})/U^{\nu} \longrightarrow \mathbb{F}, \text{ loc. cst.}\}$$

 $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] := \text{ Hecke eigenspace associated to } \overline{r}.$

Let:

- $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$S(U^{\nu}, \mathbb{F}) := \{f : G(F^{+}) \setminus G(\mathbb{A}_{F^{+}}^{\infty, \nu})/U^{\nu} \longrightarrow \mathbb{F}, \text{ loc. cst.}\}$$

 $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] := \text{Hecke eigenspace associated to } \overline{r}.$

 $G(F_{\nu}^{+})$ acts on $S(U^{\nu}, \mathbb{F})$ by right translation: $(g_{\nu}f)(g) := f(gg_{\nu})$, preserves $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{\nu}^{+})$.

Let:

- $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν
- U^{ν} = compact open subgroup of $G(\mathbb{A}_{F^+}^{\infty,\nu})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$S(U^{\nu}, \mathbb{F}) := \{f : G(F^{+}) \setminus G(\mathbb{A}_{F^{+}}^{\infty, \nu})/U^{\nu} \longrightarrow \mathbb{F}, \text{ loc. cst.}\}$$

 $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] := \text{ Hecke eigenspace associated to } \overline{r}.$

 $G(F_{\nu}^{+})$ acts on $S(U^{\nu}, \mathbb{F})$ by right translation: $(g_{\nu}f)(g) := f(gg_{\nu})$, preserves $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{\nu}^{+})$.

We want to relate $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ (assumed $\neq 0$) to $\overline{r}_{\nu} := \overline{r}|_{\mathsf{Gal}(\overline{F}_{\nu}/F_{\nu})}$.

Let:

- $\mathbb{A}_{F^+}^{\infty, \nu}$ = finite adèles of F^+ outside ν
- $\dot{U^{v}} = \text{compact open subgroup of } G(\mathbb{A}_{F^{+}}^{\infty,v})$
- \overline{r} : $Gal(\overline{F}/F) \to GL_n(\mathbb{F})$ continuous, absolutely irreducible.

We define:

$$S(U^{\nu}, \mathbb{F}) := \{f : G(F^{+}) \setminus G(\mathbb{A}_{F^{+}}^{\infty, \nu})/U^{\nu} \longrightarrow \mathbb{F}, \text{ loc. cst.}\}$$

 $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] := \text{ Hecke eigenspace associated to } \overline{r}.$

 $G(F_{\nu}^+)$ acts on $S(U^{\nu}, \mathbb{F})$ by right translation: $(g_{\nu}f)(g) := f(gg_{\nu})$, preserves $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] =$ smooth admissible repres. of $G(F_{\nu}^+)$.

We want to relate $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ (assumed $\neq 0$) to $\overline{r}_v := \overline{r}|_{\mathsf{Gal}(\overline{F}_v/F_v)}$.

Remark

$$S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}] \neq 0 \Rightarrow \overline{r}(c \cdot c) \cong \overline{r}(\cdot)^{\vee} \otimes \omega^{1-n} \text{ where } \langle c \rangle = \mathsf{Gal}(F/F^{+}).$$

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \to {étale (φ, Γ) -modules}.

Colmez: there is a contravariant exact functor: {finite length repr. of $GL_2(\mathbb{Q}_p)$ over \mathbb{F} } \to {étale (φ, Γ) -modules}.

Fontaine: there is a (contravariant) equivalence of categories:

 $\{\text{\'etale } (\varphi,\Gamma)-\text{modules}\}\cong \{\text{fin. diml. repr. of } \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \text{ over } \mathbb{F}\}.$

```
Colmez: there is a contravariant exact functor: {finite length repr. of \operatorname{GL}_2(\mathbb{Q}_p) over \mathbb{F}\} \to \{\text{\'etale } (\varphi,\Gamma)-\text{modules}\}. Fontaine: there is a (contravariant) equivalence of categories: \{\text{\'etale } (\varphi,\Gamma)-\text{modules}\}\cong \{\text{fin. diml. repr. of }\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \text{ over } \mathbb{F}\}. V:= (covariant) composition of the two functors.
```

Colmez: there is a contravariant exact functor:

 $\{\text{finite length repr. of } \mathsf{GL}_2(\mathbb{Q}_p) \text{ over } \mathbb{F}\} \to \{\text{\'etale } (\varphi, \Gamma) - \mathsf{modules}\}.$

Fontaine: there is a (contravariant) equivalence of categories:

 $\{\text{\'etale }(\varphi,\Gamma)-\text{modules}\}\cong \{\text{fin. diml. repr. of }\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \text{ over } \mathbb{F}\}.$

V := (covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:

- ullet weak technical assumptions on \overline{r} and U^{v}
- \overline{r}_w absolutely irreducible for all w|p.

Then there is $d \geq 1$ such that $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong \overline{r}_{\nu}^{\oplus d} \otimes \omega^*$.

Colmez: there is a contravariant exact functor:

 $\{\text{finite length repr. of } \mathsf{GL}_2(\mathbb{Q}_p) \text{ over } \mathbb{F}\} \to \{\text{\'etale } (\varphi, \Gamma) - \mathsf{modules}\}.$

Fontaine: there is a (contravariant) equivalence of categories:

 $\{\mathsf{\acute{e}tale}\ (\varphi,\Gamma) - \mathsf{modules}\} \cong \{\mathsf{fin.}\ \mathsf{diml.}\ \mathsf{repr.}\ \mathsf{of}\ \mathsf{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)\ \mathsf{over}\ \mathbb{F}\}.$

V :=(covariant) composition of the two functors.

Theorem 1 (Colmez + Emerton + Chojecki-Sorensen)

Assume p > 3, n = 2, p splits completely in F. Assume:

- weak technical assumptions on \bar{r} and U^{ν}
- \overline{r}_w absolutely irreducible for all w|p.

Then there is $d \geq 1$ such that $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong \overline{r}_{\nu}^{\oplus d} \otimes \omega^*$.

Should hold as soon as n = 2, $F_v = \mathbb{Q}_p$. For H^1 of modular curves, no need to assume \overline{r}_w irreducible (Colmez + Emerton).

Introduction

2 Statement of the main conjecture

 \odot Some results for GL_2

Let $\pi = \text{smooth representation of } GL_n(F_v) \text{ over } \mathbb{F}$. Set:

• N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{on} \ \mathsf{first} \ \mathsf{diagonal}$

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \mathsf{ of entries on first diagonal}$
- $N_1 := \operatorname{\mathsf{Ker}}(N_0 \overset{\ell}{\longrightarrow} \mathcal{O}_{F_v} \overset{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_p)$

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{on} \ \mathsf{first} \ \mathsf{diagonal}$
- $\bullet \ \, \mathit{N}_1 := \mathsf{Ker}(\mathit{N}_0 \stackrel{\ell}{\longrightarrow} \mathcal{O}_{\mathit{F}_{\mathit{v}}} \stackrel{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_{\mathit{p}})$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{on} \ \mathsf{first} \ \mathsf{diagonal}$
- $\bullet \ \ \textit{N}_1 := \mathsf{Ker}(\textit{N}_0 \overset{\ell}{\longrightarrow} \mathcal{O}_{\textit{F}_{\textit{v}}} \overset{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_{\textit{p}})$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), \ z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F] = \text{non commutative ring defined by } FX^i = X^{ip}F.$

Let $\pi = \text{smooth representation of } GL_n(F_v) \text{ over } \mathbb{F}$. Set:

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{on} \ \mathsf{first} \ \mathsf{diagonal}$
- $\bullet \ \ \textit{N}_1 := \mathsf{Ker}(\textit{N}_0 \overset{\ell}{\longrightarrow} \mathcal{O}_{\textit{F}_{\textit{v}}} \overset{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_{\textit{p}})$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F]$ = non commutative ring defined by $FX^i = X^{ip}F$.

Then $\mathbb{F}[[N_0/N_1]] \xrightarrow{\sim} \mathbb{F}[[\mathbb{Z}_p]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} .

Let $\pi = \text{smooth representation of } GL_n(F_v) \text{ over } \mathbb{F}$. Set:

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \mathsf{ of entries on first diagonal}$
- $\bullet \ \, \textit{N}_1 := \mathsf{Ker}(\textit{N}_0 \stackrel{\ell}{\longrightarrow} \mathcal{O}_{\textit{F}_{\textit{v}}} \stackrel{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_{\textit{p}})$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F]$ = non commutative ring defined by $FX^i = X^{ip}F$.

Then $\mathbb{F}[[N_0/N_1]] \stackrel{\sim}{\longrightarrow} \mathbb{F}[[\mathbb{Z}_p]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} .

Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$F(v) := \sum_{n_1 \in N_1/\xi(p)N_1\xi(p)^{-1}} n_1 \xi(p) v, \quad v \in \pi^{N_1}.$$

Let $\pi = \text{smooth representation of } GL_n(F_v) \text{ over } \mathbb{F}$. Set:

- N_0 = upper unipotent in $GL_n(\mathcal{O}_{F_v})$
- $\ell: N_0 \to \mathcal{O}_{F_v} = \mathsf{sum} \ \mathsf{of} \ \mathsf{entries} \ \mathsf{on} \ \mathsf{first} \ \mathsf{diagonal}$
- $N_1 := \operatorname{Ker}(N_0 \xrightarrow{\ell} \mathcal{O}_{F_v} \overset{\mathsf{trace}}{\longrightarrow} \mathbb{Z}_p)$
- $\xi(z) := \operatorname{diag}(z^{n-1}, z^{n-2}, \dots, 1) \in \operatorname{GL}_n(F_v), z \in \mathcal{O}_{F_v} \setminus \{0\}$
- $\mathbb{F}[[X]][F]$ = non commutative ring defined by $FX^i = X^{ip}F$.

Then $\mathbb{F}[[N_0/N_1]] \xrightarrow{\sim} \mathbb{F}[[\mathbb{Z}_p]] \cong \mathbb{F}[[X]]$ naturally acts on π^{N_1} .

Extend it to an action of $\mathbb{F}[[X]][F]$ via:

$$F(v) := \sum_{n_1 \in N_1/\xi(p)N_1\xi(p)^{-1}} n_1 \xi(p) v, \quad v \in \pi^{N_1}.$$

Finally, let \mathbb{Z}_p^{\times} act on π^{N_1} via $z \cdot v := \xi(z)v$, $z \in \mathbb{Z}_p^{\times}$.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies $\dim_{\mathbb{F}} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies $\dim_{\mathbb{F}} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_1}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_p^{\times} \cong \Gamma$ with $\dim_{\mathbb{F}} M[X] < \infty \leadsto \operatorname{get} M^{\vee}[1/X] = \operatorname{\acute{e}tale} (\varphi, \Gamma)$ -module.

For any \mathbb{F} -vector space W recall $W^{\vee} = \mathbb{F}$ -linear dual of W.

Proposition 1 (Colmez, formulation due to Emerton)

Let M be a finite type $\mathbb{F}[[X]][F]$ -module such that M is torsion as $\mathbb{F}[[X]]$ -module and satisfies $\dim_{\mathbb{F}} M[X] < \infty$. Then $M^{\vee}[1/X]$ is an étale φ -module over $\mathbb{F}((X))$.

We apply this to $M \subseteq \pi^{N_1}$ of finite type over $\mathbb{F}[[X]][F]$ preserved by $\mathbb{Z}_p^{\times} \cong \Gamma$ with $\dim_{\mathbb{F}} M[X] < \infty \leadsto \operatorname{get} M^{\vee}[1/X] = \operatorname{\acute{e}tale} (\varphi, \Gamma)$ -module.

Define the covariant functor V to ind-representations of $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$:

$$\pi\longmapsto V(\pi):=\lim_{\stackrel{\longrightarrow}{M}}V^{ee}ig(M^{ee}[1/X]ig)$$

where the limit is over \mathbb{Z}_p^{\times} -stable $M \subseteq \pi^{N_1}$ as above $(V^{\vee}(M^{\vee}[1/X]))$ is the contravariant $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ -representation associated to $M^{\vee}[1/X]$).

Statement of the conjecture

Statement of the conjecture

Conjecture

There is an integer $d \ge 1$ such that:

$$Vig(S(U^{
u},\mathbb{F})[\mathfrak{m}_{\overline{r}}]ig)\cong \left(\mathsf{Ind}_{F_{
u}}^{\otimes \mathbb{Q}_p}\Big(\overline{r}_{
u}\otimes_{\mathbb{F}}\Lambda^2_{\mathbb{F}}\overline{r}_{
u}\otimes\cdots\otimes\Lambda^{n-1}_{\mathbb{F}}\overline{r}_{
u}\Big)
ight)^{\oplus d}\otimes\omega^*$$

where $\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_p} := \mathbf{tensor}$ induction from $\operatorname{Gal}(\overline{\mathbb{F}}_{\nu}/F_{\nu})$ to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

Statement of the conjecture

Conjecture

There is an integer $d \ge 1$ such that:

$$Vig(S(U^{ec{v}},\mathbb{F})[\mathfrak{m}_{\overline{r}}]ig)\cong \left(\mathsf{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{
ho}}ig(\overline{r}_{v}\otimes_{\mathbb{F}}\Lambda_{\mathbb{F}}^{2}\overline{r}_{v}\otimes\cdots\otimes\Lambda_{\mathbb{F}}^{n-1}\overline{r}_{v}ig)
ight)^{\oplus d}\!\!\!\otimes\omega^{*}$$

where $\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_p} := \mathbf{tensor}$ induction from $\operatorname{Gal}(\overline{\mathbb{F}}_{\nu}/F_{\nu})$ to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$.

Remark

An étale (φ, Γ) -module D has an operator ψ . The conjecture can be restated as: if $f: (S(U^{\vee}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{N_1})^{\vee} \to D$ is a contin., Γ -equivariant, $\mathbb{F}[[X]]$ -linear map sending F^{\vee} to ψ , then f uniquely factors through the (φ, Γ) -module of the above tensor induction.

Introduction

Statement of the main conjecture

Till the end of the talk: n=2, F_{ν}/\mathbb{Q}_p unramified of degree $f\geq 1$.

Till the end of the talk: n = 2, F_{ν}/\mathbb{Q}_p unramified of degree $f \ge 1$.

Till the end of the talk: n = 2, F_{ν}/\mathbb{Q}_p unramified of degree $f \geq 1$.

Need the following extra assumptions (some of them standard):

• F/F^+ unramified, p inert in F^+ (the latter for simplicity)

Till the end of the talk: n = 2, F_{ν}/\mathbb{Q}_p unramified of degree $f \geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺

Till the end of the talk: n=2, F_{ν}/\mathbb{Q}_p unramified of degree $f\geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F

Till the end of the talk: n=2, F_{ν}/\mathbb{Q}_p unramified of degree $f\geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

Till the end of the talk: n = 2, F_{ν}/\mathbb{Q}_p unramified of degree $f \geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺
- ullet $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies
- $ullet U^{
 u} = \prod_{w
 eq v} U^{
 u}_w ext{ with } \left\{ egin{align*} U^{
 u}_w ext{ max. hyperspecial if } w ext{ is inert in } F \end{array}
 ight.$

Till the end of the talk: n=2, F_{ν}/\mathbb{Q}_p unramified of degree $f\geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies
- $\bullet \ \ U^v = \prod_{w \neq v} U^v_w \ \text{with} \ \begin{cases} U^v_w \ \text{max. hyperspecial if} \ w \ \text{is inert in} \ F \\ U^v_w \subseteq \operatorname{GL}_2(\mathcal{O}_{F^+_w}) \ \text{if} \ w \ \text{is split in} \ F \ \text{with} \end{cases}$

Till the end of the talk: n = 2, F_{ν}/\mathbb{Q}_p unramified of degree $f \geq 1$.

- F/F^+ unramified, p inert in F^+ (the latter for simplicity)
- G quasi-split at all finite places of F⁺
- $\overline{r}|_{\mathsf{Gal}(\overline{F}/F(\sqrt[p]{1}))}$ adequate and \overline{r}_w unramified if w inert in F
- weak gener. assumptions on \overline{r}_w for $w \neq v$ when \overline{r}_w ramifies

$$\bullet \ U^{\mathsf{v}} = \prod_{w \neq \mathsf{v}} U^{\mathsf{v}}_w \text{ with } \begin{cases} U^{\mathsf{v}}_w \text{ max. hyperspecial if } w \text{ is inert in } F \\ U^{\mathsf{v}}_w \subseteq \mathrm{GL}_2(\mathcal{O}_{F^+_w}) \text{ if } w \text{ is split in } F \text{ with } \\ U^{\mathsf{v}}_w = \mathrm{GL}_2(\mathcal{O}_{F^+_w}) \text{ if } w \text{ split } + \overline{r}_w \text{ unram.} \end{cases}$$

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \operatorname{Gal}(\overline{F}_v/F_v)$. Let $f' := \operatorname{Max}(2f, 10)$.

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \operatorname{Gal}(\overline{F}_v/F_v)$. Let $f' := \operatorname{Max}(2f, 10)$.

We assume that \overline{r}_{ν} is semi-simple and such that:

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \operatorname{Gal}(\overline{F}_v/F_v)$. Let $f' := \operatorname{Max}(2f, 10)$.

We assume that \overline{r}_{v} is semi-simple and such that:

• \overline{r}_{v} reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$ for some r_{i} with $f'-1 \leq r_{i} \leq p-2-f' \ (\Rightarrow p>2f')$

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \operatorname{Gal}(\overline{F}_v/F_v)$. Let $f' := \operatorname{Max}(2f, 10)$.

We assume that \overline{r}_{ν} is semi-simple and such that:

•
$$\overline{r}_{v}$$
 reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$ for some r_{i} with $f'-1 \leq r_{i} \leq p-2-f' \ (\Rightarrow p > 2f')$

•
$$\overline{r}_{v}$$
 irreducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{p^{f}(\mathsf{same})} \end{pmatrix} \otimes \omega_{f}^{*}$ for $f' \leq r_{0} \leq p-1-f'$ and $f'-1 \leq r_{i} \leq p-2-f'$ if $i > 0$.

Fix an embedding $\mathbb{F}_{p^{2f}} \hookrightarrow \mathbb{F}$ and let ω_f , $\omega_{2f} :=$ associated Serre's fundamental charac. of level f, 2f of inertia sgp $I_v \subseteq \operatorname{Gal}(\overline{F}_v/F_v)$. Let $f' := \operatorname{Max}(2f, 10)$.

We assume that \overline{r}_{v} is semi-simple and such that:

- \overline{r}_{v} reducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & 1 \end{pmatrix} \otimes \omega_{f}^{*}$ for some r_{i} with $f'-1 \leq r_{i} \leq p-2-f' \ (\Rightarrow p > 2f')$
- \overline{r}_{v} irreducible: $\overline{\rho}|_{I_{v}} \cong \begin{pmatrix} \omega_{2f}^{(r_{0}+1)+\cdots+p^{f-1}(r_{f-1}+1)} & 0 \\ 0 & \omega_{2f}^{p^{f}(\mathsf{same})} \end{pmatrix} \otimes \omega_{f}^{*}$ for $f' \leq r_{0} \leq p-1-f'$ and $f'-1 \leq r_{i} \leq p-2-f'$ if i > 0.

(May-be this strong genericity assumption on \overline{r}_{ν} can be improved.)

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_{p}}\overline{r}_{\nu}\right)^{\oplus d}\otimes \omega^{*}.$$

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{\mathsf{v}},\mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong (\operatorname{Ind}_{F_{\mathsf{v}}}^{\otimes \mathbb{Q}_p} \overline{r}_{\mathsf{v}})^{\oplus d} \otimes \omega^*.$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}])\cong \left(\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb{Q}_{p}}\overline{r}_{\nu}\right)^{\oplus d}\otimes \omega^{*}.$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$):

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{\mathsf{v}},\mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong (\operatorname{Ind}_{F_{\mathsf{v}}}^{\otimes \mathbb{Q}_p} \overline{r}_{\mathsf{v}})^{\oplus d} \otimes \omega^*.$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$):

Step 1: There is an injection $(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \overline{r}_{v})^{\oplus d} \hookrightarrow V(S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]).$

Theorem 2

Under the above assumptions Conjecture 1 holds, i.e. there is an integer $d \ge 1$ such that:

$$V(S(U^{\mathsf{v}},\mathbb{F})[\mathfrak{m}_{\overline{r}}]) \cong \left(\operatorname{Ind}_{F_{\mathsf{v}}}^{\otimes \mathbb{Q}_p} \overline{r}_{\mathsf{v}}\right)^{\oplus d} \otimes \omega^*.$$

Remark

Although $V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}])$ only depends on \overline{r}_{ν} , we **do not know** if the $GL_2(F_{\nu})$ -representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ only depends on \overline{r}_{ν} .

The proof of Theorem 2 is divided into two steps (we ignore $\otimes \omega^*$):

Step 1: There is an injection $(\operatorname{Ind}_{F_{v}}^{\otimes \mathbb{Q}_{p}} \overline{r}_{v})^{\oplus d} \hookrightarrow V(S(U^{v}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]).$

Step 2: $\dim_{\mathbb{F}} V(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{\ell}}])$ is finite and bounded by $2^{f}d$.

Let
$$Z := F_{\nu}^{\times}$$
, $K := GL_2(\mathcal{O}_{F_{\nu}})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_{\nu}})$.

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_v such that $S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_{ν} such that $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K := \text{Iwahori}$, $I(1) \subseteq I := \text{pro-}p\text{-Iwahori}$, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ = \text{normalizer of } I(1)$.

Let
$$Z := F_v^{\times}$$
, $K := \operatorname{GL}_2(\mathcal{O}_{F_v})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_v})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_{ν} such that $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K := \text{Iwahori}$, $I(1) \subseteq I := \text{pro-}p\text{-Iwahori}$, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ = \text{normalizer of } I(1)$. Choose an action of \mathfrak{n} on $D_0^{I(1)}$ inside D_0 .

Let
$$Z := F_{\nu}^{\times}$$
, $K := GL_2(\mathcal{O}_{F_{\nu}})$ and $K(1) := 1 + pM_2(\mathcal{O}_{F_{\nu}})$.

Theorem 3 (Emerton-Gee-Savitt, Hu-Wang, Le-Morra-Schraen, B.-H.-H.-M.-S., building on B.-Paškūnas + Buzzard-Diamond-Jarvis)

There is an integer $d \geq 1$ and an explicit representation D_0 of KZ over \mathbb{F} only depending on \overline{r}_{ν} such that $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)} \cong D_0^{\oplus d}$.

Let $I \subseteq K := \text{Iwahori}$, $I(1) \subseteq I := \text{pro-}p\text{-Iwahori}$, $\mathfrak{n} := \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} IZ = \text{normalizer of } I(1)$. Choose an action of \mathfrak{n} on $D_0^{I(1)}$ inside D_0 .

Theorem 4

Let π be a smooth admissible representation of $\operatorname{GL}_2(F_{\nu})$ over $\mathbb F$ such that $(\pi^{I(1)} \hookrightarrow \pi^{K(1)}) \cong (D_0^{I(1)} \hookrightarrow D_0)^{\oplus d}$ (compatibly with $\mathfrak n$ and KZ). Then there is an injection $(\operatorname{Ind}_{F_{\nu}}^{\otimes \mathbb Q_p} \overline{r}_{\nu})|_{I_{\nu}}^{\oplus d} \hookrightarrow V(\pi)|_{I_{\nu}}$.

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$.

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \bar{r}_v)|_{I_v}^{\oplus d}$. (Only need 2f instead of $f' = \operatorname{Max}(2f, 10)$ in the bounds on the r_i .)

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$. (Only need 2f instead of $f' = \operatorname{Max}(2f, 10)$ in the bounds on the r_i .)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_0^{I(1)}$, only depending on \overline{r}_v , such that there is an (\mathfrak{n}, KZ) -equivariant isomorphism:

$$\left(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{I(1)}\hookrightarrow S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)}\right)\cong \left(D_{0}^{I(1)}\hookrightarrow D_{0}\right)^{\oplus d}.$$

Proof of Theorem 4: we compute an explicit $\mathbb{F}[[X]][F]$ -submodule $M(\pi)$ in π^{N_1} preserved by \mathbb{Z}_p^{\times} such that $V(M(\pi))|_{I_v} \cong (\operatorname{Ind}_{F_v}^{\otimes \mathbb{Q}_p} \overline{r}_v)|_{I_v}^{\oplus d}$. (Only need 2f instead of $f' = \operatorname{Max}(2f, 10)$ in the bounds on the r_i .)

Theorem 5 (Dotto-Le + B.-H.-H.-M.-S.)

(i) There is an explicit action of \mathfrak{n} on $D_0^{I(1)}$, only depending on \overline{r}_{ν} , such that there is an (\mathfrak{n}, KZ) -equivariant isomorphism:

$$\left(S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\prime(1)}\hookrightarrow S(U^{\nu},\mathbb{F})[\mathfrak{m}_{\overline{r}}]^{K(1)}\right)\cong \left(D_{0}^{\prime(1)}\hookrightarrow D_{0}\right)^{\oplus d}.$$

(ii) For this action of π we actually have:

$$V(M(S(U^{\mathsf{v}},\mathbb{F})[\mathfrak{m}_{\overline{r}}]))\cong \left(\operatorname{Ind}_{F_{\mathsf{v}}}^{\otimes \mathbb{Q}_p}\overline{r}_{\mathsf{v}}\right)^{\oplus d}.$$

Let:

•
$$Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$$

Let:

- $Z(1) := 1 + p\mathcal{O}_{F_v} = \text{pro-}p\text{-center}$
- $\mathfrak{m}_I := \mathsf{maximal}$ ideal of Iwasawa algebra $\Lambda_I := \mathbb{F}[[I(1)/Z(1)]]$.

Let:

- $Z(1) := 1 + p\mathcal{O}_{F_{v}} = \text{pro-}p\text{-center}$
- $\mathfrak{m}_I := \text{maximal ideal of Iwasawa algebra } \Lambda_I := \mathbb{F}[[I(1)/Z(1)]].$

If π is a smooth representation of $\mathrm{GL}_2(F_{\nu})$ over $\mathbb F$ with a central character, then $\pi^{I(1)}=\pi[\mathfrak m_I]$ and π is admissible if and only if $\dim_{\mathbb F}\pi[\mathfrak m_I]<\infty$.

Let:

- $Z(1) := 1 + p\mathcal{O}_{F_{\nu}} = \text{pro-}p\text{-center}$
- $\mathfrak{m}_I := \text{maximal ideal of Iwasawa algebra } \Lambda_I := \mathbb{F}[[I(1)/Z(1)]].$

If π is a smooth representation of $GL_2(F_{\nu})$ over \mathbb{F} with a central character, then $\pi^{I(1)} = \pi[\mathfrak{m}_I]$ and π is admissible if and only if $\dim_{\mathbb{F}} \pi[\mathfrak{m}_I] < \infty$.

Theorem 6

Let π be a smooth admissible representation of $GL_2(F_{\nu})$ over \mathbb{F} with a central character such that for any $\chi: I \to \mathbb{F}^{\times}$:

$$[\pi[\mathfrak{m}_I]:\chi]=[\pi[\mathfrak{m}_I^3]:\chi]$$

Then $\dim_{\mathbb{F}} V(\pi) \leq \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$, in particular $V(\pi)$ is finite dimensional.

Proof of Theorem 6:

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

For
$$0 \le i \le f - 1$$
 set
$$\left\{ \begin{array}{l} X_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & 0 \\ \rho[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{array} \right.$$

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

For
$$0 \le i \le f-1$$
 set
$$\left\{ \begin{array}{l} X_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & 0 \\ \rho[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{array} \right.$$

Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \dots, X_{f-1}]].$

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

For
$$0 \le i \le f - 1$$
 set
$$\left\{ \begin{array}{l} X_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{\rho^f}^{\times}} \lambda^{-\rho^i} \begin{pmatrix} 1 & 0 \\ \rho[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{array} \right.$$

Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \dots, X_{f-1}]]$.

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\operatorname{gr}_{\mathfrak{m}_I} \Lambda_I$ on $\operatorname{gr}_{\mathfrak{m}_I} \pi^{\vee}$ factors through the abelian quotient $\mathbb{F}[(X_i,Y_i)_i]/(X_iY_i)$ of $\operatorname{gr}_{\mathfrak{m}_I} \Lambda_I$.

Proof of Theorem 6:

The Λ_I -module π^{\vee} is generated by at most $r := \dim_{\mathbb{F}} \pi[\mathfrak{m}_I]$ elements.

For
$$0 \le i \le f-1$$
 set
$$\begin{cases} X_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \\ Y_i := \sum_{\lambda \in \mathbb{F}_{p^f}^{\times}} \lambda^{-p^i} \begin{pmatrix} 1 & 0 \\ p[\lambda] & 1 \end{pmatrix} \in \Lambda_I. \end{cases}$$

Note that $\mathbb{F}[[N_0]] \cong \mathbb{F}[[X_0, \dots, X_{f-1}]]$.

Proposition 2

The hyp. on π in Thm. 6 implies that the action of $\operatorname{gr}_{\mathfrak{m}_I} \Lambda_I$ on $\operatorname{gr}_{\mathfrak{m}_I} \pi^{\vee}$ factors through the abelian quotient $\mathbb{F}[(X_i, Y_i)_i]/(X_iY_i)$ of $\operatorname{gr}_{\mathfrak{m}_I} \Lambda_I$.

Hence $(\operatorname{gr}_{\mathfrak{m}_i}\pi^{\vee})[1/\prod X_i]$ is generated by at most r elements over:

$$(\mathbb{F}[(X_i, Y_i)_i]/(X_iY_i))[1/\prod X_i] \cong \mathbb{F}[(X_i)_i][1/\prod X_i].$$

Endow
$$\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$$
 with tensor product filtration for $\left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right.$

```
Endow \pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i] with tensor product filtration for \left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right. Let (\pi^{\vee}[1/\prod X_i])^{\wedge}:= corresponding completion.
```

```
Endow \pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i] with tensor product filtration for \left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right.
```

Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

```
Endow \pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i] with tensor product filtration for \left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right.
```

Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

Let $J := \operatorname{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\operatorname{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X))$.

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right.$

Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

Let $J := \text{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\text{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X))$.

For any $M \subseteq \pi^{N_1}$ such that $\dim_{\mathbb{F}} M[X] < \infty$, the morphism:

$$(\pi^{N_1})^{\vee} \cong \pi^{\vee}/J \longrightarrow M^{\vee}[1/X]$$

factors as a surjection $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J \twoheadrightarrow M^{\vee}[1/X]$.

Endow $\pi^{\vee}[1/\prod X_i] \cong \pi^{\vee} \otimes_{\mathbb{F}[[N_0]]} \mathbb{F}[[N_0]][1/\prod X_i]$ with tensor product filtration for $\left\{ \begin{array}{l} \mathfrak{m}_I\text{-adic filtration on }\pi^{\vee} \\ (X_0,...,X_{f-1})\text{-adic filtration on }\mathbb{F}[[N_0]][1/\prod X_i]. \end{array} \right.$

Let $(\pi^{\vee}[1/\prod X_i])^{\wedge} :=$ corresponding completion. It is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}$ (look at the graded modules).

Let $J := \text{Ker}(\mathbb{F}[[N_0]] \xrightarrow{\text{trace}} \mathbb{F}[[X]])$, hence $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J$ is generated by at most r elements over $(\mathbb{F}[[N_0]][1/\prod X_i])^{\wedge}/J \cong \mathbb{F}((X))$.

For any $M \subseteq \pi^{N_1}$ such that $\dim_{\mathbb{F}} M[X] < \infty$, the morphism:

$$(\pi^{N_1})^{\vee} \cong \pi^{\vee}/J \longrightarrow M^{\vee}[1/X]$$

factors as a surjection $(\pi^{\vee}[1/\prod X_i])^{\wedge}/J \twoheadrightarrow M^{\vee}[1/X]$.

In particular $\dim_{\mathbb{F}} V(\pi) \leq \dim_{\mathbb{F}((X))} \left((\pi^{\vee}[1/\prod X_i])^{\wedge}/J \right) \leq r$. \square

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{\vee}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^f d$.

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{\vee}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^f d$.

Proof: \exists an I-equiv. surjection $\bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \twoheadrightarrow (\operatorname{soc}_K S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_I^{\vee}$. Λ_I projective \Rightarrow it lifts to $f: \bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \longrightarrow S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_I^{\vee}$.

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\bar{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^f d$.

Proof: \exists an I-equiv. surjection $\bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \twoheadrightarrow (\operatorname{soc}_K S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_I^{\vee}$. Λ_I projective \Rightarrow it lifts to $f: \bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \longrightarrow S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_I^{\vee}$. By an explicit computation $(\operatorname{Coker}(f)[1/\prod X_i])^{\wedge} = 0$.

Theorem 7 (B.H.H.M.S., spring 2020)

The representation $S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]$ satisfies the hypothesis of Theorem 6. (Only need 10 instead of f' = Max(2f, 10) in the bounds on the r_i .)

Thus $(S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\bar{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J$ is finite dimensional over $\mathbb{F}((X))$.

Theorem 8

We have $\dim_{\mathbb{F}((X))} ((S(U^{\nu}, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{\vee}[1/\prod X_i])^{\wedge}/J) \leq 2^f d$.

Proof: \exists an I-equiv. surjection $\bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \twoheadrightarrow (\operatorname{soc}_K S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}])|_I^\vee$. Λ_I projective \Rightarrow it lifts to $f: \bigoplus_{i=1}^{2^f d} \Lambda_I(\chi_i) \longrightarrow S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]|_I^\vee$. By an explicit computation $(\operatorname{Coker}(f)[1/\prod X_i])^\wedge = 0$. This implies we can replace $r = \dim_{\mathbb{F}} S(U^v, \mathbb{F})[\mathfrak{m}_{\overline{r}}]^{I(1)}$ by $2^f d$ in the proof of Thm. 6. \square