(The weight part of) Serre's Conjecture for GL_{2} over totally really fields

Fred Diamond

King's College London

30 Nov-2 Dec, ICTS-TIFR
Recent developments around p-adic modular forms (ONLINE)

Outline

Lecture 1(-2?): The weight in Serre's Conjecture over \mathbb{Q}
Lecture 2(-3?): The algebraic Serre weight conjecture over F
Lectures 3-4: The geometric Serre weight conjecture over F

Main references

Part I: The weight in Serre's Conjecture over \mathbb{Q}Jean-Pierre Serre, Sur les représentations modulaires de degré 2 de $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Duke Math. J., 1987.Bas Edixhoven, The weight in Serrre's conjectures on modular forms, Invent. Math., 1992.
Hanneke Wiersema, Serre weights and the Breuil-Mézard conjecture for modular forms, preprint, 2020.

Part II: The algebraic Serre weight conjecture over F

Kevin Buzzard, Fred Diamond, Frazer Jarvis, On Serre's conjecture for mod ℓ Galois representations over totally real fields, Duke Math. J., 2010.

Toby Gee, Companion forms over totally real fields, II, Duke Math. J., 2007.
Toby Gee, Tong Liu, David Savitt, The weight part of Serre's conjecture for GL(2), Forum Math. Pi, 2015.

Part III: The geometric Serre weight conjecture over F

Fabrizio Andreatta, Eyal Z. Goren, Hilbert modular forms: $\bmod p$ and p-adic aspects, Mem. Amer. Math. Soc., 2005.

Fred Diamond, Shu Sasaki, A Serre weight conjecture for geometric Hilbert modular forms in characteristic p, preprint, 2017.
国
Fred Diamond, Geometric weight-shifting operators on Hilbert modular forms in characteristic p, preprint, 2020.

Serre's Conjecture over \mathbb{Q}

Theorem (Khare-Wintenberger)
Suppose that

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

is odd, continuous and irreducible.
Then ρ is modular of level $N(\rho)$ and weight $k(\rho)$.

- $N(\rho)=$ prime-to- p Artin conductor;
- $k(\rho)$ depends only on $\left.\rho\right|_{\rho_{\rho}}$;
- $N(\rho)$ and $k(\rho)$ are (in a sense) minimal;
- the equivalence between "weak" and refined versions (for $p>2$) was proved first (Mazur, Ribet, Carayol, Gross, Coleman-Voloch, Edixhoven) and used in the proof of the "weak" version.

Serre's recipe for $k(\rho)$

Suppose $2 \leq k \leq p+1$. Then $k(\rho)=k$ if and only if either

$$
\text { I) }\left.\rho\right|_{I_{p}} \simeq\left(\begin{array}{cc}
x^{k-1} & * \\
0 & 1
\end{array}\right) \text { and } * \text { is }\left\{\begin{array}{l}
\text { peu ramifée if } k=2 \\
\text { très ramifiée if } k=p+1
\end{array}\right.
$$

$$
\mathrm{OR} \quad \text { II) }\left.\rho\right|_{I_{p}} \simeq \omega_{2}^{k-1} \oplus \omega_{2}^{p(k-1)} \text { and } k \leq p
$$

where χ is the cyclotomic character and ω_{2} is a fundamental character of niveau 2 , i.e., $\omega_{2}(g)=g(\pi) / \pi$, where $\pi^{p^{2}-1}=p\left(\right.$ and $\left.\chi=\omega_{2}^{p+1}\right)$.

Case I (resp. II) occurs only if $\left.\rho\right|_{G_{\mathbb{Q}_{p}}}$ is reducible (resp. irreducible).

Three obvious questions:
Q1: Where does this recipe come from?
Q2: Why assume $k \geq 2$?
Q3: Why assume $k \leq p+1$?
Some (preliminary) answers:
Q1: Deligne and Fontaine proved that if $2 \leq k \leq p+1$ and ρ is modular of weight k, then it's of the form above. Can view this as a consequence of p-adic Hodge theory - more on this later.

Q2: (Why $k \geq 2$?) Three (related) answers:
Answer 1: $k(\rho) \geq 2$ in Serre's recipe
Answer 2: There are two notions of modularity (fix a level N prime to p):

- $\rho=\bar{\rho}_{f}$ for an eigenform $f \in M_{k}(N ; \mathbb{C}):=H^{0}\left(X_{1}(N), \omega^{k}\right)$;
- $\rho=\rho_{f}$ for an eigenform $f \in M_{k}\left(N ; \overline{\mathbb{F}}_{p}\right):=H^{0}\left(X_{1}(N)_{\mathbb{F}_{p}}, \omega^{k}\right)$.

For $k \geq 2$, the notions are equivalent, not for $k=1$
-more on this later.

Answer 3: Another interpretation of modularity for $k \geq 2$: The Eichler-Shimura isomorphism implies these are \Leftrightarrow

- \exists eigenform $f \in H^{1}\left(\Gamma_{1}(N), \operatorname{Sym}^{k-2}\left(\overline{\mathbb{F}}_{p}^{2}\right)\right)^{\dagger}$ such that $T_{v} f=a_{v} f\left(\right.$ and $\left.\langle v\rangle f=d_{v} f\right)$ for (almost) all $v \nmid p N$, where

$$
X^{2}-a_{v} X+d_{v} v^{k-1}
$$

is the characteristic polynomial of $\rho\left(\mathrm{Frob}_{v}\right)$.
\dagger - or $H^{1}\left(Y_{1}(N), \operatorname{Sym}^{k-2} \mathcal{F}\right)$ where \mathcal{F} is the rank two lisse/locally constant $\overline{\mathbb{F}}_{p}$ sheaf $R^{1} s_{*} \overline{\mathbb{F}}_{p}$, where $s: E \rightarrow Y_{1}(N)$ the universal elliptic curve.

Q3: (Why $k \leq p+1$?) Again three (related) answers:
Answer 1: So I could fit the recipe on one slide

Answer 2: For every ρ, there are m such that

$$
k\left(\rho \otimes \chi^{-m}\right) \leq p+1
$$

Answer 3: The full recipe can be reduced to this case.
-More on this next.

Serre weights

Eichler-Shimura suggests another notion of weight (Ash-Stevens, Khare):

Consider the irreducible representations of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ over $\overline{\mathbb{F}}_{p}$:

$$
\sigma_{m, n}=\operatorname{det}^{m} \otimes \operatorname{Sym}^{n} \overline{\mathbb{F}}_{p}^{2}, \quad m \in \mathbb{Z} /(p-1) \mathbb{Z}, 0 \leq n \leq p-1 .
$$

Say ρ is modular (of level N) and weight σ if the corresponding system of Hecke eigenvalues arises in $H^{1}\left(\Gamma_{1}(N), \sigma\right)$

So for $k \geq 2$, the following are equivalent:

- ρ is (algebraically) modular of weight k
- ρ is modular of weight $\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}$
- $\rho \otimes \chi^{m}$ is modular of weight $\operatorname{det}^{m} \operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}$
- ρ is modular some weight in $J H\left(\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}\right)$

Define the set of Serre weights of ρ to be:

$$
W(\rho)=\left\{\sigma_{m, n} \mid k\left(\rho \otimes \chi^{-m}\right)=n+2, \text { or } 2 \text { if } n=p-1\right\}
$$

(where $m \in \mathbb{Z} /(p-1) \mathbb{Z}, 0 \leq n \leq p-1$).
Examples:

- $\left.\rho\right|_{I_{p}}=\left(\begin{array}{cc}x^{n+1} & * \\ 0 & 1\end{array}\right)$, non-split, $0<n<p-1$
$\Rightarrow W(\rho)=\left\{\sigma_{0, n}\right\}$;
- $\left.\rho\right|_{I_{p}}=\chi^{n+1} \oplus 1,0<n<p-3$
$\Rightarrow W(\rho)=\left\{\sigma_{0, n}, \sigma_{n+1, p-3-n}\right\}$
- $\left.\rho\right|_{I_{p}}=\omega_{2}^{n+1} \oplus \omega_{2}^{p(n+1)}, 0<n<p-1$
$\Rightarrow W(\rho)=\left\{\sigma_{0, n}, \sigma_{n, p-1-n}\right\}$.

Then $W(\rho)$ determines $k(\rho)$ as follows:
For $\sigma=\sigma_{m, n}$, let $k_{\sigma}=\min \left\{k \geq 2 \mid \sigma \in J H\left(\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}\right)\right\}$.

Theorem (Wiersema - direct proof)

If $0 \leq m \leq p-2$ and $0 \leq n \leq p-1$, then

$$
k_{\sigma_{m, n}}= \begin{cases}m(p+1)+n+2, & \text { if } m+n<p-1 ; \\ m(p+1)+(n+2) p+1-p^{2}, & \text { if } m+n \geq p-1 .\end{cases}
$$

Therefore Serre's $k(\rho)=\min \left\{k_{\sigma} \mid \sigma \in W(\rho)\right\}$

$$
=\min \left\{k \geq 2 \mid J H\left(\operatorname{Sym}^{k-2} \mathbb{\mathbb { F }}_{p}^{2}\right) \cap W(\rho) \neq \emptyset\right\} .
$$

This reduces the weight part of Serre's Conjecture to the case $2 \leq k(\rho) \leq p+1$.
(Alternatively, use θ-cycles - more on this later.)
Low weight cases are treated using
"companion forms" theorems and Mazur's Principle.

p-adic Hodge theory

Returning to Q1 (where does the recipe come from?):
Suppose $\rho: \mathcal{G}_{\mathbb{Q}_{p}} \rightarrow \operatorname{Aut}_{E}(V)$ of dimension $d, \mathbb{Q}_{p} \subset E \subset \overline{\mathbb{Q}}_{p}$.

$$
D_{\mathrm{crys}}(V):=\left(V \otimes B_{\mathrm{crys}}\right)^{G_{Q_{p}}}
$$

is a filtered E-vector space of dimension $\leq d$ (where $B_{\text {crys }}$ is Fontaine's crystalline period ring).
Say V is crystalline if $\operatorname{dim}_{E} D_{\text {crys }}(V)=d$, and its Hodge-Tate (HT) weights are the i such that $\operatorname{gr}^{-i} D_{\text {crys }}(V) \neq 0$.

Theorem (Fontaine-Laffaille, Berger-Li-Zhu)
Suppose that $2 \leq k \leq p+1$.
Then $\left.\rho\right|_{G_{Q_{\rho}}}$ has a crystalline lift with HT weights $\{0, k-1\}$
if and only if either $k=k(\rho)$, or $k=p+1$ and $k(\rho)=2$.
Corollary
$W(\rho)=$
$\left\{\sigma_{m, n}|\rho|_{G_{\mathbb{Q}_{p}}}\right.$ has a crystalline lift with $H T$ weights $\left.\{m, m+n+1\}.\right\}$.
The (algebraic) Serre Weight Conjecture becomes:
The following are equivalent:

- ρ is modular of weight $\sigma_{m, n}$ and level prime to p
- $\left.\rho\right|_{G_{Q_{p}}}$ has a crystalline lift with $H T$ weights $\{m, m+n+1\}$.

Combining the corollary with (a corollary of) the Breuil-Mezard Conjecture gives:
Theorem (Kisin, Paskunas, Hu-Tan, Tung) Suppose that $k \geq 2$. Then $\left.\rho\right|_{G_{\mathbb{P}_{\rho}}}$ has a crystalline lift of with $H T$ weights $\{0, k-1\}$ if and only $W(\rho) \cap J H\left(\operatorname{Sym}^{k-2} \overline{\mathbb{F}}_{p}^{2}\right) \neq \emptyset$.

Combining this with Wiersema's formula gives (a purely local proof) of:
Corollary
$k(\rho)=$
$\min \left\{k \geq 2|\rho|_{G_{Q_{p}}}\right.$ has a crystalline lift with HT weights $\left.\{0, k-1\}\right\}$

The geometric variant

Returning to Q2: What about $k=1$?
Recall we had two notions of modularity (both equivalent to algebraic modularity if $k \geq 2$):

- ρ arises from $M_{k}(N ; \mathbb{C})=M_{k}(N ; \mathbb{Z}[1 / N]) \otimes \mathbb{C} ;$
- ρ arises from $M_{k}\left(N ; \overline{\mathbb{F}}_{p}\right)\left(\hookleftarrow M_{k}(N ; \mathbb{Z}[1 / N]) \otimes \overline{\mathbb{F}}_{p}\right)$.

For $k=1$, the first notion isn't characterized by $\left.\rho\right|_{I_{p}}$, so Edixhoven uses the second; call this geometric modularity of weight k (and level N).

Define:
$k_{\text {geom }}(\rho)= \begin{cases}1, & \text { if } \rho \text { is unramified at } p ; \\ k(\rho), & \text { otherwise. }\end{cases}$
$=\min \left\{k \geq 1|\rho|_{G_{\mathbb{Q}_{p}}}\right.$ has a crystalline lift with HT weights $\left.\{0, k-1\}\right\}$
The Geometric Serre Weight Conjecture is then:
Suppose $k \geq 1$. Then the following are equivalent:

- ρ is geometrically modular of weight k and level prime to p
- $\left.\rho\right|_{G_{\mathbb{Q}_{p}}}$ has a crystalline lift with $H T$ weights $\{0, k-1\}$
- $k \in k_{\text {geom }}(\rho)+t(p-1)$ for some $t \in \mathbb{Z}_{\geq 0}$.

Geometric weight-shifting

The Hasse invariant:
Verschiebung on the universal E over $\bar{Y}_{1}(N)=Y_{1}(N)_{\overline{\mathbb{F}}_{p}}$ induces $\omega \rightarrow \omega^{p}$, or equivalently

$$
H \in M_{p-1}\left(\Gamma_{1}(N) ; \overline{\mathbb{F}}_{p}\right) .
$$

Multiplication by H defines Hecke-equivariant:

$$
M_{k}\left(N ; \overline{\mathbb{F}}_{p}\right) \rightarrow M_{k+p-1}\left(N ; \overline{\mathbb{F}}_{p}\right)
$$

So ρ geometrically modular of weight k $\Rightarrow \rho$ geometrically modular of weight $k+p-1$.

Katz's qd/dq-operator:
The Gauss-Manin connection $\omega \rightarrow \Omega_{\bar{Y}_{1}(N) / \mathbb{F}_{p}} \otimes \omega^{-1}$ induces $K S: \omega^{2} \cong \Omega{\overline{X_{1}}(N) / \bar{F}_{p}}$ (cusps).
Use this to define:

$$
\Theta: M_{k}\left(N, \overline{\mathbb{F}}_{p}\right) \rightarrow M_{k+p+1}\left(N ; \overline{\mathbb{F}}_{p}\right)
$$

with the following properties:

- twists the action of T_{v} by v;
- has image in $H \cdot M_{k+2}\left(N ; \bar{F}_{p}\right)$ if $p \mid k$;
- $\Theta^{p}=H^{p+1} \Theta$.

So ρ geometrically modular of weight k $\Rightarrow \chi \otimes \rho$ geometrically modular of weight $k+p+1$
(in fact $k+2$ if $p \mid k$).
Recall $\rho \otimes \chi^{-m}$ is modular of weight $\leq p+1$ for some m (for which Edixhoven also gives a geometric proof).
An elementary analysis of possible " Θ-cycles" reduces the proof of the (geometric) Serre weight conjecture to the case $1 \leq k_{\text {geom }}(\rho) \leq p$, which is then completed by an extension of the companion forms theorem to $k_{\text {geom }}(\rho)=1$.

Hilbert modular forms

Let F be a totally real field, $d=[F: \mathbb{Q}]>1$, ring of integers \mathcal{O}_{F}.
Fix $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$,
so $\Sigma:=\{F \hookrightarrow \overline{\mathbb{Q}}\}:=\coprod_{v \mid p} \Sigma_{v}$.
For open compact $U \subset G L_{2}\left(\mathbb{A}_{F, f}\right)$, let

$$
Y_{U}=\mathrm{GL}_{2}(F)_{+} \backslash\left(\mathfrak{H}^{\Sigma} \times \mathrm{GL}_{2}\left(\mathbb{A}_{F, \mathbf{f}}\right) / U\right.
$$

denote the Hilbert modular variety of level U. In particular, let $Y_{1}(\mathfrak{n})=Y_{U_{1}(\mathfrak{n})}$ and $Y(\mathfrak{n})=Y_{U(\mathfrak{n})}$.

- coarse moduli space for HBAV's with additional structure;
- Y_{U} has dimension d, smooth for sufficiently small U;
- canonical model over \mathbb{Q}, action of $\mathrm{GL}_{2}\left(\mathbb{A}_{F, f}\right)$ on $\lim _{\hookrightarrow} Y_{U}$;
- components of $Y_{U_{1}(\mathfrak{n})} \leftrightarrow$ strict class group fo F.

Suppose $\vec{k}, \vec{m} \in \mathbb{Z}^{\Sigma}$ and $w=k_{\theta}+2 m_{\theta}$ is independent of θ. (In particular \vec{k} is paritious.)
Then can define an automorphic line bundle $\mathcal{A}_{\vec{k}, \vec{m}}$ on Y_{U}.
Define the space of Hilbert modular forms of weight (\vec{k}, \vec{m}) and level U :

$$
M_{\vec{k}, \vec{m}}(U, \mathbb{C})=H^{0}\left(Y_{U}, \mathcal{A}_{\vec{k}, \vec{m}}\right)
$$

and of level \mathfrak{n} :

$$
M_{\vec{k}, \vec{m}}(\mathfrak{n}, \mathbb{C})=M_{\vec{k}, \vec{m}}\left(U_{1}(\mathfrak{n}), \mathbb{C}\right)
$$

Equipped with a Hecke action, in particular T_{v}, S_{v} for $v \nmid \mathfrak{n}$.

Theorem (many people)
Suppose that $f \in M_{\vec{k}, \vec{m}}(\mathfrak{n}, \mathbb{C})$ is such that $T_{v} f=a_{v} f, S_{v} f=d_{v} f$ for all $v \nmid \mathfrak{n}$. Then there exists
unique semisimple (irreducible $\Leftrightarrow f$ cuspidal)

$$
\rho_{f}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)
$$

such that for all $v \nmid p \mathfrak{n}, \rho_{f}$ is unramified at v, and $\rho_{f}\left(\mathrm{Frob}_{v}\right)$ has char. poly.

$$
X^{2}-a_{v} X+d_{v} \mathrm{Nm}_{F / \mathbb{Q}}(v)
$$

Furthermore if $k_{\theta} \geq 2$ for all $\theta \in \Sigma$ and $v \mid p$, then $\rho_{f} \mid G_{F_{v}}$ is de Rham (crystalline $\Leftrightarrow v \nmid \mathfrak{n}$) with θ-labelledi' $H T$ weights $\left\{m_{\theta}, k_{\theta}+m_{\theta}-1\right\}$ for $\theta \in \Sigma_{v}$.
${ }^{\dagger}-D_{H T}(V)=\left(V \otimes B_{H T}\right)^{G_{F V}}$, where $B_{H T}=\oplus \mathbb{C}_{p}(i)$,
is free rank 2 over $F_{V} \otimes \overline{\mathbb{Q}}_{p}=\oplus_{\theta \in \Sigma_{v}} \overline{\mathbb{Q}}_{p}$.

Conjecture (Fontaine-Mazur-Langlands)

Every totally odd, irreducible, geometric $\rho: \mathrm{G}_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ is isomorphic to ρ_{f} for some f as above.

Conjecture ("Weak" Serre)
Every totally odd, irreducible $\rho: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$
is isomorphic to $\bar{\rho}_{f}$ for some f as above.
Refined Serre Conjecture:
What can we say about \mathfrak{n}, \vec{k} (and \vec{m})?
Minimal prime-to-p part of \mathfrak{n} should be Artin conductor of ρ. (Known, at least under Taylor-Wiles hypothesis.)

What about \vec{k} ?
Again this should be determined by $\left.\rho\right|_{v}$ for $v \mid p$, but some significant differences:

Not all ρ can arise from forms f of level prime to p.
(Such ρ necessarily have $\left.\operatorname{det} \rho\right|_{v}=\chi^{w-1}$ for all $v \mid p$.)
No obvious notion of minimality (since $\vec{k} \in \mathbb{Z}^{\Sigma}$).
Two approaches:

- Algebraic: Make sense of "modularity of weight σ " for arbitrary irreducible $\overline{\mathbb{F}}_{p}$-representations σ of $\mathrm{GL}_{2}\left(\mathcal{O}_{F} / p\right)$, and describe $W(\rho)$ in terms of $\left.\rho\right|_{l_{v}}$ for $v \mid p$.
- Geometric: Interpret modularity in terms of geometrically defined mod p Hilbert modular forms -more on this in later talks.

The algebraic Serre weight Conjecture

For simplicity, assume there is a unique $\mathfrak{p} \mid p$ in \mathcal{O}_{F}.
Let $k=\mathcal{O}_{F} / \mathfrak{p}, f=\left[k: \mathbb{F}_{p}\right]$,
K_{0} maximal unramified subextension of $K=F_{V}$,
$e=\left[K: K_{0}\right]$, so $d=e f$. Let

$$
\Sigma_{0}=\left\{K_{0} \hookrightarrow \overline{\mathbb{Q}}_{p}\right\} \leftrightarrow\left\{k \hookrightarrow \overline{\mathbb{F}}_{p}\right\}=\left\{\tau_{0}, \ldots, \tau_{f-1}\right\}
$$

where $\tau_{i}=\tau \circ \phi^{i}$ for $i \in \mathbb{Z} / f \mathbb{Z}$, and arbitrarily choose an ordering $\theta_{i, 1}, \theta_{i, 2}, \ldots, \theta_{i, e}$ of the extensions of τ_{i} to K, so

$$
\Sigma=\left\{\theta_{i, j} \mid i=0, \ldots, f-1, j=1, \ldots, e\right\}
$$

Recall the irreducible $\overline{\mathbb{F}}_{p}$-representations of $\mathrm{GL}_{2}(k)$ (or equivalently $\mathrm{GL}_{2}\left(\mathcal{O}_{F} / p\right)$ are:

$$
\sigma_{\vec{m}, \vec{n}}=\bigotimes_{i=1}^{f} \operatorname{det}^{m_{i}} \operatorname{Sym}^{n_{i}} k^{2} \otimes_{k, \tau_{i}} \overline{\mathbb{F}}_{p}
$$

where $\vec{m}, \vec{n} \in \mathbb{Z}^{f}=\mathbb{Z}^{\Sigma_{0}}, 0 \leq n_{i} \leq p-1$ for all i.

$$
\sigma_{\vec{m}, \vec{n}} \sim \sigma_{\vec{m}^{\prime}, \vec{n}^{\prime}}
$$

$$
\vec{n}=\vec{n}^{\prime} \quad \text { and } \quad \sum_{i} m_{i} p^{i} \equiv \sum_{i} m_{i}^{\prime} p^{i} \bmod p^{f}-1
$$

Could consider $H^{i}\left(Y_{1}(\mathfrak{n}), \mathcal{F}\right)$ for suitable locally constant $\overline{\mathbb{F}}_{p}$-sheaves \mathcal{F}, but interesting degree is $i=d>1$, which introduces complications, so use Jacquet-Langlands to reinterpret modularity (in characteristic zero):

Let D be a quaternion algebra over F unramified at \mathfrak{p} and exactly one infinite place.
Let Y_{U}^{D} be the associated Shimura curve (for sufficiently small $U=U^{p} U_{p}, U_{p} \cong \mathrm{GL}_{2}\left(\mathcal{O}_{F, p}\right)$).
(Could just as well work with totally definite D and 0 -dimensional Y_{U}^{D}.)

For each $\sigma=\sigma_{\vec{m}, \vec{n}}$, can define a locally constant $\overline{\mathbb{F}}_{p}$-sheaf $\mathcal{F}_{\sigma}=\mathcal{F}_{\vec{m}, \vec{n}}$ on Y_{U}^{D}, and an action of a Hecke algebra \mathbb{T} (generated by T_{v} and S_{v} for all but finitely many $v \neq \mathfrak{p}$) on

$$
H^{1}\left(Y_{U}^{D}, \mathcal{F}_{\sigma}\right)
$$

Given $\rho: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$, say ρ is modular of weight σ (and level U, w.r.t. D) if \mathfrak{m}_{ρ} is in its support, i.e.,

$$
H^{1}\left(Y_{U}^{D}, \mathcal{F}_{\sigma}\right)_{\mathfrak{m}_{\rho}} \cong \operatorname{Hom}_{\mathrm{GL}_{2}(k)}\left(\sigma, H^{1}\left(Y_{U \cap U(p)}^{D}, \overline{\mathbb{F}}_{p}\right)_{\mathfrak{m}_{\rho}}\right) \neq 0
$$

where $\mathfrak{m}_{\rho} \subset \mathbb{T}$ is generated by

$$
T_{v}-\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{v}\right)\right), \quad \operatorname{Nm}_{F / \mathbb{Q}}(v) S_{v}-\operatorname{det}\left(\rho\left(\operatorname{Frob}_{v}\right)\right)
$$

for all but finitely many v. Equivalently $H^{1}\left(Y_{U}^{D}, \mathcal{F}_{\sigma}\right)\left[\mathfrak{m}_{\rho}\right] \neq 0$.

Let

$$
W_{\mathrm{mod}}^{D}(\rho)=\left\{\sigma=\sigma_{\vec{m}, \vec{n}} \mid \rho \text { is modular of weight } \sigma \text { w.r.t. } D\right\}
$$

Then $W_{\text {mod }}^{D}(\rho)$

- should depend only on $\left.\rho\right|_{I_{K}}$ (unless $\operatorname{Disc}(D)$ is incompatible with ρ, in which case it's \emptyset);
- is the set of isomorphism classes of irreducibles appearing in the U_{p}-socle of $\underset{\longrightarrow}{\lim } H^{1}\left(Y_{V}^{D}, \overline{\mathbb{F}}_{p}\right)\left[\mathfrak{m}_{\rho}\right]$;
- determines the possible $U_{\mathfrak{p}}$-types of local factors $\pi_{\mathfrak{p}}$ of $\pi \leftrightarrow f$ giving rise to ρ for each weight (\vec{k}, \vec{m}) with all $k_{\theta} \geq 2$.

Let $W(\rho)=$
$\left\{\begin{array}{c|c}\sigma_{\vec{m}, \vec{n}} & \left.\rho\right|_{G_{K}} \text { has a crystalline lift with } \theta_{i, j} \text {-labeled HT-weights } \\ \left\{m_{i}, m_{i}+n_{i}+1\right\} \text { if } j=1, \text { and }\{0,1\} \text { if } j>1 .\end{array}\right\}$.

Conjecture

If D is compatible with ρ, then $W_{\bmod }^{D}(\rho)=W(\rho)$.

- Formulation is due to Gee, generalizing more explicit definitions of Buzzard-D-Jarvis (for p unramified in F) and Schein (for $\left.\rho\right|_{G_{K}}$ semisimple).
- $W(\rho)$ can be made more explicit in general (D-Dembélé-Roberts, Steinmetz).
- The conjecture is proved by Gee + collaborators, assuming ρ is modular and satisfies TW-hypothesis.

Example: $d=f=2$

$$
\left.\rho\right|_{G_{K}}=\left(\begin{array}{cc}
\psi & * \\
0 & 1
\end{array}\right)
$$

$\left.\psi\right|_{I_{K}}=\omega^{a_{0}+a_{1} p}, 1 \leq a_{0}, a_{1} \leq p$, not both 1 , where $\omega: I_{K} \xrightarrow{\omega_{2}} k^{\times} \xrightarrow{\tau_{0}} \overline{\mathbb{F}}_{p}^{\times}$.
Then $\sigma_{\overrightarrow{0}, \vec{n}} \in W(\rho)$, where $\vec{n}=\left(a_{0}-1, a_{1}-1\right)$.
But there may be more, depending on $*$.
Suppose for simplicity $\left.\psi\right|_{I_{K}} \neq 1=\omega^{p^{2}-1}\left(\leftrightarrow a_{0}=a_{1}=p-1\right)$ and $\left.\psi\right|_{I_{k}} \neq \chi=\omega^{p+1}\left(\leftrightarrow a_{0}=a_{1}=p\right)$.
Then $* \leftrightarrow c_{\rho} \in H^{1}\left(G_{K}, \overline{\mathbb{F}}_{p}(\psi)\right)$, dimension $2=\left[K: \mathbb{Q}_{p}\right]$

Can rewrite:

$$
\rho \left\lvert\, I_{K}=\omega^{-a_{0}^{\prime}} \otimes\left(\begin{array}{cc}
\omega^{p a_{1}^{\prime}} & * \\
0 & \omega^{a_{0}^{\prime}}
\end{array}\right)\right.
$$

for a unique $\left(a_{0}^{\prime}, a_{1}^{\prime}\right)$ with $1 \leq a_{0}^{\prime}, a_{1}^{\prime} \leq p$,
$\left(=\left(p-a_{0}, a_{1}+1\right)\right.$ if $\left.a_{0}, a_{1}<p\right)$.
Analysis of crystalline liftability shows:

$$
\sigma_{\vec{m}^{\prime}, \vec{n}^{\prime}} \in W(\rho) \Longleftrightarrow c_{\rho} \in L^{\prime}
$$

where $\vec{m}^{\prime}=\left(-a_{0}^{\prime}, 0\right), \vec{n}^{\prime}=\left(a_{0}^{\prime}-1, a_{1}^{\prime}-1\right)$, and L^{\prime} is a one-dimensional subspace of $H^{1}\left(G_{K}, \overline{\mathbb{F}}_{p}(\psi)\right)$.

Similarly get another weight $\sigma_{\vec{m}^{\prime \prime}, \vec{n}^{\prime \prime}} \in W(\rho) \Longleftrightarrow c_{\rho} \in L^{\prime \prime}$ for a one-dimensional $L^{\prime \prime}\left(\right.$ which $=L^{\prime} \Leftrightarrow a_{0}$ or $a_{1}=p$), and yet another weight if $\left.\rho\right|_{G_{K}}$ splits (i.e., $\boldsymbol{c}_{\rho}=0$).

Strategy of Gee, et al for proving $W(\rho)=W_{\text {mod }}^{D}(\rho)$:

- Use automorphy lifting theorems to prove existence and automorphy of potentially Barsotti-Tate lifts (i.e. $\leftrightarrow \vec{k}=\overrightarrow{2}$) with prescribed local behavior at p.
- Play off the relation between weights and types implicit in the Breuil-Mézard Conjecture to get an equality $W_{\text {mod }}^{D}(\rho)=W_{\mathrm{BT}}(\rho) \subset W(\rho)$.
- Weight elimination: use integral p-adic Hodge theory to prove $W(\rho) \subset W_{\text {BT }}(\rho)$.

Toy example: Companion forms for $F=\mathbb{Q}$
Suppose $\left.\rho\right|_{\rho_{p}} \sim \chi^{k-1} \oplus 1,3 \leq k \leq p-1$.
Then $W(\rho)=\left\{\sigma_{0, k-2}, \sigma_{k-1, p-1-k}\right\}$ (and $\sigma_{p-2, p-1}$ if $k=p-1$).
Automorphy lifting theorems
$\Rightarrow \rho$ modular of weight 2 , level p, character $\tilde{\chi}^{k-2}$,
i.e., type $\operatorname{Ind}_{\mathrm{Iw}}^{\mathrm{GL}_{2}\left(\mathbb{Z}_{\rho}\right)}\left(1 \otimes \tilde{\chi}^{k-2}\right)$.
$\Rightarrow \rho$ modular of some weight in

$$
J H\left(\operatorname{Ind}_{B}^{G L_{2}\left(\mathbb{F}_{p}\right)}\left(1 \otimes \chi^{k-2}\right)\right)=\left\{\sigma_{0, k-2}, \sigma_{k-2, p+1-k}\right\} .
$$

But $\sigma_{k-2, p+1-k} \notin W(\rho)$, so ρ is modular of weight of $\sigma_{0, k-2}$.

The geometric setting

Take $L \subset \overline{\mathbb{Q}}_{p}$ is sufficiently large (containing $\theta(F)$ for all $\theta \in \Sigma$), and let $\mathcal{O}=\mathcal{O}_{L}$, residue field \mathbb{F}.

Recall Y_{U} is a moduli space for HBAV's, i.e., abelian varieties of dimension d with \mathcal{O}_{F}-action and level U-structure.

Pappas-Rapoport define a smooth model for Y_{U} over \mathcal{O}.
To ease notation, continue to assume there's a unique $\mathfrak{p} \mid p$.

Pappas-Rapoport filtrations

Consider the functor on locally Noetherian \mathcal{O}-schemes: $S \rightsquigarrow$ isomorphism classes of $\left(A, \iota, \lambda, \eta, \mathcal{F}^{\bullet}\right) / S$, where:

- $s: A \rightarrow S$ is an abelian scheme of dimension d;
- $\iota: \mathcal{O}_{F} \rightarrow \operatorname{End}_{S}(A)$;
- λ is an \mathcal{O}_{F}-quasi-polarization of degree prime-to- p;
- η is a level U-structure;
- for each $\tau=\tau_{i} \in \Sigma_{0}$, a filtration

$$
0=\mathcal{F}_{i}^{(0)} \subset \mathcal{F}_{i}^{(1)} \subset \cdots \subset \mathcal{F}_{i}^{(e-1)} \subset \mathcal{F}_{i}^{(e)}=\left(s_{*} \Omega_{A / S}^{1}\right)_{\tau_{i}}
$$

such that for $j=1, \ldots, e$, the quotient

$$
\mathcal{L}_{i, j}:=\mathcal{F}_{i}^{(j)} / \mathcal{F}_{i}^{(j-1)}
$$

is a line bundle on S on which \mathcal{O}_{F} acts via $\theta_{i, j}$.

This is representable by a scheme $\widetilde{\mathcal{Y}}_{U}$:

- smooth of relative dimension d over \mathcal{O};
- complex points $\mathrm{SL}_{2}\left(\mathcal{O}_{F,(p)}\right) \backslash\left(\mathfrak{H}^{\Sigma} \times \mathrm{GL}_{2}\left(\mathbb{A}_{F, \mathbf{f}}^{(p)}\right) / U^{p}\right.$;
- components $\longleftrightarrow\left(\mathbb{A}_{F, f}^{(p)}\right)^{\times} / \operatorname{det}\left(U^{p}\right)$ (infinite);
- $\mathcal{O}_{F,(p),+}^{\times} /\left(U \cap \mathcal{O}_{F}^{\times}\right)^{2}$ acts freely (via polarization).

The quotient \mathcal{Y}_{U} is a smooth model for Y_{U}.
$\mathrm{GL}_{2}\left(\mathbb{A}_{F, f}^{(p)}\right)$ acts on $\lim _{\longleftarrow} \mathcal{Y}_{U}$.
We're interested in $\bar{Y}_{U}:=\mathcal{Y}_{U, \mathbb{F}}$.

Mod p Hilbert modular forms

Recall we have (universal) line bundles $\mathcal{L}_{\theta_{i, j}}=\mathcal{L}_{i, j}$ on $\widetilde{\mathcal{Y}}_{U}$.
Can also define (trivial) line bundles \mathcal{N}_{θ} on $\widetilde{\mathcal{Y}}_{U}$ so that

$$
\bigotimes_{\theta \in \Sigma} \mathcal{L}_{\theta}^{k_{\theta}} \mathcal{N}_{\theta}^{m_{\theta}}
$$

identifies with the pull-back of $\mathcal{A}_{\vec{k}, \vec{m}}$ (over $\widetilde{\mathcal{Y}}_{U, \mathrm{C}}$).
More generally if R is an \mathcal{O}-algebra in which

$$
\prod_{\theta} \theta(\mu)^{k_{\theta}+2 m_{\theta}}=1
$$

for all $\mu \in U \cap \mathcal{O}_{F}^{\times}$, then $\bigotimes_{\theta \in \Sigma} \mathcal{L}_{\theta}^{k_{\theta}} \mathcal{N}_{\theta}^{m_{\theta}}$ descends canonically to a line bundle $\mathcal{A}_{\vec{k}, \vec{m}, R}$ on $\mathcal{Y}_{U, R}$.

In particular for all sufficiently small U have:

$$
\overline{\mathcal{A}}_{\vec{k}, \vec{m}}:=\mathcal{A}_{\vec{k}, \vec{m}, \mathbb{F}}
$$

on \bar{Y}_{U} for all \vec{k}, \vec{m}.
Define the space of mod p Hilbert modular forms of weight (\vec{k}, \vec{m}) and level U to be:

$$
M_{\vec{k}, \vec{m}}(U ; \mathbb{F})=H^{0}\left(\bar{Y}_{U,}, \overline{\mathcal{A}}_{\vec{k}, \vec{m}}\right)
$$

Get a natural action on $\operatorname{GL}_{2}\left(\mathbb{A}_{F, f}^{(p)}\right)$ on

$$
\lim _{U} M_{\vec{k}, \vec{m}}(U ; \mathbb{F}) .
$$

In particular operators T_{v} and S_{v} for all but finitely many v.

Partial Hasse invariants

Generalizations of the classical Hasse invariant.
Defined in this setting by Reduzzi-Xiao (buliding on Goren, Andreatta-Goren).
Choose a uniformizer ϖ of $K=F_{p}$.
Then $\iota(\varpi): A \rightarrow A$ over $\tilde{\mathcal{Y}}_{U, \mathbb{F}}$ induces

$$
\overline{\mathcal{F}}_{i}^{(j)} \rightarrow \overline{\mathcal{F}}_{i}^{(j-1)}
$$

for $j=1, \ldots, e$, and hence

$$
\overline{\mathcal{L}}_{i, j} \rightarrow \overline{\mathcal{L}}_{i, j-1}
$$

for $j=2, \ldots$, e, i.e. a section $H_{i, j}$ of $\overline{\mathcal{L}}_{i, j}^{-1} \overline{\mathcal{L}}_{i, j-1}$.

On the other hand if $j=1$, then Ver : $A^{(p)} \rightarrow A$ induces

$$
\overline{\mathcal{L}}_{i, e} \longrightarrow \overline{\mathcal{L}}_{i-1, e}^{p}
$$

which factors uniquely as $H_{i, 1} \circ H_{i, 2} \circ \cdots \circ H_{i, e}$, where $H_{i, 1}$ is a section of $\overline{\mathcal{L}}_{i, 1}^{-1} \overline{\mathcal{L}}_{i-1, e}^{p}$.
The $H_{i, j}$ descend to \bar{Y}_{U}, so define elements

$$
H_{\theta} \in M_{\vec{h}_{\theta}, \overrightarrow{0}}(U ; \mathbb{F})
$$

where $\vec{h}_{\theta}=n_{\theta} \vec{e}_{\sigma^{-1} \theta}-\vec{e}_{\theta}$, (i.e., $(\cdots, 0, p$ or $1,-1,0, \cdots)$) σ is the "right-shift" cyclic permutation of Σ :

$$
(1,1) \mapsto(1,2) \mapsto \cdots \mapsto(1, e) \mapsto(2,1) \mapsto \cdots
$$

and $n_{\theta_{i, j}}=n_{i, j}=\left\{\begin{array}{cl}p & \text { if } j=1 \text {; } \\ 1 & \text { if } j>1 .\end{array}\right.$
Furthermore the H_{θ} are $\mathrm{GL}_{2}\left(\mathbb{A}_{F, \mathbf{f}}^{(p)}\right)$-invariant.

Associated Galois representations

Theorem (Goldring-Koskivirta, Emerton-Reduzzi-Xiao, D-Sasaki) Suppose that $f \in M_{\vec{k}, \vec{m}}(U(\mathfrak{n}), \mathbb{F})$ is such that $T_{v} f=a_{v} f, S_{v} f=d_{v} f$ for all $v \nmid \mathfrak{p n}$.
Then there exists a unique semisimple

$$
\rho_{f}: G_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
$$

such that for all $v \nmid \mathrm{pn}, \rho_{f}$ is unramified at v, and $\rho_{f}\left(\mathrm{Frob}_{v}\right)$ has characteristic polynomial

$$
X^{2}-a_{v} X+d_{v} \operatorname{Nm}_{F / \mathbb{Q}}(v) .
$$

- The strategy:

Multiply by partial Hasse invariants to shift to a weight $\left(\vec{k}^{\prime}, \vec{m}^{\prime}\right)$ such that ampleness implies forms lift to characteristic zero.

- The obstacle: It might not be possible to do this so that \vec{k}^{\prime} paritious.
- The idea:

Lift to a form with paritious weight and level $U \cap U_{1}(\mathfrak{p})$.

Sketch of proof:

Suppose for now p is unramified (for simplicity).
Twist to reduce to the case $\vec{m}=\overrightarrow{0}$, and multiply by H_{θ} 's so that $\vec{k}=\vec{N}-\vec{\delta}$, where $N \gg 0$ and $0 \leq \delta_{\theta} \leq p-1$ for all θ (but $\vec{\delta} \neq \vec{p}-\overrightarrow{1}$).

Let $\mathcal{Y}=\mathcal{Y}_{U}$, and consider the models \mathcal{Y}_{i} defined by Pappas for HMV's of level $U \cap U_{i}(\mathfrak{p}), i=0,1$. So

$$
\pi: \mathcal{Y}_{1} \xrightarrow{\pi_{1}} \mathcal{Y}_{0} \xrightarrow{\pi_{0}} \mathcal{Y}
$$

\mathcal{Y}_{0} is flat I.c.i. over \mathcal{O} and π_{1} is finite flat (but π_{0} is neither).
In particular the \mathcal{Y}_{i} are Cohen-Macaulay, so have relative dualizing sheaves \mathcal{K}_{i}, isomorphic to $\mathcal{A}_{\overrightarrow{2},-\overrightarrow{1}}$ over L (by Kodaira-Spencer).

Use the canonical section $\bar{Y} \hookrightarrow \bar{Y}_{0}$ and isomorphism

$$
\bar{\pi}_{1, *} \overline{\mathcal{K}}_{1} \cong \mathcal{H o m}_{\mathcal{O}_{\bar{\gamma}_{0}}}\left(\bar{\pi}_{1, *} \mathcal{O}_{\bar{Y}_{1}}, \overline{\mathcal{K}}_{0}\right)
$$

to get $\overline{\mathcal{A}}_{-\vec{\delta}+\overrightarrow{2},-\overrightarrow{1}} \hookrightarrow \bar{\pi}_{*} \overline{\mathcal{K}}_{1}$, and so

$$
M_{\vec{k}, \overrightarrow{0}}(U ; \mathbb{F}) \hookrightarrow H^{0}\left(\bar{Y}_{1}, \overline{\mathcal{K}}_{1} \otimes \bar{\pi}^{*} \overline{\mathcal{A}}_{\vec{N}-\overrightarrow{2}, \overrightarrow{1}}\right) .
$$

Use ampleness of $\mathcal{A}_{\vec{N}, \overrightarrow{0}}$ on the minimal compactification of Y_{U}, and the vanishing of $R^{1} \pi_{*} \mathcal{K}_{1}$ (D-Kassaei-Sasaki) to prove the image is contained in that of reduction:

$$
\begin{aligned}
M_{\vec{N}, 0}\left(U_{1}(\mathfrak{p}), \mathcal{O}\right) & :=H^{0}\left(Y_{1}, \mathcal{K}_{1} \otimes \pi^{*} \mathcal{A}_{\vec{N}-\overrightarrow{2}, \overrightarrow{1}}\right) \\
& \longrightarrow H^{0}\left(\bar{Y}_{1}, \mathcal{K}_{1} \otimes \bar{\pi}^{*} \overline{\mathcal{A}}_{\vec{N}-\overrightarrow{2}, \overrightarrow{1}}\right) .
\end{aligned}
$$

All the maps are Hecke-equivariant, so Deligne-Serre lifting lemma gives a characteristic zero eigenform whose associated Galois representation has the desired reduction.

In p is ramified, the main changes are:

- (Emerton-Reduzzi-Xiao) Shift $(\vec{N}, \overrightarrow{0})$ by $M(2 \vec{\epsilon},-\vec{\epsilon})$ with $M \gg 0$ and $\epsilon_{i, j}=j$ to get an ample bundle.
- It's the (powers of) $\theta_{i, e}$ that appear in $\pi_{*} \overline{\mathcal{K}}_{1}$.
- Only get that the image of $S_{\vec{k}, \vec{m}}(U ; \mathbb{F})$ is contained in the image of reduction, so need to argue separately for the contribution from cusps.

Geometric modularity

We say $\rho: \mathrm{G}_{F} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is geometrically modular of weight (\vec{k}, \vec{m}) if $\rho \sim \rho_{f}$ for some level U prime to p and Hecke eigenform $f \in M_{\vec{k}, \vec{m}}(U ; \mathbb{F})$.
Given ρ, what is the set of weights for which ρ is modular?
Expect the answer to be related to:

- set of (\vec{k}, \vec{m}) such that $\left.\rho\right|_{G_{K}}$ has a crystalline lift with θ-labeled HT weights ($m_{\theta}, m_{\theta}+k_{\theta}-1$) for each $\theta \in \Sigma$.
- set of (\vec{k}, \vec{m}) such that ρ is algebraically modular of weight (\vec{k}, \vec{m}),i.e., of some weight in

$$
J H\left(\bigotimes_{i, j} \operatorname{det}^{m_{i, j}} \operatorname{Sym}^{k_{i, j}-2} k^{2} \otimes_{k, \tau_{i}} \overline{\mathbb{F}}_{p}\right) .
$$

Warning: The naive conjectures are false!
Recall (multiplication by) $H_{\theta} \in M_{\vec{h}_{\theta}, \overrightarrow{0}}(U ; \mathbb{F})$ defines a Hecke-equivariant injective map:

$$
M_{\vec{k}, \vec{m}}(U ; \mathbb{F}) \longrightarrow M_{\vec{k}+\vec{h}_{\theta}, \vec{m}}(U ; \mathbb{F})
$$

Write $\vec{k} \leq_{\text {Ha }} \vec{k}^{\prime}$ if $\vec{k}^{\prime}=\vec{k}+\sum_{\theta} b_{\theta} \vec{h}_{\theta}$ for some $\vec{b} \in \mathbb{Z}_{\geq 0}{ }^{\circ}$.
So if ρ geometrically modular of weight (\vec{k}, \vec{m}) and $\vec{k} \leq_{\text {На }} \vec{k}^{\prime}$, then ρ geometrically modular of weight ($\vec{k}^{\prime}, \vec{m}$).
Find that ρ may be geometrically modular of weight (\vec{k}, \vec{m})

- with all $k_{\theta} \geq 2$, but not algebraically modular of some JH -factor of the corresponding weight (shifting by ($\vec{h}_{\theta}, \overrightarrow{0}$) can lose JH -factors).
- with some $k_{\theta}=1$, but $\left.\rho\right|_{G_{K}}$ has no crystalline lift with the corresponding labeled weights (Bartlett)

Minimal weights

For non-zero $f \in M_{\vec{k}, \vec{m}}(U ; \mathbb{F})$, can define its minimal weight (Adreatta-Goren, Deo-Dimitrov-Wiese, D-Kassaei):
The divisors of the partial Hasse invariants H_{θ} :

- meet every irreducible component of \bar{Y}_{U},
- have no common irreducible components, so

$$
\left\{\vec{r} \in \mathbb{Z}^{\Sigma} \mid \prod_{\theta \in \Sigma} H_{\theta}^{-r_{\theta}} f \in M_{\vec{k}-\sum_{\theta} r_{\theta} \vec{h}_{\theta}, \vec{m}}(U ; \mathbb{F})\right\}
$$

has a unique maximal element \vec{r}, and let

$$
\vec{k}_{\min }(f)=\vec{k}-\sum_{\theta} r_{\theta} \vec{h}_{\theta} .
$$

Define the minimal cone by:

$$
\bar{Z}^{\min }=\left\{\vec{x} \in \mathbb{Z}^{\Sigma} \mid x_{\sigma^{-1} \theta} \leq n_{\theta} x_{\theta}\right\} .
$$

Then $\equiv^{\min } \subset \mathbb{Z}_{\geq 0}^{\Sigma}$, e.g.,

- if $d=f=2$, then $\Xi^{\min }$ is spanned by $(1, p)$ and $(p, 1)$;
- if $d=f=3$, then by $\left(1, p, p^{2}\right),\left(p, p^{2}, 1\right)$ and $\left(p^{2}, 1, p\right)$.
- if $d=e=2$, then by $(1,1)$ and $(1, p)$;
- if $d=e=3$, then by $(1,1,1),(1,1, p)$ and $(1, p, p)$;

Theorem (D-Kassaei)
If $f \neq 0$, then $\vec{k}_{\min }(f) \in \Xi^{\min }$.

A geometric Serre weight Conjecture

Conjecture (D-Sasaki)

If $\vec{m} \in \mathbb{Z}^{\Sigma}$ and $\rho: G_{F} \longrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is irreducible, then there is a unique $\vec{k}_{\text {min }}=\vec{k}_{\text {min }}(\rho, \vec{m}) \in \sum_{\geq 1}^{\min _{1}}$ such that the following are equivalent for all $\vec{k} \in \equiv \geq 1$:

1. $\vec{k} \geq_{\text {На }} \vec{k}_{\text {min }}$
2. ρ is geometrically modular of weight (\vec{k}, \vec{m})
3. $\left.\rho\right|_{G_{K}}$ has a crystalline lift with θ-labeled weights $\left\{m_{\theta}, m_{\theta}+k_{\theta}-1\right\}$ for all $\theta \in \Sigma$.

- (1) \Leftrightarrow (2) should hold for all $\vec{k} \in \mathbb{Z}^{\Sigma}$.
- If ρ_{f} is irreducible and $p>3$, then $k_{\text {min }}(f) \in \equiv \geq \geq 1$.
(D-Kassaei)
- Existence of a $\vec{k}_{\text {min }}$ such that (1) $\Leftrightarrow(3)$ is a purely p-adic Hodge theoretic conjecture (and doesn't extend to $\mathbb{Z}_{\geq 1}$).

Relation between algebraic and geometric modularity

Conjecture (D-Sasaki)
If $\rho: G_{F} \longrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)$ is irreducible and $\vec{k} \in \equiv \sum_{\geq 2}$,
then ρ is geometrically modular of weight (\vec{k}, \vec{m})
if and only if ρ is algebraically modular of weight (\vec{k}, \vec{m}).

- If ρ is geometrically modular of some weight, then ρ is algebraically modular of some weight.
- \Longleftarrow should hold on $\mathbb{Z}_{\geq 2}$, is easy if \vec{k} is paritious (and maybe not so hard in general)
- This conjecture follows from:

Algebraic Serre weight conjecture

+ Geometric Serre weight conjecture
+ Breuil-Mézard Conjecture.

Partial Θ-operators

How should $\vec{k}_{\text {min }}(\rho, \vec{m})$ depend on \vec{m} ?

- If ρ is modular of weight (\vec{k}, \vec{m}), then

$$
\left.\operatorname{det} \rho\right|_{I_{K}}=\prod_{\theta} \omega_{\theta}^{k_{\theta}+2 m_{\theta}-1}=\omega^{\sum_{i, j}\left(k_{i, j}+2 m_{i, j}-1\right)\left(p^{i}\right)}
$$

so ρ and \vec{m} determine $\sum_{i, j} k_{i, j} p^{i} \bmod \left(p^{f}-1\right)$, i.e., $\vec{k} \bmod \wedge:=\oplus_{\theta} \mathbb{Z} \vec{h}_{\theta}$.

- If $\vec{m} \equiv \overrightarrow{m^{\prime}} \bmod \Lambda$, then ρ is modular of weight (\vec{k}, \vec{m}) if and only if ρ is modular of weight $\left(\vec{k}, \vec{m}^{\prime}\right)$. So $\vec{k}_{\text {min }}(\rho, \vec{m})$ depends only on $\vec{m} \bmod \wedge$.
- If $\xi: G_{F} \rightarrow \overline{\mathbb{F}}_{p}^{\times}$is such that $\left.\xi\right|_{I_{K}}=\prod_{\theta} \omega_{\theta}^{b_{\theta}}$, then ρ is modular of weight (\vec{k}, \vec{m}) if and only if $\xi \otimes \rho$ is modular of weight $(\vec{k}, \vec{m}+\vec{b})$.

Fixing ρ and varying $\vec{m}(\bmod \Lambda)$?
Use partial Θ-operators, defined/refined by Andreatta-Goren, D-Sasaki, Deo-Dimitrov-Wiese and D:
Theorem
Let $\tau=\tau_{i} \in \Sigma_{0}$ and $\theta=\theta_{i, e}$. Then there is a Hecke-equivariant:

$$
\Theta_{\tau}: M_{\vec{k}, \vec{m}}(U ; \mathbb{F}) \longrightarrow M_{\vec{k}^{\prime}, \vec{m}^{\prime}}(U ; \mathbb{F}),
$$

where $\vec{k}^{\prime}=\vec{k}+\vec{h}_{\theta}+2 \vec{e}_{\theta}$ and $\vec{m}^{\prime}=\vec{m}-\vec{e}_{\theta}$.
Furthermore $\Theta_{\tau}(f)$ is divisible by H_{θ} if and only if either f is divisible by H_{θ} or k_{θ} is divisible by p.

Note in particular that $\vec{k}^{\prime}= \begin{cases}\vec{k}+\vec{e}_{i, e-1}+\vec{e}_{i, e}, & \text { if } e>1 ; \\ \vec{k}+p \vec{e}_{i-1,1}+\vec{e}_{i, 1}, & \text { if } e=1 .\end{cases}$

Idea of proof/construction:

The bundles $\mathcal{A}_{\vec{e}_{\theta}, \overrightarrow{0}}$ have tautological sections h_{θ} over the Igusa cover of \bar{Y}_{U}.

- Divide by $\prod_{\theta} h_{\theta}^{k_{\theta}}$ to get a rational function,
- differentiate and apply Kodaira-Spencer,
- multiply by $H_{\theta_{i, e}} \prod_{\theta} h_{\theta}^{k_{\theta}}$.

Can also describe the kernel of Θ_{τ} in terms of the image of a partial Frobenius operator V.
Corollary
If ρ is geometrically modular of weight (\vec{k}, \vec{m}), then ρ is geometrically modular of weight $\left(\vec{k}+\vec{h}_{\theta}+2 \vec{e}_{\theta}, \vec{m}-\vec{e}_{\theta}\right)$ (and of weight $\left(\vec{k}+2 \vec{e}_{\theta}, \vec{m}-\vec{e}_{\theta}\right)$ if $p \mid k_{\theta}$).

Partial weight one

As a special case of the geometric Serre weight conjecture, ρ should be geometrically modular of weight $(\overrightarrow{1}, \overrightarrow{0})$
if and only if ρ is unramified at (all primes over) p.
\Rightarrow is known (Emerton-Reduzzi-Xiao, Dimitrov-Wiese)
\Leftarrow under technical hypotheses (Gee-Kassaei)
What about partial weight one?
If $\{\mathfrak{p}\} \subsetneq S_{p}$, then the conjecture implies:
ρ is unramified at $\mathfrak{p} \Leftrightarrow \rho$ is geometrically modular of some weight of the form (\vec{k}, \vec{m}) with $k_{\theta}=1, m_{\theta}=0$ for all $\theta \in \Sigma_{p}$.
\Leftarrow is known for paritious \vec{k} (Deo-Dimitrov-Wiese, De Maria)

What about $k_{\theta}=1$ for some but not all $\theta \in \Sigma_{p}$?
Suppose for example $d=2$ and p is inert. (D-Sasaki)
Up to exchanging τ_{0}, τ_{1}, such values of $\vec{k} \in \equiv$ min are $\left(1, k_{1}\right)$ with $2 \leq k_{1} \leq p$. For simplicity assume $k_{1} \neq 2$.

Suppose $\left.\rho\right|_{G_{K}}$ has a crystalline lift with labeled HT weights $\{0,0\}_{0}$ and $\left\{0, k_{1}-1\right\}_{1}$.

If $\left.\rho\right|_{G_{K}}$ is reducible, then

$$
\rho \sim\left(\begin{array}{ll}
\psi & * \\
0 & 1
\end{array}\right)
$$

with $\left.\psi\right|_{I_{K}}=\omega^{p\left(k_{1}-1\right)}=\omega^{a_{0}+a_{1} p}$ where $a_{0}=p$ and $a_{1}=k_{1}-2$, so $L^{\prime}=L^{\prime \prime}$.

One finds that $\left.\rho\right|_{G_{K}}$ has a crystalline lift with these labeled HT-weights $\Leftrightarrow c_{\rho} \in L^{\prime}=L^{\prime \prime}$, so

1. $\left.\rho\right|_{G_{K}}$ has a crystalline lift with labeled HT weights $\{0, p\}_{0}$ and $\left\{0, k_{1}-2\right\}_{1}$, and
2. $\left.\rho\right|_{G_{K}}$ has a crystalline lift with labeled HT weights $\{0, p\}_{0}$ and $\left\{-1, k_{1}-1\right\}_{1}$.
Furthermore the converse holds.
And in fact the equivalence also holds if $\left.\rho\right|_{G_{K}}$ is irreducible.

On the other hand, suppose $\rho \sim \rho_{f}$ for some f of weight $(\vec{k}, \overrightarrow{0})=\left(\left(1, k_{1}\right),(0,0)\right)$.

1. Multiplying by H_{1} implies ρ is geometrically modular of weight $\left(\overrightarrow{k^{\prime}}, \overrightarrow{0}\right)=\left(\left(p+1, k_{1}-1\right),(0,0)\right.$.
2. Applying Θ_{1} shows ρ is geometrically modular of weight $\left(\vec{k}^{\prime \prime},-\vec{e}_{1}\right)=\left(\left(p+1, k_{1}+1\right),(0,-1)\right.$.
Conversely suppose $\rho \sim \rho_{f^{\prime}}$ for some f^{\prime} of weight ($\overrightarrow{k^{\prime}}, \overrightarrow{0}$), and $\rho \sim \rho_{f^{\prime \prime}}$ for some $f^{\prime \prime}$ of weight ($\vec{k}^{\prime \prime},-\vec{e}_{1}$).
Then $\Theta_{1}\left(f^{\prime}\right)$ has weight $\left(\left(2 p+1, k_{1}\right),(0,-1)\right)=\left(\vec{k}^{\prime \prime}+\vec{h}_{1},-\vec{e}_{1}\right)$.
Choosing suitable normalized eigenforms and using the q-expansion principle, can ensure $\Theta_{1}\left(f^{\prime}\right)=H_{1} f^{\prime \prime}$. Since $k_{1}-1$ is not divisible by p, it follows that $H_{1} \mid f^{\prime}$, so ρ is modular of weight $(\vec{k}, \overrightarrow{0})=\left(\vec{k}^{\prime}-\vec{h}_{1}, \overrightarrow{0}\right)$.

So if we assume:

- algebraic Serre weight conjecture for ρ,
- equivalence of algebraic and geometric modularity for

$$
\vec{k} \in \equiv \min _{\geq 2}
$$

then we get:
ρ is geometrically modular of weight $(\vec{k}, \overrightarrow{0})$ if and only if $\left.\rho\right|_{G_{K}}$ has a crystalline lift with labeled weights $\{0,0\}_{0}$ and $\left\{0, k_{1}-1\right\}_{1}$.
Since algebraic \Rightarrow geometric modularity for paritious weights, and the algebraic Serre weight conjecture is known (under mild hypotheses, and ad hoc arguments work when they fail), we get the following:

Theorem (D-Sasaki)

Suppose F is a quadratic extension of \mathbb{Q} in which p is inert or ramified. If ρ is modular and $\left.\rho\right|_{G_{K}}$ has a crystalline lift with labeled $H T$-weights $\{0,0\}_{1}$ and $\{0, k-1\}_{2}$, where k is odd and $3 \leq k \leq p$, then ρ is geometrically modular of weight $((0,0),(1, k))$.

The ramified quadratic case is proved by a similar argument.
The possible weights are again $(1, k)$ with $2 \leq k \leq p$, but now θ_{1} and θ_{2} are not interchangeable.
The relevant algebraic weights (for $k \geq 3$) become:

- $\left(\vec{k}^{\prime}, \overrightarrow{0}\right)=((2, k-1),(0,0))$.
- $\left(\vec{k}^{\prime \prime},-\vec{e}_{2}\right)=((2, k+1),(0,-1))$.

Use Gee-Liu-Savitt for the p-adic Hodge theory.
Note Θ still sends weight ($\vec{k}^{\prime}, \overrightarrow{0}$) to weight $\left(\vec{k}^{\prime \prime}+\vec{h}_{2},-\vec{e}_{2}\right)$.

