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Serre’s Conjecture over Q

Theorem (Khare–Wintenberger)
Suppose that

ρ : Gal(Q/Q)→ GL2(Fp)

is odd, continuous and irreducible.
Then ρ is modular of level N(ρ) and weight k(ρ).

I N(ρ) = prime-to-p Artin conductor;
I k(ρ) depends only on ρ|Ip ;
I N(ρ) and k(ρ) are (in a sense) minimal;
I the equivalence between “weak” and refined versions

(for p > 2) was proved first (Mazur, Ribet, Carayol,
Gross, Coleman–Voloch, Edixhoven)
and used in the proof of the “weak” version.



Serre’s recipe for k(ρ)

Suppose 2 ≤ k ≤ p + 1. Then k(ρ) = k if and only if either

I) ρ|Ip '
(
χk−1 ∗

0 1

)
and ∗ is

{
peu ramifée if k = 2
très ramifiée if k = p + 1

OR II) ρ|Ip ' ω
k−1
2 ⊕ ωp(k−1)

2 and k ≤ p,

where χ is the cyclotomic character
and ω2 is a fundamental character of niveau 2,
i.e., ω2(g) = g(π)/π, where πp2−1 = p (and χ = ωp+1

2 ).

Case I (resp. II) occurs only if ρ|GQp
is reducible

(resp. irreducible).



Three obvious questions:

Q1: Where does this recipe come from?

Q2: Why assume k ≥ 2?

Q3: Why assume k ≤ p + 1?

Some (preliminary) answers:

Q1: Deligne and Fontaine proved that if 2 ≤ k ≤ p + 1
and ρ is modular of weight k , then it’s of the form above.
Can view this as a consequence of p-adic Hodge theory
— more on this later.



Q2: (Why k ≥ 2?) Three (related) answers:

Answer 1: k(ρ) ≥ 2 in Serre’s recipe

Answer 2: There are two notions of modularity
(fix a level N prime to p):
I ρ = ρf for an eigenform f ∈ Mk (N;C) := H0(X1(N), ωk );
I ρ = ρf for an eigenform f ∈ Mk (N;Fp) := H0(X1(N)Fp

, ωk ).

For k ≥ 2, the notions are equivalent, not for k = 1
—more on this later.



Answer 3: Another interpretation of modularity for k ≥ 2:
The Eichler–Shimura isomorphism implies these are⇔

I ∃ eigenform f ∈ H1(Γ1(N),Symk−2(F2
p))† such that

Tv f = av f (and 〈v〉f = dv f ) for (almost) all v - pN, where

X 2 − av X + dv vk−1

is the characteristic polynomial of ρ(Frobv ).
† - or H1(Y1(N),Symk−2F) where F is the rank two
lisse/locally constant Fp sheaf R1s∗Fp,
where s : E → Y1(N) the universal elliptic curve.



Q3: (Why k ≤ p + 1?) Again three (related) answers:

Answer 1: So I could fit the recipe on one slide

Answer 2: For every ρ, there are m such that

k(ρ⊗ χ−m) ≤ p + 1

Answer 3: The full recipe can be reduced to this case.
—More on this next.



Serre weights
Eichler–Shimura suggests another notion of weight
(Ash–Stevens, Khare):

Consider the irreducible representations of GL2(Fp) over Fp:

σm,n = det m ⊗ SymnF2
p, m ∈ Z/(p − 1)Z, 0 ≤ n ≤ p − 1.

Say ρ is modular (of level N) and weight σ if the corresponding
system of Hecke eigenvalues arises in H1(Γ1(N), σ)

So for k ≥ 2, the following are equivalent:
I ρ is (algebraically) modular of weight k

I ρ is modular of weight Symk−2F2
p

I ρ⊗ χm is modular of weight detm Symk−2F2
p

I ρ is modular some weight in JH(Symk−2F2
p)



Define the set of Serre weights of ρ to be:

W (ρ) = {σm,n | k(ρ⊗ χ−m) = n + 2, or 2 if n = p − 1 }

(where m ∈ Z/(p − 1)Z, 0 ≤ n ≤ p − 1).

Examples:

I ρ|Ip =
(
χn+1 ∗

0 1

)
, non-split, 0 < n < p − 1

⇒W (ρ) = {σ0,n};
I ρ|Ip = χn+1 ⊕ 1, 0 < n < p − 3
⇒W (ρ) = {σ0,n, σn+1,p−3−n}

I ρ|Ip = ωn+1
2 ⊕ ωp(n+1)

2 , 0 < n < p − 1
⇒W (ρ) = {σ0,n, σn,p−1−n}.



Then W (ρ) determines k(ρ) as follows:

For σ = σm,n, let kσ = min{ k ≥ 2 |σ ∈ JH(Symk−2F2
p) }.

Theorem (Wiersema - direct proof)
If 0 ≤ m ≤ p − 2 and 0 ≤ n ≤ p − 1, then

kσm,n =

{
m(p + 1) + n + 2, if m + n < p − 1;
m(p + 1) + (n + 2)p + 1− p2, if m + n ≥ p − 1.

Therefore Serre’s k(ρ) = min{ kσ |σ ∈W (ρ) }

= min{ k ≥ 2 | JH(Symk−2F2
p) ∩W (ρ) 6= ∅ }.

This reduces the weight part of Serre’s Conjecture
to the case 2 ≤ k(ρ) ≤ p + 1.

(Alternatively, use θ-cycles — more on this later.)

Low weight cases are treated using
“companion forms” theorems and Mazur’s Principle.



p-adic Hodge theory

Returning to Q1 (where does the recipe come from?):

Suppose ρ : GQp → AutE (V ) of dimension d , Qp ⊂ E ⊂ Qp.

Dcrys(V ) := (V ⊗ Bcrys)
GQp

is a filtered E-vector space of dimension ≤ d
(where Bcrys is Fontaine’s crystalline period ring).

Say V is crystalline if dimE Dcrys(V ) = d , and
its Hodge-Tate (HT) weights are the i such that
gr−iDcrys(V ) 6= 0.



Theorem (Fontaine-Laffaille, Berger-Li-Zhu)
Suppose that 2 ≤ k ≤ p + 1.
Then ρ|GQp

has a crystalline lift with HT weights {0, k − 1}
if and only if either k = k(ρ), or k = p + 1 and k(ρ) = 2.

Corollary
W (ρ) =
{σm,n | ρ|GQp

has a crystalline lift with HT weights {m,m + n + 1}. }.

The (algebraic) Serre Weight Conjecture becomes:

The following are equivalent:
I ρ is modular of weight σm,n and level prime to p
I ρ|GQp

has a crystalline lift with HT weights {m,m + n + 1}.



Combining the corollary with (a corollary of)
the Breuil-Mezard Conjecture gives:

Theorem (Kisin, Paskunas, Hu-Tan, Tung)
Suppose that k ≥ 2. Then ρ|GQp

has a crystalline lift of with HT

weights {0, k − 1} if and only W (ρ) ∩ JH(Symk−2F2
p) 6= ∅.

Combining this with Wiersema’s formula gives
(a purely local proof) of:

Corollary
k(ρ) =

min{k ≥ 2 | ρ|GQp
has a crystalline lift with HT weights {0, k − 1}}



The geometric variant

Returning to Q2: What about k = 1?

Recall we had two notions of modularity
(both equivalent to algebraic modularity if k ≥ 2):
I ρ arises from Mk (N;C) = Mk (N;Z[1/N])⊗ C;
I ρ arises from Mk (N;Fp)(←↩ Mk (N;Z[1/N])⊗ Fp).

For k = 1, the first notion isn’t characterized by ρ|Ip ,
so Edixhoven uses the second;
call this geometric modularity of weight k (and level N).



Define:

kgeom(ρ) =

{
1, if ρ is unramified at p;
k(ρ), otherwise.

= min{ k ≥ 1 | ρ|GQp
has a crystalline lift with HT weights {0, k − 1}}.

The Geometric Serre Weight Conjecture is then:

Suppose k ≥ 1. Then the following are equivalent:
I ρ is geometrically modular of weight k and level prime to p
I ρ|GQp

has a crystalline lift with HT weights {0, k − 1}
I k ∈ kgeom(ρ) + t(p − 1) for some t ∈ Z≥0.



Geometric weight-shifting

The Hasse invariant:

Verschiebung on the universal E over Y 1(N) = Y1(N)Fp

induces ω → ωp, or equivalently

H ∈ Mp−1(Γ1(N);Fp).

Multiplication by H defines Hecke-equivariant:

Mk (N;Fp)→ Mk+p−1(N;Fp).

So ρ geometrically modular of weight k
⇒ ρ geometrically modular of weight k + p − 1.



Katz’s qd/dq-operator:

The Gauss–Manin connection ω → Ω1
Y 1(N)/Fp

⊗ ω−1

induces KS : ω2 ∼= Ω1
X 1(N)/Fp

(cusps).

Use this to define:

Θ : Mk (N,Fp)→ Mk+p+1(N;Fp).

with the following properties:

I twists the action of Tv by v ;
I has image in H ·Mk+2(N;Fp) if p|k ;
I Θp = Hp+1Θ.



So ρ geometrically modular of weight k
⇒ χ⊗ ρ geometrically modular of weight k + p + 1
(in fact k + 2 if p|k ).

Recall ρ⊗ χ−m is modular of weight ≤ p + 1 for some m
(for which Edixhoven also gives a geometric proof).

An elementary analysis of possible “Θ-cycles”
reduces the proof of the (geometric) Serre weight
conjecture to the case 1 ≤ kgeom(ρ) ≤ p,
which is then completed by an extension
of the companion forms theorem to kgeom(ρ) = 1.



Hilbert modular forms

Let F be a totally real field, d = [F : Q] > 1, ring of integers OF .
Fix Q ↪→ C, Q ↪→ Qp,
so Σ := {F ↪→ Q } :=

∐
v |p Σv .

For open compact U ⊂ GL2(AF ,f), let

YU = GL2(F )+\(HΣ ×GL2(AF ,f)/U

denote the Hilbert modular variety of level U.

In particular, let Y1(n) = YU1(n) and Y (n) = YU(n).

I coarse moduli space for HBAV’s with additional structure;
I YU has dimension d , smooth for sufficiently small U;
I canonical model over Q, action of GL2(AF ,f) on lim←−U

YU ;
I components of YU1(n) ↔ strict class group fo F .



Suppose ~k , ~m ∈ ZΣ and w = kθ + 2mθ is independent of θ.
(In particular ~k is paritious.)
Then can define an automorphic line bundle A~k ,~m on YU .

Define the space of Hilbert modular forms of
weight (~k , ~m) and level U:

M~k ,~m(U,C) = H0(YU ,A~k ,~m)

and of level n:

M~k ,~m(n,C) = M~k ,~m(U1(n),C)

Equipped with a Hecke action, in particular Tv , Sv for v - n.



Theorem (many people)
Suppose that f ∈ M~k ,~m(n,C) is such that Tv f = av f ,Sv f = dv f
for all v - n. Then there exists
unique semisimple (irreducible⇔ f cuspidal)

ρf : GF → GL2(Qp)

such that for all v - pn, ρf is unramified at v,
and ρf (Frobv ) has char. poly.

X 2 − av X + dv NmF/Q(v).

Furthermore if kθ ≥ 2 for all θ ∈ Σ and v |p,
then ρf |GFv

is de Rham (crystalline⇔ v - n)
with θ-labelled† HT weights {mθ, kθ + mθ − 1} for θ ∈ Σv .

† - DHT (V ) = (V ⊗ BHT )GFv , where BHT = ⊕Cp(i),
is free rank 2 over Fv ⊗Qp = ⊕θ∈ΣvQp.



Conjecture (Fontaine–Mazur–Langlands)
Every totally odd, irreducible, geometric ρ : GF → GL2(Qp)
is isomorphic to ρf for some f as above.

Conjecture (“Weak” Serre)
Every totally odd, irreducible ρ : GF → GL2(Fp)
is isomorphic to ρf for some f as above.

Refined Serre Conjecture:
What can we say about n, ~k (and ~m)?

Minimal prime-to-p part of n should be Artin conductor of ρ.
(Known, at least under Taylor–Wiles hypothesis.)



What about ~k?
Again this should be determined by ρ|Iv for v |p,
but some significant differences:

Not all ρ can arise from forms f of level prime to p.
(Such ρ necessarily have det ρ|Iv = χw−1 for all v |p.)

No obvious notion of minimality (since ~k ∈ ZΣ).

Two approaches:
I Algebraic: Make sense of “modularity of weight σ” for

arbitrary irreducible Fp-representations σ of GL2(OF/p),
and describe W (ρ) in terms of ρ|Iv for v |p.

I Geometric: Interpret modularity in terms of
geometrically defined mod p Hilbert modular forms
—more on this in later talks.



The algebraic Serre weight Conjecture

For simplicity, assume there is a unique p|p in OF .
Let k = OF/p, f = [k : Fp],
K0 maximal unramified subextension of K = Fv ,
e = [K : K0], so d = ef . Let

Σ0 = {K0 ↪→ Qp } ↔ { k ↪→ Fp } = { τ0, . . . , τf−1 }

where τi = τ ◦ φi for i ∈ Z/fZ, and arbitrarily choose an
ordering θi,1, θi,2, . . . , θi,e of the extensions of τi to K , so

Σ = { θi,j | i = 0, . . . , f − 1, j = 1, . . . ,e }.



Recall the irreducible Fp-representations of GL2(k)
(or equivalently GL2(OF/p) are:

σ~m,~n =
f⊗

i=1

det mi Symni k2 ⊗k ,τi Fp,

where ~m, ~n ∈ Zf = ZΣ0 , 0 ≤ ni ≤ p − 1 for all i .

σ~m,~n ∼ σ~m′,~n′ ⇐⇒

~n = ~n′ and
∑

i mipi ≡
∑

i m′ip
i mod pf − 1.



Could consider H i(Y1(n),F) for suitable locally constant
Fp-sheaves F , but interesting degree is i = d > 1, which
introduces complications, so use Jacquet–Langlands to
reinterpret modularity (in characteristic zero):

Let D be a quaternion algebra over F unramified at p and
exactly one infinite place.

Let Y D
U be the associated Shimura curve

(for sufficiently small U = UpUp, Up
∼= GL2(OF ,p)).

(Could just as well work with totally definite D
and 0-dimensional Y D

U .)



For each σ = σ~m,~n, can define a locally constant Fp-sheaf
Fσ = F~m,~n on Y D

U , and an action of a Hecke algebra T
(generated by Tv and Sv for all but finitely many v 6= p) on

H1(Y D
U ,Fσ).

Given ρ : GF → GL2(Fp), say ρ is modular of weight σ
(and level U, w.r.t. D) if mρ is in its support, i.e.,

H1(Y D
U ,Fσ)mρ

∼= HomGL2(k)(σ,H1(Y D
U∩U(p),Fp)mρ) 6= 0

where mρ ⊂ T is generated by

Tv − tr(ρ(Frobv )), NmF/Q(v)Sv − det(ρ(Frobv ))

for all but finitely many v . Equivalently H1(Y D
U ,Fσ)[mρ] 6= 0.



Let

W D
mod(ρ) = {σ = σ~m,~n | ρ is modular of weight σ w.r.t. D }

Then W D
mod(ρ)

I should depend only on ρ|IK (unless Disc(D)
is incompatible with ρ, in which case it’s ∅);

I is the set of isomorphism classes of irreducibles
appearing in the Up-socle of lim−→V

H1(Y D
V ,Fp)[mρ];

I determines the possible Up-types of local factors πp of
π ↔ f giving rise to ρ for each weight (~k , ~m) with all kθ ≥ 2.



Let W (ρ) ={
σ~m,~n

∣∣∣∣ ρ|GK has a crystalline lift with θi,j -labeled HT-weights
{mi ,mi + ni + 1} if j = 1, and {0,1} if j > 1.

}
.

Conjecture
If D is compatible with ρ, then W D

mod(ρ) = W (ρ).

I Formulation is due to Gee, generalizing more explicit
definitions of Buzzard-D-Jarvis (for p unramified in F )
and Schein (for ρ|GK semisimple).

I W (ρ) can be made more explicit in general
(D-Dembélé-Roberts, Steinmetz).

I The conjecture is proved by Gee + collaborators,
assuming ρ is modular and satisfies TW-hypothesis.



Example: d = f = 2

ρ|GK =

(
ψ ∗
0 1

)
,

ψ|IK = ωa0+a1p, 1 ≤ a0,a1 ≤ p, not both 1,
where ω : IK

ω2−→ k×
τ0−→ F×p .

Then σ~0,~n ∈W (ρ), where ~n = (a0 − 1,a1 − 1).
But there may be more, depending on ∗.

Suppose for simplicity ψ|IK 6= 1 = ωp2−1 (↔ a0 = a1 = p − 1)
and ψ|IK 6= χ = ωp+1 (↔ a0 = a1 = p).

Then ∗ ↔ cρ ∈ H1(GK ,Fp(ψ)), dimension 2 = [K : Qp]



Can rewrite:
ρ|IK = ω−a′0 ⊗

(
ωpa′1 ∗

0 ωa′0

)
for a unique (a′0,a

′
1) with 1 ≤ a′0,a

′
1 ≤ p,

(= (p − a0,a1 + 1) if a0,a1 < p).

Analysis of crystalline liftability shows:

σ~m′,~n′ ∈W (ρ)⇐⇒ cρ ∈ L′

where ~m′ = (−a′0,0), ~n′ = (a′0 − 1,a′1 − 1), and L′ is a
one-dimensional subspace of H1(GK ,Fp(ψ)).

Similarly get another weight σ~m′′,~n′′ ∈W (ρ)⇐⇒ cρ ∈ L′′

for a one-dimensional L′′ (which = L′ ⇔ a0 or a1 = p),

and yet another weight if ρ|GK splits (i.e., cρ = 0).



Strategy of Gee, et al for proving W (ρ) = W D
mod(ρ):

I Use automorphy lifting theorems to prove existence and
automorphy of potentially Barsotti–Tate lifts (i.e. ↔ ~k = ~2)
with prescribed local behavior at p.

I Play off the relation between weights and types
implicit in the Breuil–Mézard Conjecture
to get an equality W D

mod(ρ) = WBT(ρ) ⊂W (ρ).
I Weight elimination: use integral p-adic Hodge theory

to prove W (ρ) ⊂WBT(ρ).



Toy example: Companion forms for F = Q

Suppose ρ|Ip ∼ χk−1 ⊕ 1, 3 ≤ k ≤ p − 1.

Then W (ρ) = {σ0,k−2, σk−1,p−1−k } (and σp−2,p−1 if k = p − 1).

Automorphy lifting theorems
⇒ ρ modular of weight 2, level p, character χ̃k−2,
i.e., type IndGL2(Zp)

Iw (1⊗ χ̃k−2).

⇒ ρ modular of some weight in

JH(IndGL2(Fp)
B (1⊗ χk−2)) = {σ0,k−2, σk−2,p+1−k }.

But σk−2,p+1−k 6∈W (ρ),
so ρ is modular of weight of σ0,k−2.



The geometric setting

Take L ⊂ Qp is sufficiently large (containing θ(F ) for all θ ∈ Σ),
and let O = OL, residue field F.

Recall YU is a moduli space for HBAV’s,
i.e., abelian varieties of dimension d with OF -action
and level U-structure.

Pappas–Rapoport define a smooth model for YU over O.

To ease notation, continue to assume there’s a unique p|p.



Pappas–Rapoport filtrations

Consider the functor on locally Noetherian O-schemes:
S  isomorphism classes of (A, ι, λ, η,F•)/S, where:
I s : A→ S is an abelian scheme of dimension d ;
I ι : OF → EndS(A);
I λ is an OF -quasi-polarization of degree prime-to-p;
I η is a level U-structure;
I for each τ = τi ∈ Σ0, a filtration

0 = F (0)
i ⊂ F (1)

i ⊂ · · · ⊂ F (e−1)
i ⊂ F (e)

i = (s∗Ω1
A/S)τi

such that for j = 1, . . . ,e, the quotient

Li,j := F (j)
i /F (j−1)

i

is a line bundle on S on which OF acts via θi,j .



This is representable by a scheme ỸU :
I smooth of relative dimension d over O;
I complex points SL2(OF ,(p))\(HΣ ×GL2(A(p)

F ,f)/U
p;

I components←→ (A(p)
F ,f)
×/det(Up) (infinite);

I O×F ,(p),+/(U ∩ O×F )2 acts freely (via polarization).

The quotient YU is a smooth model for YU .

GL2(A(p)
F ,f) acts on lim←−U

YU .

We’re interested in Y U := YU,F.



Mod p Hilbert modular forms

Recall we have (universal) line bundles Lθi,j = Li,j on ỸU .

Can also define (trivial) line bundles Nθ on ỸU so that⊗
θ∈Σ

Lkθ
θ N

mθ
θ

identifies with the pull-back of A~k ,~m (over ỸU,C).

More generally if R is an O-algebra in which∏
θ

θ(µ)kθ+2mθ = 1

for all µ ∈ U ∩ O×F , then
⊗

θ∈Σ L
kθ
θ N

mθ
θ descends

canonically to a line bundle A~k ,~m,R on YU,R.



In particular for all sufficiently small U have:

A~k ,~m := A~k ,~m,F

on Y U for all ~k , ~m.

Define the space of mod p Hilbert modular forms
of weight (~k , ~m) and level U to be:

M~k ,~m(U;F) = H0(Y U ,A~k ,~m)

Get a natural action on GL2(A(p)
F ,f) on

lim−→
U

M~k ,~m(U;F).

In particular operators Tv and Sv for all but finitely many v .



Partial Hasse invariants

Generalizations of the classical Hasse invariant.
Defined in this setting by Reduzzi–Xiao
(buliding on Goren, Andreatta–Goren).

Choose a uniformizer $ of K = Fp.
Then ι($) : A→ A over ỸU,F induces

F (j)
i → F

(j−1)
i

for j = 1, . . . ,e, and hence

Li,j → Li,j−1

for j = 2, . . . ,e, i.e. a section Hi,j of L−1
i,j Li,j−1.



On the other hand if j = 1, then Ver : A(p) → A induces

Li,e −→ L
p
i−1,e,

which factors uniquely as Hi,1 ◦ Hi,2 ◦ · · · ◦ Hi,e,
where Hi,1 is a section of L−1

i,1 L
p
i−1,e.

The Hi,j descend to Y U , so define elements

Hθ ∈ M~hθ,~0
(U;F),

where ~hθ = nθ~eσ−1θ − ~eθ, (i.e., (· · · ,0,p or 1,−1,0, · · · ))
σ is the “right-shift” cyclic permutation of Σ:

(1,1) 7→ (1,2) 7→ · · · 7→ (1,e) 7→ (2,1) 7→ · · ·

and nθi,j = ni,j =

{
p if j = 1;
1 if j > 1.

Furthermore the Hθ are GL2(A(p)
F ,f)-invariant.



Associated Galois representations

Theorem (Goldring–Koskivirta,
Emerton–Reduzzi–Xiao, D–Sasaki)
Suppose that f ∈ M~k ,~m(U(n),F) is such that
Tv f = av f ,Sv f = dv f for all v - pn.
Then there exists a unique semisimple

ρf : GF → GL2(Fp)

such that for all v - pn, ρf is unramified at v,
and ρf (Frobv ) has characteristic polynomial

X 2 − av X + dv NmF/Q(v).



I The strategy:
Multiply by partial Hasse invariants to shift
to a weight (~k ′, ~m′) such that ampleness
implies forms lift to characteristic zero.

I The obstacle:
It might not be possible to do this so that ~k ′ paritious.

I The idea:
Lift to a form with paritious weight and level U ∩ U1(p).



Sketch of proof:

Suppose for now p is unramified (for simplicity).

Twist to reduce to the case ~m = ~0,
and multiply by Hθ ’s so that ~k = ~N − ~δ,
where N >> 0 and 0 ≤ δθ ≤ p − 1 for all θ (but ~δ 6= ~p − ~1).

Let Y = YU , and consider the models Yi defined
by Pappas for HMV’s of level U ∩ Ui(p), i = 0,1. So

π : Y1
π1−→ Y0

π0−→ Y,

Y0 is flat l.c.i. over O and π1 is finite flat (but π0 is neither).

In particular the Yi are Cohen–Macaulay,
so have relative dualizing sheaves Ki ,
isomorphic to A~2,−~1 over L (by Kodaira–Spencer).



Use the canonical section Y ↪→ Y 0 and isomorphism

π1,∗K1
∼= HomOY0

(π1,∗OY 1
,K0)

to get A−~δ+~2,−~1 ↪→ π∗K1, and so

M~k ,~0(U;F) ↪→ H0(Y 1,K1 ⊗ π∗A~N−~2,~1).

Use ampleness of A~N,~0 on the minimal compactification of YU ,
and the vanishing of R1π∗K1 (D–Kassaei–Sasaki)
to prove the image is contained in that of reduction:

M~N,~0(U1(p),O) := H0(Y1,K1 ⊗ π∗A~N−~2,~1)

−→ H0(Y 1,K1 ⊗ π∗A~N−~2,~1).



All the maps are Hecke-equivariant, so Deligne–Serre
lifting lemma gives a characteristic zero eigenform whose
associated Galois representation has the desired reduction.

In p is ramified, the main changes are:

I (Emerton–Reduzzi–Xiao) Shift (~N, ~0) by M(2~ε,−~ε)
with M >> 0 and εi,j = j to get an ample bundle.

I It’s the (powers of) θi,e that appear in π∗K1.
I Only get that the image of S~k ,~m(U;F) is contained

in the image of reduction, so need to argue
separately for the contribution from cusps.



Geometric modularity

We say ρ : GF → GL2(Fp) is geometrically modular
of weight (~k , ~m) if ρ ∼ ρf for some level U prime to p
and Hecke eigenform f ∈ M~k ,~m(U;F).

Given ρ, what is the set of weights for which ρ is modular?

Expect the answer to be related to:
I set of (~k , ~m) such that ρ|GK has a crystalline lift with
θ-labeled HT weights (mθ,mθ + kθ − 1) for each θ ∈ Σ.

I set of (~k , ~m) such that ρ is algebraically modular
of weight (~k , ~m),i.e., of some weight in

JH

⊗
i,j

det mi,j Symki,j−2k2 ⊗k ,τi Fp

 .



Warning: The naive conjectures are false!

Recall (multiplication by) Hθ ∈ M~hθ,~0
(U;F) defines a

Hecke-equivariant injective map:

M~k ,~m(U;F) −→ M~k+~hθ,~m
(U;F)

Write ~k ≤Ha ~k ′ if ~k ′ = ~k +
∑

θ bθ~hθ for some ~b ∈ ZΣ
≥0.

So if ρ geometrically modular of weight (~k , ~m) and ~k ≤Ha ~k ′,
then ρ geometrically modular of weight (~k ′, ~m).

Find that ρ may be geometrically modular of weight (~k , ~m)

I with all kθ ≥ 2, but not algebraically modular of some
JH-factor of the corresponding weight
(shifting by (~hθ, ~0) can lose JH-factors).

I with some kθ = 1, but ρ|GK has no crystalline lift with the
corresponding labeled weights (Bartlett)



Minimal weights

For non-zero f ∈ M~k ,~m(U;F), can define its minimal weight
(Adreatta–Goren, Deo–Dimitrov-Wiese, D–Kassaei):

The divisors of the partial Hasse invariants Hθ:
I meet every irreducible component of Y U ,
I have no common irreducible components, so~r ∈ ZΣ

∣∣∣∣∣∣
∏
θ∈Σ

H−rθ
θ f ∈ M~k−

∑
θ rθ~hθ,~m

(U;F)


has a unique maximal element ~r , and let

~kmin(f ) = ~k −
∑
θ

rθ~hθ.



Define the minimal cone by:

Ξmin = {~x ∈ ZΣ | xσ−1θ ≤ nθxθ }.

Then Ξmin ⊂ ZΣ
≥0, e.g.,

I if d = f = 2, then Ξmin is spanned by (1,p) and (p,1);
I if d = f = 3, then by (1,p,p2), (p,p2,1) and (p2,1,p).
I if d = e = 2, then by (1,1) and (1,p);
I if d = e = 3, then by (1,1,1), (1,1,p) and (1,p,p);

Theorem (D–Kassaei)
If f 6= 0, then ~kmin(f ) ∈ Ξmin.



A geometric Serre weight Conjecture

Conjecture (D–Sasaki)
If ~m ∈ ZΣ and ρ : GF −→ GL2(Fp) is irreducible, then there is a
unique ~kmin = ~kmin(ρ, ~m) ∈ Ξmin

≥1 such that the following are
equivalent for all ~k ∈ Ξmin

≥1 :

1. ~k ≥Ha ~kmin

2. ρ is geometrically modular of weight (~k , ~m)

3. ρ|GK has a crystalline lift with θ-labeled weights
{mθ,mθ + kθ − 1} for all θ ∈ Σ.

I (1)⇔ (2) should hold for all ~k ∈ ZΣ.
I If ρf is irreducible and p > 3, then kmin(f ) ∈ Ξmin

≥1 .
(D-Kassaei)

I Existence of a ~kmin such that (1)⇔ (3) is a purely p-adic
Hodge theoretic conjecture (and doesn’t extend to ZΣ

≥1).



Relation between algebraic and geometric modularity

Conjecture (D–Sasaki)
If ρ : GF −→ GL2(Fp) is irreducible and ~k ∈ Ξmin

≥2 ,
then ρ is geometrically modular of weight (~k , ~m)

if and only if ρ is algebraically modular of weight (~k , ~m).

I Ifρ is geometrically modular of some weight,
then ρ is algebraically modular of some weight.

I ⇐= should hold on Z≥2, is easy if ~k is paritious
(and maybe not so hard in general)

I This conjecture follows from:
Algebraic Serre weight conjecture
+ Geometric Serre weight conjecture
+ Breuil–Mézard Conjecture.



Partial Θ-operators

How should ~kmin(ρ, ~m) depend on ~m?

I If ρ is modular of weight (~k , ~m), then

det ρ|IK =
∏
θ

ωkθ+2mθ−1
θ = ω

∑
i,j (ki,j +2mi,j−1)(pi ),

so ρ and ~m determine
∑

i,j ki,jpi mod (pf − 1),
i.e., ~k mod Λ := ⊕θZ~hθ.

I If ~m ≡ ~m′ mod Λ, then ρ is modular of weight (~k , ~m)

if and only if ρ is modular of weight (~k , ~m′).
So ~kmin(ρ, ~m) depends only on ~m mod Λ.

I If ξ : GF → F×p is such that ξ|IK =
∏
θ ω

bθ
θ ,

then ρ is modular of weight (~k , ~m) if and only if
ξ ⊗ ρ is modular of weight (~k , ~m + ~b).



Fixing ρ and varying ~m (mod Λ)?

Use partial Θ-operators, defined/refined by Andreatta–Goren,
D–Sasaki, Deo–Dimitrov–Wiese and D:

Theorem
Let τ = τi ∈ Σ0 and θ = θi,e. Then there is a Hecke-equivariant:

Θτ : M~k ,~m(U;F) −→ M~k ′,~m′(U;F),

where ~k ′ = ~k + ~hθ + 2~eθ and ~m′ = ~m − ~eθ.
Furthermore Θτ (f ) is divisible by Hθ if and only if
either f is divisible by Hθ or kθ is divisible by p.

Note in particular that ~k ′ =

{
~k + ~ei,e−1 + ~ei,e, if e > 1;
~k + p~ei−1,1 + ~ei,1, if e = 1.



Idea of proof/construction:

The bundles A~eθ,~0 have tautological sections hθ
over the Igusa cover of Y U .

I Divide by
∏
θ hkθ

θ to get a rational function,
I differentiate and apply Kodaira–Spencer,
I multiply by Hθi,e

∏
θ hkθ

θ .

Can also describe the kernel of Θτ in terms of the image of a
partial Frobenius operator V .

Corollary
If ρ is geometrically modular of weight (~k , ~m),
then ρ is geometrically modular of weight (~k + ~hθ + 2~eθ, ~m− ~eθ)

(and of weight (~k + 2~eθ, ~m − ~eθ) if p|kθ).



Partial weight one

As a special case of the geometric Serre weight conjecture,
ρ should be geometrically modular of weight (~1, ~0)
if and only if ρ is unramified at (all primes over) p.

⇒ is known (Emerton–Reduzzi–Xiao, Dimitrov–Wiese)

⇐ under technical hypotheses (Gee–Kassaei)

What about partial weight one?

If {p} ( Sp, then the conjecture implies:

ρ is unramified at p⇔ ρ is geometrically modular of some
weight of the form (~k , ~m) with kθ = 1, mθ = 0 for all θ ∈ Σp.

⇐ is known for paritious ~k (Deo–Dimitrov–Wiese, De Maria)



What about kθ = 1 for some but not all θ ∈ Σp?

Suppose for example d = 2 and p is inert. (D–Sasaki)

Up to exchanging τ0, τ1, such values of ~k ∈ Ξmin
≥1

are (1, k1) with 2 ≤ k1 ≤ p. For simplicity assume k1 6= 2.

Suppose ρ|GK has a crystalline lift with
labeled HT weights {0,0}0 and {0, k1 − 1}1.

If ρ|GK is reducible, then

ρ ∼
(
ψ ∗
0 1

)
,

with ψ|IK = ωp(k1−1) = ωa0+a1p

where a0 = p and a1 = k1 − 2, so L′ = L′′.



One finds that ρ|GK has a crystalline lift with these
labeled HT-weights⇔ cρ ∈ L′ = L′′, so

1. ρ|GK has a crystalline lift with labeled HT weights
{0,p}0 and {0, k1 − 2}1, and

2. ρ|GK has a crystalline lift with labeled HT weights
{0,p}0 and {−1, k1 − 1}1.

Furthermore the converse holds.

And in fact the equivalence also holds if ρ|GK is irreducible.



On the other hand, suppose ρ ∼ ρf for some f
of weight (~k , ~0) = ((1, k1), (0,0)).

1. Multiplying by H1 implies ρ is geometrically modular
of weight (~k ′, ~0) = ((p + 1, k1 − 1), (0,0).

2. Applying Θ1 shows ρ is geometrically modular
of weight (~k ′′,−~e1) = ((p + 1, k1 + 1), (0,−1).

Conversely suppose ρ ∼ ρf ′ for some f ′ of weight (~k ′, ~0),
and ρ ∼ ρf ′′ for some f ′′ of weight (~k ′′,−~e1).

Then Θ1(f ′) has weight ((2p + 1, k1), (0,−1)) = (~k ′′ + ~h1,−~e1).

Choosing suitable normalized eigenforms and using the
q-expansion principle, can ensure Θ1(f ′) = H1f ′′.
Since k1 − 1 is not divisible by p, it follows that H1|f ′,
so ρ is modular of weight (~k , ~0) = (~k ′ − ~h1, ~0).



So if we assume:
I algebraic Serre weight conjecture for ρ,
I equivalence of algebraic and geometric modularity for
~k ∈ Ξmin

≥2 ,
then we get:

ρ is geometrically modular of weight (~k , ~0) if and only if ρ|GK has
a crystalline lift with labeled weights {0,0}0 and {0, k1 − 1}1.

Since algebraic⇒ geometric modularity for paritious weights,
and the algebraic Serre weight conjecture is known
(under mild hypotheses, and ad hoc arguments work
when they fail), we get the following:



Theorem (D–Sasaki)
Suppose F is a quadratic extension of Q in which p is inert or
ramified. If ρ is modular and ρ|GK has a crystalline lift
with labeled HT-weights {0,0}1 and {0, k − 1}2,
where k is odd and 3 ≤ k ≤ p, then ρ is geometrically modular
of weight ((0,0), (1, k)).

The ramified quadratic case is proved by a similar argument.

The possible weights are again (1, k) with 2 ≤ k ≤ p,
but now θ1 and θ2 are not interchangeable.

The relevant algebraic weights (for k ≥ 3) become:
I (~k ′, ~0) = ((2, k − 1), (0,0)).
I (~k ′′,−~e2) = ((2, k + 1), (0,−1)).

Use Gee–Liu–Savitt for the p-adic Hodge theory.

Note Θ still sends weight (~k ′, ~0) to weight (~k ′′ + ~h2,−~e2).


