Ex (Limit of connected some that's not connected)
In SLIP, set
$$A_n = \begin{pmatrix} n & 0 \\ 0 & n \end{pmatrix}$$
 and
 $H_n = H_n \operatorname{SO}(2) A_n^{-1} = \left\{ \begin{pmatrix} \operatorname{could} & -\pi \sin \theta \\ n \sin \theta & -\pi \sin \theta \end{pmatrix} | \operatorname{OelP} \right\}$
Then $H_n \stackrel{d}{=} \stackrel{d}{\operatorname{S}} \stackrel{d}{\operatorname{onk}}$ in Subscript,
 $H_n \longrightarrow H = \left\{ \pm \begin{pmatrix} 1 & \pm \\ 0 & 1 \end{pmatrix} | \pm e||^2 \right\}$
 $\stackrel{\sim}{=} \operatorname{Pu} \mathbb{R}$.
Let G be a Lie group. An inversiont
random Subgroup (IPS) of G in a

rankom clotek soy of G whole law is a Borel proto measure in an Subg that's invit under the Graction by conjugation. Ex 1) Normal soys NAG; the atomic measure 1 is Grint.

$$\sum_{n=1}^{\infty} S_{n}^{n} = M = P_{n}^{n} i a finite vol$$

$$\sum_{n=1}^{\infty} N = P_{n}^{n} i a finite vol$$

$$\sum_{n=1}^{\infty} S_{n}^{n} = F_{n}^{n} (HL^{n}).$$

•

G acts simply transitively on the
trans bundle
$$FHH^n$$
 so after fixing
a base frame f_{HT}^n , we get
 $G \xrightarrow{2m > 9a} f_{HT}^n$ FH^n
 $\int \int \int \int f_{HT}^n = FM$
 $r^n = FM$

ABBGNRS 17 Every IPS of G arise 7 this way-(Abert - Borgeron - R - Gelander, Nikolov, Rainbowlt, Samet.)

Ż

let G be a simple linear lie goup.
Borel Dansity Than
$$-1$$
 any sop $H \in G$
sit. G/H has a G-init finite measure
it discrete and Zaristri dense in G,
i.e. its not contained in a nontrivial
Lie sop of G of finitely many
connected comps. (=> lattice are Zaristri dense)
Than (APBGNRS 17) If H is an
IPS then H is a.s. other
1) e
2) G
3) discrete + Zaristri dense.
The rank rank $p(G)$ is the maximal dim
af an R-diagonalizable sogy of G.
IF $X = G/K$ is the assoc symmetric
space, this is the some as the
max's dim of a totally geodesic
 $R^{A} \subset X$, which we denste rank $p(X)$.

TPSs is part 1

$$\underbrace{\text{Ex}}$$
 (Normal sgps)
It's known that the normal sgg
than finds for rank 1 G, so
 \exists lattice T \leq G $_{\text{W}}$ so-inder nontrivial
 $N \leq T$. To get an IPS of G,
push frowned the poly measure on p^O
under the map
 $\underbrace{\text{G}} \xrightarrow{\text{O} \rightarrow \text{O}^{N}\text{S}}_{\text{F}}$ Subg
 $\underbrace{\text{C}}$
 $\underbrace{\text{C}}_{\text{Cut}}$ $\underbrace{\text{N}^{H^2}}_{\text{F}}$ $\underbrace{\text{N}^{H^2}}_{\text{Cut}}$ $\underbrace{\text{N}^{H^2}}_{\text{for a random forme}}$
in some findamental domain
for the overing map, and
hold at the say core to
this formed by match.

This give an IPS that's on-grand
almust surely.
Ex (Shiff space, ARRENPS '17)
Pick two hyp nometide No, N, wy
geodesic d, such that
$$\partial N_{i}$$
 is the
union of z copies of some fixed
hyp (2n1)-matrid Σ , and vol No = vol N,.
(I) (I) (I) (I) (I)
No N,
Grien a sequence $x = (a_i) \in E_{0,1}3^{7}$,
construct N₂ by giving trighter copies
of No, N₁ as indicated by α .
I) (I) (I) (I) (I) (I) (I) (I) N₁

Weak convergence

Fact
$$O(X)$$
 is weakly compact.
IF G is a Lie gt, then Subg
is compact, so $O(Subg)$ is compact
metroplie
Since the Graction is cats,
IRS(G) C $O(Subg)$
is closed, hence conject.
Idea Andy sequences of lattices $F = G$
by analyzing weak limits of M_{71} .
Application let G be a noncompact simple
Lie gt w/ rankpG ≥ 2 . NSZ
 $=$) the only expedic IRSS of G
are $1_{e_1}, 1_{G}, M_P$ for P a lattice.
Then (ABBGNPS 17), IF T; is any
sequence of primise noncompute lattice
in G, then M_P : -1_e .

where here $M_i = \frac{\chi}{P_i}$.

)

If
$$T_i$$
 is a sequence of
lattices in a higher rank
simple Lie group, the $M_c = \sum_{i=1}^{N}$
have hope inj nearly everywhere
for large i
 $E_{\mathcal{L}}$ (Not true in rank \mathcal{L})
 M_i is copies of
 $N = (1-1)$
 A_s i - so, there
 $i = 5$ are noncong lattices but
inj stays uniformly Udd.