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AVERAGE GLOBAL TEMPERATURES - the last 20,000 years
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| was skeptical about climate change. | was cautious
about crying wolf...But ’m no longer skeptical

David Attenborough
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Klaus Hasslemann Giorgio Parisi Syukuro Manabe

The Nobel Prize in Physics 2021 was awarded "for ground
breaking contributions to our understanding of complex
systems” with one half jointly to Syukuro Manabe and Klaus
Hasselmann "for the physical modelling of Earth's climate,
quantifying variability and reliably predicting global warming”
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CO2 increase
causes cooling
in the
stratosphere
and warming in
the troposphere

That vertical pattern of
change is what Hasselmann
described in 1979, as a
spatial fingerprint of change
that was distinct enough from
patterns of internal variability
in the Earth’s climate that it
could be used to detect the
greenhouse gas signal in
observations.



Noise can |lead to periodic
fluctuations in the earth’s climate !

Tellus (1982) 34, 10-16

Stochastic resonance in climatic change

By ROBERTO BENZL, Istituto di Fisica dell' Atmosfera, C.N.R., Plazza Luipl Sturzo 31, 00144, Roma,
fialy,
GIORGIO PARISL, INEN., Laboratori Nazionali di Frascali, Frascati, Roma, ftaly,

ALFONSO SUTERA, The Center for the Environment and Man, Hargford, Connecticur 06120, USA,
and ANGELO VYULPLANL, fstituio di Fisica “(. Marconi®, Universita di Roma, ltaly



= Fluctuations iIn
weather

= Natural climate

Variability

= Anthropogenic
Climate change




Maximum temperature: Bengaluru
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CLIMATE IS DIFFERENT FROM WEATHER

WEATHER CLIMATE
+ TIME SCALE e TIME SCALE
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CLIMATE IS THE STATISTICS OF
WEATHER AVERAGED OVER TIME
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Plot to compare the Maximum temperature data of Bangalore and Chennai in the month of June for the period 1969-2013
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RAPID CLIMATE CHANGE FROM GREEN SAHARA TO A DESERT
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2021 was the fifth warmest year on record

Annual global-average temperature increase (degrees C)
above pre-industrial level
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SIMPLE CLIMATE MODELS



The global mean temperature is determined
by the delicate balance between absorbed
solar radiation and emitted earth’s radiation

absorption of solar
radiation( a function of
temperature)

= earth’s emission to space
( @ function of Temp)



Four minor gases
(CO2, H20, CHA & /00, h20, cHa
03) control the g 03
earth’s surface
temperature by
reducing the

amount of
radiation that can [ SURFACE

emitted to space TEMPERATURE




Joseph Fourier Svante Arrhenius Guy Callendar
(French, 1768-1830) (Swedish, 1859-1927) (English, 1898-1964)

Svante Arrhenius cailculated that emissions from
industry might someday warm the earth. In 1939,
G.S.Callendar argued that carbon dioxide causes
global warming. Arrhenius and Callendar thought
that global warming will be beneficial !



GREENHOUSE EFFECT

GHE = RADIATION EMITTED BY
PLANET’S SURFACE -
RADIATION LEAVING THE
PLANET -

EARTH = 390 -240 =150 W/m?2
VENUS=16100-200=15,900 W/m?



The Greenhouse Effect: clear sky

B Water Vapor

@ Carbon Dioxide

Carbon

Dloxide

26%0

B Ozone

0 Methane, Nitrous
Oxide

WATER VAPOR CONSIDERED AS A FEEDBACK
Kiehl and Trenberth 1997



Global mean temperature
is controliled mainly by

carbon dioxide
(With water vapor acting as a
powerful amplifier)

Amount of water vapor on
earth is controlled by CO,,
through its impact on

global mean temperature.







Snow and ice
covered area
control the
earth’s surface
temperature by
altering the
amount of solar
radiation
reflected to
space

SNOW AND
ICE COVER

SURFACE
TEMPERATURE




Overall energy balance of the Earth

.t
s Solar E 4— H Thermal

radiation > / radiation
Absorbed solar= emitted by earth-atmos

S/4 {1- p(T) } = Emission (T, GHG)

p=Reflection of solar rad (called albedo)
is a function of temperature T
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Natural climate change

Oscillations
between
ice-free and
ice-covered
earth




SNOWBALL e

The Story of a Maverick Scientist and g » 7

His Theory of the Global Catastrophe S 25

That Spawned Life As We Know It !

Gabrielle Walker




Paleogeographic extent of continental ice sheets
and permanent sea ice over the last 800 Myr
(red lines indicate major mass extinctions)
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S%ar Luminosity versus Time

23
¥
E S
3
5%
38

O
©
r

O
@
T

0.7 i SRR e N TR TSI




L Marinoan ] . co°N
( 635 Ma ) \
\

Fig. 5. Cryogenian paleogeography and the breakup of Rodinia. Global paleo-



COMPLEX CLIMATE MODELS



19 levels in
atmosphere

THE HADLEY
CENTRE
THIRD
COUPLED
MODEL -
HadCM3

no flux adjustments

\

20 levels
in ocean

-5km




Conservation equations for
gridbox-mean gquantities in a model

e Mass Old fashioned division: terms
() on the left are “"dynamics”,
\4 (,0 U) =0 terms on the right are
“physics”

 Thermodynamic energy Processes in italics are purely

DO » Radiation due to unresolved processes:
— : - Latent heat release would be unnecessary in a
Dt - Transport by turbulence high resolution model (e.g.

* Transport by deep convedtiéhm)
« Water vapour

Dg - Condensation/evaporation

— : * Precipitation

Dt - Transport by turbulence

- Transport by deep convection

 Momentum (acceleration = force per unit mass)

Du 1 Gravity wave drag
+ fkxO+— Vp+ kg @ Transport by turbulence
Dt Yo, Transport by deep

convection
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Hall and Manabe ,Journal of Climate,1999

4
Variable H,0 i 1
35¢ ) : ) | ' i
) A [ ; !
51 g
062.5 4. ¥
=
£ 2F -
5
x gel FIXED HZO |
1 —
{ J
0.5} 4

L L 1 3 L A1
o 50 100 150 200 250 300 350 400 450 500
model year

The 500-yr annual-mean time series of the global-mean surface
temperature change in the integrations where CO2 is doubled to 720
ppm relative to the unperturbed variability experiments, where CO2 is
fixed at 360 ppm.



CO, and incoming solar radiation are
primary drivers of the past climate change
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Heterogeneous
Chemistry

STRATOSPHERE

Nucleation and

Particle Growth 2

Removal
Processes

TROPOSPHERE

|
[[[| .0, HCl, Ash
Cirrus Modification Infrared

Impact on SST
ocean circulation
Effect on and marine
__vegetation ___4 8 biogeochemistry

Surface cooling
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Sin (ice-line latitude)
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01| _@-Law Dome Ice Core, Antarctica
30 ' - Mauna Loa, Hawai
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The Long-term Inorganic Carbon Cycle:

\Neathering

0.03
GtonClyr

CaSio, + CO, CaCoO, + SiO,

0.03
GtonClyr

bolcanist™



The global temperature is
increasing ten times faster
than in the past

CO, increased by 20 ppm in
100 years during an abrupt
climate change (15,000 years ago).
In the 21st century CO,,
increased by 20 ppmin 10
years



TO UNDERSTAND HOW
EARTH’S CLIMATE WILL
EVOLVE IN THE FUTURE,
WE MUST UNDERSTAND
HOW NATURAL CLIMATE
VARIED BEFORE 1850




(0,, mountain weathering

(0, glaciers

sea Ice, terrestrial vegetation

water vapor, clouds
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An overview of climatic variability and its causal mechanisms. J. Murray Mitchell Jr. QR, 1976

A.S. von der Heydt et al. Global and Planetary Change 197 (2021) 103399
L o - Impact events —
Solar variability year month  day  hour 2
N 5
B Vuleanism 8 | | | g
ooo o o2 2 2 =
OJORERIRIRS " ; y
?
Galactic Orbital annual  lunar  diurnal .
£l Macroclimate Climate Macroweather Weather
8
g Lithosphere
_g Tectonism Cryosphere Giaiir |
> Land ice thermohine G Convectlonm
(] . A
2 ,  Biosphere Aerosols
% ~\_Carbon cycle %
V4 : 0

10° 10® 10" 106 10° 10* 10° 10> 10 1 10" 102 10° 10*

Period (years)



1T Byr 1T Myr 1000 yrs 1 yr
Time span of record

102 108 107 10 10> 104 103 102 10 1 yr

lce cores
Lake sediments
Coral reefs

Ocean sediments

Continental coastal sediments

108 107 10° 105 104 103 102 10" 1yr 1 mo
Resolution of record (years)

PROXY EVIDENCE FOR CLIMATE CHANGE
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Variations of the Earth's surface temperature

Northern hemisphere. Departures in temperature (C) from the 1961 to 1950 average
06

Year-by-year data from thermometers

Year-by-year data from tree rings,
0.2 corals, ice cores and historical records

06 50-year average
1000 1200 1400 1600 1800 3000
Yedr

SOURCE: MANN, BRADLEY & HUGHES, NATURE, 1998



Global temperature in the Common Era

E DC DF

% - 2.0

e 1.0

= | + 15

QO Indirect temperature

< 55 measurement - 1.0

E .

= | 4 0.5

D

2 0 1 °

S

O L—-0.5
-0.5  Direct measurement after 1880 _| ,

I I I I
Year O 500 1000 1500 2000




| N D P NDENT M DS

THE HOCKEY
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Climategate and the
Corruption of Science
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Temperature anomaly (°C)
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8 Holocene Climate
Optimum

Host of the agricultural revolution

= HadCRU global temperature anomaly rel. to 1961-1990 AD
- \arcott et al. 2013 RegEM reconstruction with 1 o uncertainty

- Marcott, S.A., J.D. Shakun, P.U. Clark, A. C. Mix, A reconstruction of global and regional B
temperature for the past 11,300 years, Science 8 March 2013: Vol. 339 no. 6124 pp. 1198-1201
DOI: 10.1126/science.1228026
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ICE AGES



Stirations &Erratics

Louis Agassiz




ECCENTRICITY
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Milankovitch Hypothesis: Polar summers with lower solar
radiation lead to the accumulation of the ice in polar regions

Incident solar radiation (Wm-2)

Deviation from present day value
115 kyr BP 125 kyr BP
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J -
-+ South Pole
s

-

rf\‘ Lake Vostg

* Scientists searched for the oldest ice in an ice sheet,
drill from the top of the highest ice domes.

* Drilling is done over the summer in which it takes a few
summers to drill completely through an ice sheet.

« Some ice cores can be dated by counting annually
deposited layers.







Depth in ice sheet (m)
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o " Vapor Depleted
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010

* As water vapor is transported poleward In
the hydrologic cycle, each cycle of
evaporation and condensation lowers the
ratio of H,80 to H,'°0, in a process called
fractionation.

 This ratio is expressed as 5180.




3180 and Global Ice Volume

* As Iice sheets grow, the water removed
from the ocean has lower 680 than the
water that remains.

» Thus the 6130 value of sea water in the
global ocean is linearly correlated with ice
volume (larger 6180 — larger ice sheets).

A time series of global ocean 6180 is
equivalent to a time series of ice volume.
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CO, Contentrations and Temperature Have Tracked Closely Over the Last 300,000 Years

F)

Temperature (in Antarctica, °

300,000
years ago

200,000
years ago

2007 9383

100,000
years ago

@ Temperature
®CO, contentration

=
CQ concentration (parts per million)




4 glacial cycles recorded in the Vostok ice core
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Temperature and CO, from Antarctic ice cores
over the past 800,000 years

CO, concentration, ppmv

Antarctic temperature, °C \ ‘
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The change in Solar radiation was amplified
many times by postive feedbacks

Solar Rad T

POSITIVE (in polar region)

FEEDBACK/ Temperature

Increases
Ice becomes
water
Absorbs more
solar energy

POSITIVE
FEEDBACK

CO2, CH4
and Water Vapor
Increases

Higher
Greenhouse
Effect
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The stacked benthic foraminifera isotope record of the Pleistocene
(blue). The record is a proxy for global ice volume. The red curve is the
annually averaged insolation at 65N latitude

Quantification and interpretation of the climate variability record

By Anna Von der Hydet et al., Global and Planetary Change, 2021
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Spectral Analysis of Solar Input Spectral analysis of Vostok ice core
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Not immediately obvious
why eccentricity has such a
low peak

m—

Precession

This suggests that spectral
ahalysis may not properly
ﬂ | identify low frequencies on
the background of a rapidly
oscillating time series
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Glacial Cycles

Salzman-Maasch Model

/ Milankovitch forcing

globalice mass —> X =—-X—Y —uM (1)
atmospheric CO, —> ¥ =—pZ+rY+sZ°-2°Y

deep ocean temperature —s V4 =—q{X +7)

Barry Salzman and Kirk A. Maasch, "A Low-Order Dynamical Model of Global Climatic Variability Over the
Full Pleistocene,” Journal of Geophysical Research 95 (D2), 1955-1963 (1990)
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Solution of the dynamical system climate model of Saltzman and Maasch (1988) for the past 400
thousand years subject to the earth orbital radiative forcing. The model prediction for ice (top panel)
and carbon dioxide (bottom panel) are shown. For comparison, the dashed blue curve in the top
panel is the SPECMAP 0180 estimate of ice variations and the dashed red curve in the bottom panel
15 the Vostok core estimate of CO, variation.



Bedrock Sinking

y Ice sheet . A 3-3 km thiCk ice
e sheet

’Z0,000years later — Eventua"y would
reach equilibrium by
depressing the
hedrock 1 0 km

DePressed land surfac®

-|ce load added

Immediate
Depression (elastic) sinking
of bedrock

by ice sheet
(km)
1 Gradual
(viscous)
sinking Full bedrock

depression
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Simulation of the last glacial cycle by a coupled sectorally averaged climate ice-
sheet model, Gallee et al., Journal of Geophysical Research, 97,1992
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Glacial

Global average temperature —>
Copyright © 2004 Pearson Prentice Hall, inc.
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Ficurg 4. The potential V(x.t) = — 22 — A(t)x, with A(t) = K cos(2nt), when K
exceeds the threshold A.. In the determimstlc case, with £ < 1, the overdamped particle
jumps to a new well whenever |A(¢)| becomes larger than A., leading to hysteresis. Larger
values of £ increase the size of hysteresis cycles, but additive noise of sufficient intensity
decreases the size of typical cycles. because it advances transitions to the deeper well.
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Case | «a A | Stochastic Resonance Happened?
l 0| 0.00 NO
2 1022 ] 0.0 NO
31020 ] 0.0 Yes
41028 | 0.00 Yes
) 1032 ] 0.0 Yes
6 | 039 ] 0.0 NO
] 320 0 NO




(A) Original stability landscape

Potential

(B) Tipping due to State of systemn (C) Tipping due to
change in conditions / \ change in state
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Abrupt Change
in
Atlantic Meridional Ocean
Circulation(AMOC)
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Central Greenland Temperature Deviations
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THC Intfernal feedbacks
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Introduction to Climate Modelling by Thomas Stocker, Springer, 2011
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Risk of tipping the overturning circulation due to increasing
rates of ice melt

Lohmann and Ditlevsena

Proceedings of the National Academy of Sciences March 2021

Using a global ocean model subject to freshwater forcing, we show
that a collapse of the Atlantic Meridional Overturning Circulation can
indeed be induced even by small-amplitude changes in the forcing, if
the rate of change is fast enough

Abrupt climate change as a rate-dependent
cascading tipping point
Lohmann et al., Earth System Dynamics,2021

An abrupt resurgence of the overturning circulation is induced before

a bifurcation point is reached due to the fast rate of change of the sea
ice. Because of the multi-scale nature of the climate system, this type
of tipping cascade may also be a risk concerning future global
warming. The relatively short timescales involved make it challenging
to detect these tipping points from observations



Vellinga and Wood (2008)
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Fig. 4 Difference in surface air temperature between experiments PG and G in the years 2049-2059. This
difference is therefore the temperature change that a sudden THC shutdown would cause relative to an IS92a
global warming scenario in 2049-2059. The area where cooling causes temperature to fall below pre-industrial
conditions is outlined by the heavy solid line, areas where the difference is not significant have been masked.



Sahel megadroughts triggered by glacial slowdowns of Atlantic

meridional overturning Mulitza et al.,Paleoceanography , 2008
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To explore the response of the global climate to a weakening of the
Atlantic thermohaline circulation, a perturbation experiment is
conducted in which an extra freshwater forcing of 0.6 Sv is uniformly
distributed over the northern North Atlantic (55°-75°N, 63°W-4°E) for
the entire 60-yr duration of the experiment.

(f) Anomalous summer precipitation and flow at 925 mb
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https://doi.org/10.1038/541558-021-01097-4 Climate Change

M) Check for updates

Observation-based early-warning signals for a
collapse of the Atlantic Meridional Overturning
Circulation

Niklas Boers @123

BRIEF COMMUNICATION nature
https://doi.org/10.1038/541561-021-00699-z geOSCIenCC

’.] Check for updates

Current Atlantic Meridional Overturning
Circulation weakest in last millennium



Current Atlantic Meridional Overturning
Circulation weakest in last millennium

aaaaaaaa

After a long and relatively stable
period, there was an Initial
weakening starting in the 19tk
century, followed by a second,
more rapid, decline in the 20tk
century, leading to the weakest
state of the AMOC occurring in
recent decades.



Simulated with the MPI-ESM-MR global climate model of the Max Planck

Institute in Hamburg''. a, Time series of the maximum overturning stream
function (red) and the AMOC index (blue). Thin lines show annual values,
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Rahmstorf, S., Box, J., Feulner, G. et al. Exceptional twentieth-
century slowdown in Atlantic Ocean overturning circulation. Nature

Clim Change 5, 475-480, 2015
AMOC index = Sub-polar Gyre SST - NH SST

(1) *2puUl DOWY
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COMMENT | 27 November 2019 | Correction 09 April 2020

Climate tipping points — too risky to
bet against

The growing threat of abrupt and irreversible climate changes must compel political and
€conomic action on emissions.
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RAISING THE ALARM

Evidence that tipping points are under way has mounted in the past decade.
Domino effects have also been proposed.
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A. Amazon rainforest D. Boreal forest H. Permafrost
Frequent droughts Fires and pests Thawing
changing
B. Arctic sea ice I. West Antarctic
Reduction in area F. Coral reefs ice sheet
Large-scale die-offs Ice loss accelerating
C. Atlantic circulation
In slowdown since G. Greenland ice sheet  J. Wilkes Basin,
1950s Ice loss accelerating East Antarctica

Ice loss accelerating
onature

Source: T. M. Lenton et al.
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Catalogue of abrupt shifts in Intergovernmental Panel
on Climate Change climate models ™"

—
Prendustrial 0 1 2 3 4 11
Lowest Global Warming level of abrupt occurrence (K)

Sea ice bimodality: (a):bcc-csml-1, (b):bec-csml-1-m, (c):GFDL-CM3, (d}: |PSL-CM5A-LR, (e):GISS-E2-R, (f):G|S5-E2-H
Upwelling change: (g):IPSL-CM5A-LR

Arctic sea ice collapse: (h):CCSM4, (i):CNRM-CMS, (j):CSIRO-Mk3-6-0, {k):MP|-ESM-LR, {|):HadGEM2-ES

Abrupt sea ice loss: {m):CanESMZ, (n):CMCC-CESM, (0):MRI-CGCM3, (ph:FGOALS-g2

Abrupt sea ice increase: (g):MRI-CGCM3

Convection collapse: (r):GISS=E2-R, (s} CESM-CAMS, (t}:GFOL-ESM2G, (u):M|ROCS, (v):CSIRO=Mk3=6-0

AMOC-induced collapse: (w):FIO-ESM

Permafrost collapse: (A):HadGEM2-ES Snow melt: (B):GIS5-E2-H, (C):GISS-E2-R
“egetation composition change: {(D):BNU-ESM Forest expansion: (E):HadGEM2-ES
Forest Dieback: (F):HadGEM2-ES, (G):IPSL-CMSA-LR Category | Category |l Category Il Category IV

Fig. 1. Geographical location of the abrupt climate change occurrences. All 30 model cases listed in Table 1 are depicted. Of the 41 abrupt shifts, when
regarding similar events for different simulations by the same climate model, this reduces to 30 distinct model cases. Marker color indicates the lowest global
warming level, at which the abrupt change occurs, and the shape indicates category.



Future Climate Surprises
by Tim Lenton

Chapter 17 In

The future of World’s Climate
Ann Henderson-Sellers and Kendal Mcguffie eds, Elsevier,2012



S Probability of |
Risk = occurrence X -

A high impact event with low probability
is as important as | |

a low impact event with high probability



CONCLUSION

e Earth’s climate can change rapidly

e A cascade of tipping points can
trigger rapid climate change

 Rapid climate change iIs a Ilow-
probability but high impact event

e The 1.5 C limit proposed in the Paris
agreement is based on abundant
caution
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Syukuro Manabe &
R. SARAVANAN Anthony J. Broccoli

BEYOND
GLOBAL

WARMING

How Numerical
Models Revealed
the Secrets of
Climate Change




PERIODS ASSOCIATED TO THE MAIN TERMS

PRECESSION
N Ampl. Period
(years)
1. 0.0186080 23716
2. 0.0162752 22428
3.-0.0130066 18976
4. 0.0098883 19155

OBLIQUITY

N Ampl. Period
() (years)

1. -2462.22 41000

2, -857.32 39730

3. -629.32 53615

4. -41428 40521

5. -311.76 28910

IN THE ANALYTICAL EXPANSIONS OF

ECCENTRICITY
N Ampl. Period

(vears)
1. 0.011029 412885
o -0.008733 94945
3. -0.007493 123297
4. 0.006724 99590
5. 0.005812 131248

6. —0.004701

2305441
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Scale and Scaling in the Climate System

Shaun Lovejoy', M. Crucifix? and A. de Vernal®
Montreal, Canada, 5-7 October 2015
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Figure 1: The temperature spectrum (E(w)) giving the variance per interval of frequency (w). The bottom (grey)
is M. Mitchell’s “educated guess” showing the still dominant view of a fairly flat (white noise) “background”



