HOW STABLE IS THE EARTH'S CLIMATE?

J.Srinivasan Divecha Centre for Climate Change Indian Institute of Science, Bengaluru

AVERAGE GLOBAL TEMPERATURES - the last 20,000 years

I was skeptical about climate change. I was cautious about crying wolf...But I'm no longer skeptical

David Attenborough

Klaus Hasslemann

Giorgio Parisi

Syukuro Manabe

The Nobel Prize in Physics 2021 was awarded "for ground breaking contributions to our understanding of complex systems" with one half jointly to Syukuro Manabe and Klaus Hasselmann "for the physical modelling of Earth's climate, quantifying variability and reliably predicting global warming"

CO2 increase causes cooling in the stratosphere and warming in the troposphere

That vertical pattern of change is what Hasselmann described in 1979, as а spatial fingerprint of change that was distinct enough from patterns of internal variability in the Earth's climate that it could be used to detect the greenhouse gas signal in observations.

Noise can lead to periodic fluctuations in the earth's climate !

Tellus (1982) 34, 10-16

Stochastic resonance in climatic change

By ROBERTO BENZI, Istituto di Fisica dell'Atmosfera, C.N.R., Piazza Luigi Sturzo 31,00144, Roma, Italy,

GIORGIO PARISI, I.N.F.N., Laboratori Nazionali di Frascati, Frascati, Roma, Italy, ALFONSO SUTERA, The Center for the Environment and Man, Hartford, Connecticut 06120, U.S.A. and ANGELO VULPIANI, Istituto di Fisica "G. Marconi", Università di Roma, Italy

Fluctuations in weather Natural climate Variability Anthropogenic **Climate change**

Maximum temperature: Bengaluru

• TIME SCALE TIME SCALE

CLIMATE IS DIFFERENT FROM WEATHER

- HOURS-DAYS

WEATHER

- SPATIAL SCALE - **REGIONAL**
- MAIN COMPONENTS - ATMOSPHERE

30 YEARS & BEYOND

REGIONAL-GLOBAL

OCEAN, LAND...

MAIN COMPONENTS

ATMOSPHERE.

HUMANS

SPATIAL SCALE

CLIMATE

CLIMATE IS THE STATISTICS OF WEATHER AVERAGED OVER TIME

Plot to compare the Maximum temperature data of Bangalore and Chennai in the month of June for the period 1969-2013

Calendar year before present

2021 was the fifth warmest year on record

Annual global-average temperature increase (degrees C) above pre-industrial level

BBC

Source: ERA5. Copernicus Climate Change Service

SIMPLE CLIMATE MODELS

The global mean temperature is determined by the delicate balance between absorbed solar radiation and emitted earth's radiation

absorption of solar radiation(a function of temperature) = earth's emission to space (a function of Temp)

Four minor gases (CO2, H2O, CH4 & **O3) control the** earth's surface temperature by reducing the amount of radiation that can emitted to space

CO2, H2O, CH4 & O3

SURFACE Temperature

Joseph Fourier (French, 1768-1830)

Svante Arrhenius (Swedish, 1859-1927)

Guy Callendar (English, 1898-1964)

Svante Arrhenius calculated that emissions from industry might someday warm the earth. In 1939, G.S.Callendar argued that carbon dioxide causes global warming. Arrhenius and Callendar thought that global warming will be beneficial !

GREENHOUSE EFFECT

GHE = RADIATION EMITTED BY PLANET'S SURFACE -RADIATION LEAVING THE PLANET EARTH = $390 - 240 = 150 \text{ W/m}^2$ VENUS=16100-200=15,900 W/m²

The Greenhouse Effect: clear sky

WATER VAPOR CONSIDERED AS A FEEDBACK

Kiehl and Trenberth 1997

Global mean temperature is controlled mainly by carbon dioxide (With water vapor acting as a powerful amplifier) Amount of water vapor on earth is controlled by CO, through its impact on global mean temperature.

Snow and ice covered area control the earth's surface temperature by altering the amount of solar radiation reflected to space

Overall energy balance of the Earth

Absorbed solar = emitted by earth-atmos

$S/4 \{1-\rho(T)\} = Emission (T, GHG)$

ρ=Reflection of solar rad (called albedo) is a function of temperature T

Natural climate change

Oscillations between ice-free and ice-covered earth

SNOWBALL EARTH

The Story of a Maverick Scientist and His Theory of the Global Catastrophe That Spawned Life As We Know It

Gabrielle Walker

Paul Hoffman

Paleogeographic extent of continental ice sheets and permanent sea ice over the last 800 Myr (red lines indicate major mass extinctions)

Fig. 5. Cryogenian paleogeography and the breakup of Rodinia. Global paleo-

COMPLEX CLIMATE MODELS

Conservation equations for gridbox-mean quantities in a model

Mass

 $\nabla \cdot (\rho \overline{\mathbf{u}}) = 0$

Thermodynamic energy

Radiation

Old fashioned division: terms on the left are "dynamics", terms on the right are "physics"

Processes in italics are purely due to unresolved processes:

- = (F_{θ}) · Latent heat release · Transport by turbulence high resolution model (e.g.
 - Transport by deep convection m)
- Water vapour

Dt

- Condensation/evaporation Precipitation Transport by turbulence

 - Transport by deep convection
- Momentum (acceleration = force per unit mass)

 $\frac{D\bar{\mathbf{u}}}{Dt} + f\hat{\mathbf{k}} \times \bar{\mathbf{u}} + \frac{1}{\rho} \nabla p + \hat{\mathbf{k}}g = \mathbf{F}_{\mathbf{u}} \stackrel{\cdot}{\underset{\mathsf{Transport by turbulence}}{\overset{\cdot}{\underset{\mathsf{Transport by deep}}{\overset{\cdot}{\underset{\mathsf{Transport by deep}}}}}$

Gravity wave drag

- convection

Knutson et al., Bulletin of the American Meteorological Society, December 2017

Hall and Manabe , Journal of Climate, 1999

The 500-yr annual-mean time series of the global-mean surface temperature change in the integrations where CO2 is doubled to 720 ppm relative to the unperturbed variability experiments, where CO2 is fixed at 360 ppm.
CO₂ and incoming solar radiation are primary drivers of the past climate change

1991 - 1996

The Long-term Inorganic Carbon Cycle:

The global temperature is increasing ten times faster than in the past

CO₂ increased by 20 ppm in **100 years during an abrupt** climate change (15,000 years ago). In the 21st century CO₂ increased by 20 ppm in 10 years

TO UNDERSTAND HOW EARTH'S CLIMATE WILL EVOLVE IN THE FUTURE, WE MUST UNDERSTAND HOW NATURAL CLIMATE VARIED BEFORE 1850

An overview of climatic variability and its causal mechanisms. J. Murray Mitchell Jr. QR, 1976

A.S. von der Heydt et al.

Global and Planetary Change 197 (2021) 103399

Variations of the Earth's surface temperature

Global temperature in the Common Era

INDEPENDENT MINDS

THE HOCKEY Stick Illusion

Climategate and the Corruption of Science

...one of the best science books in years... deserves to win prizes.' MATT RIDLEY, Prospect

A.W. MONTFORD The book uses the full range of smear tactics to peddle climate change denial

1200 1400 1600 1800 AND THE CLIMATE Vear THE CLIMATE VARAS

00

THE

HOCKEY

DISPATCHES FROM THE FRONT LINES

Michael E. Mann

ICE AGES

Stirations & Erratics Louis Agassiz

Milankovitch Hypothesis

Milankovitch Hypothesis: Polar summers with lower solar radiation lead to the accumulation of the ice in polar regions

Incident solar radiation (Wm⁻²)

Deviation from present day value

115 kyr BP

125 kyr BP

- Scientists searched for the oldest ice in an ice sheet, drill from the top of the highest ice domes.
- Drilling is done over the summer in which it takes a few summers to drill completely through an ice sheet.
- Some ice cores can be dated by counting annually deposited layers.

δ¹⁸Ο

- As water vapor is transported poleward in the hydrologic cycle, each cycle of evaporation and condensation lowers the ratio of H₂¹⁸O to H₂¹⁶O, in a process called fractionation.
- This ratio is expressed as $\delta^{18}O$.

$$\delta^{18}O = \frac{{}^{18}O/{}^{16}O_{sample} - {}^{18}O/{}^{16}O_{std}}{{}^{18}O/{}^{16}O_{std}} \times 1000$$

δ^{18} O and Global Ice Volume

- As ice sheets grow, the water removed from the ocean has lower δ^{18} O than the water that remains.
- Thus the δ^{18} O value of sea water in the global ocean is linearly correlated with ice volume (larger δ^{18} O \rightarrow larger ice sheets).
- A time series of global ocean δ^{18} O is equivalent to a time series of ice volume.

383

The change in Solar radiation was amplified many times by postive feedbacks

Years before present (in thousands)

The stacked benthic foraminifera isotope record of the Pleistocene (blue). The record is a proxy for global ice volume. The red curve is the annually averaged insolation at 65N latitude Quantification and interpretation of the climate variability record By Anna Von der Hydet et al., Global and Planetary Change, 2021

Spectral Analysis of Solar Input

Not immediately obvious why eccentricity has such a low peak

This suggests that spectral analysis may not properly identify low frequencies on the background of a rapidly oscillating time series

If the rapidly varying precession of the equinoxes acts merely as a "carrier wave" for changes in obliquity and eccentricity, precession would not affect climate, and the non-appearance of a spectral peak corresponding to precession might be understandable.

Glacial Cycles

Salzman-Maasch Model

Barry Salzman and Kirk A. Maasch, "A Low-Order Dynamical Model of Global Climatic Variability Over the Full Pleistocene," Journal of Geophysical Research 95 (D2), 1955-1963 (1990)

Solution of the dynamical system climate model of Saltzman and Maasch (1988) for the past 400 thousand years subject to the earth orbital radiative forcing. The model prediction for ice (top panel) and carbon dioxide (bottom panel) are shown. For comparison, the dashed blue curve in the top panel is the SPECMAP $\partial 180$ estimate of ice variations and the dashed red curve in the bottom panel is the Vostok core estimate of CO₂ variation.

Bedrock Sinking

- A 3.3 km thick ice sheet
 - Eventually would reach equilibrium by depressing the bedrock 1.0 km.
 - This would lower the ice sheet's surface elevation 1.0 km
 - Resulting 6.5° C change in temperature
 - Large effects on mass balance of the ice sheet.

Simulation of the last glacial cycle by a coupled sectorally averaged climate icesheet model, Gallee et al., Journal of Geophysical Research, 97,1992

Copyright © 2004 Pearson Prentice Hall, Inc.

FIGURE 4. The potential $V(x,t) = \frac{1}{4}x^4 - \frac{1}{2}x^2 - \lambda(t)x$, with $\lambda(t) = K \cos(2\pi t)$, when K exceeds the threshold λ_c . In the deterministic case, with $\varepsilon \ll 1$, the overdamped particle jumps to a new well whenever $|\lambda(t)|$ becomes larger than λ_c , leading to hysteresis. Larger values of ε increase the size of hysteresis cycles, but additive noise of sufficient intensity decreases the size of typical cycles, because it advances transitions to the deeper well.

Fig. 6. The solution trajectory of Equation (5) when A = 0.001 and a = 0.32 (thin line) or 0.00 (strong line).

Case	a	A	Stochastic Resonance Happened?
1	0	0.001	No
2	0.22	0.001	No
3	0.26	0.001	Yes
4	0.28	0.001	Yes
5	0.32	0.001	Yes
6	0.39	0.001	No
7	0.32	0	No

(A)

Trends in Ecology & Evolution

Abrupt Change in Atlantic Meridional Ocean Circulation(AMOC)

Central Greenland Temperature Deviations

Data from Meese et al. (1994) and Stuiver et al. (1995). 20 year running mean, δ^{18} O-temp conversion based on Cuffey et al, 1995

The AMOC tipping point in many models is around 750 ppm of CO2 in many model simulations

THC internal feedbacks

Stocker et al., 2001

Fig. 9.3 High-pass filtered time series of the temperatures in Greenland (a) and Antarctica (b) derived from ice cores. (c) is the simulated temperature according to (9.2) with input (a). The abrupt Dansgaard–Oeschger events of the north hence become manifest in the local isotope maxima in Antarctica (A1, A2, ...). Figure from Stocker and Johnsen (2003).

Introduction to Climate Modelling by Thomas Stocker, Springer, 2011

Manabe and Stouffer (1994)

Risk of tipping the overturning circulation due to increasing rates of ice melt

Lohmann and Ditlevsena Proceedings of the National Academy of Sciences March 2021

Using a global ocean model subject to freshwater forcing, we show that a collapse of the Atlantic Meridional Overturning Circulation can indeed be induced even by small-amplitude changes in the forcing, if the rate of change is fast enough

Abrupt climate change as a rate-dependent cascading tipping point

Lohmann et al., Earth System Dynamics, 2021

An abrupt resurgence of the overturning circulation is induced before a bifurcation point is reached due to the fast rate of change of the sea ice. Because of the multi-scale nature of the climate system, this type of tipping cascade may also be a risk concerning future global warming. The relatively short timescales involved make it challenging to detect these tipping points from observations

Vellinga and Wood (2008)

Fig. 4 Difference in surface air temperature between experiments PG and G in the years 2049–2059. This difference is therefore the temperature change that a sudden THC shutdown would cause relative to an IS92a global warming scenario in 2049–2059. The area where cooling causes temperature to fall below pre-industrial conditions is outlined by the heavy solid line, areas where the difference is not significant have been masked.

Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning Mulitza et al.,Paleoceanography , 2008

To explore the response of the global climate to a weakening of the Atlantic thermohaline circulation, a perturbation experiment is conducted in which an extra freshwater forcing of 0.6 Sv is uniformly distributed over the northern North Atlantic (55°–75°N, 63°W–4°E) for the entire 60-yr duration of the experiment.

Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation

Niklas Boers^{D1,2,3}⊠

BRIEF COMMUNICATION

https://doi.org/10.1038/s41561-021-00699-z

Check for updates

Current Atlantic Meridional Overturning Circulation weakest in last millennium

Current Atlantic Meridional Overturning Circulation weakest in last millennium

After a long and relatively stable period, there was an initial weakening starting in the 19th century, followed by a second, more rapid, decline in the 20th century, leading to the weakest state of the AMOC occurring in recent decades.

Simulated with the MPI-ESM-MR global climate model of the Max Planck Institute in Hamburg¹¹. **a**, Time series of the maximum overturning stream function (red) and the AMOC index (blue). Thin lines show annual values,

Rahmstorf, S., Box, J., Feulner, G. et al. Exceptional twentiethcentury slowdown in Atlantic Ocean overturning circulation. Nature Clim Change 5, 475–480, 2015

AMOC index = Sub-polar Gyre SST - NH SST

nature

Explore content Y About the journal Y Publish with us Y Subscribe

nature > comment > article

COMMENT 27 November 2019 Correction 09 April 2020

Climate tipping points – too risky to bet against

The growing threat of abrupt and irreversible climate changes must compel political and economic action on emissions.

TIPPING POINTS

ICE AGE

PRESENT

FUTURE

RAISING THE ALARM

Evidence that tipping points are under way has mounted in the past decade. Domino effects have also been proposed.

A. Amazon rainforest Frequent droughts

B. Arctic sea ice Reduction in area

C. Atlantic circulation In slowdown since 1950s **D. Boreal forest** Fires and pests changing

F. Coral reefs Large-scale die-offs

G. Greenland ice sheet Ice loss accelerating H. Permafrost Thawing

I. West Antarctic ice sheet Ice loss accelerating

J. Wilkes Basin, East Antarctica Ice loss accelerating

onature

Source: T. M. Lenton et al.

ANALYSIS

As Climate Change Worsens, A Cascade of Tipping Points Looms

BY FRED PEARCE · DECEMBER 5, 2019

Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models

Fig. 1. Geographical location of the abrupt climate change occurrences. All 30 model cases listed in Table 1 are depicted. Of the 41 abrupt shifts, when regarding similar events for different simulations by the same climate model, this reduces to 30 distinct model cases. Marker color indicates the lowest global warming level, at which the abrupt change occurs, and the shape indicates category.

Category | 🔺 Category || 🔵 Category || 🔻 Category |V

Forest Dieback: (F):HadGEM2-ES, (G):IPSL-CM5A-LR

Future Climate Surprises by Tim Lenton Chapter 17 in The future of World's Climate

Ann Henderson-Sellers and Kendal Mcguffie eds, Elsevier, 2012

A high impact event with low probability is as important as a low impact event with high probability

CONCLUSION

- Earth's climate can change rapidly
- A cascade of tipping points can trigger rapid climate change
- Rapid climate change is a lowprobability but high impact event
- The 1.5 C limit proposed in the Paris agreement is based on abundant caution

NOBEL PRIZE IN CHEMISTRY 1995

Photo from the Nobel Foundation archive. Paul J. Crutzen

Photo from the Nobel Foundation archive.

Mario J. Molina

Photo from the Nobel Foundation archive.

F. Sherwood Rowland

One Dobson Unit is the number of molecules of ozone that would be required to create a layer of pure ozone 0.01 millimeters thick at a temperature of 0 degrees Celsius and a pressure of 1 atmosphere

Syukuro Manabe & **Anthony J. Broccoli** EYUN UBA **How Numerical Models Revealed**

the Secrets of **Climate Change**

PAST, PRESENT, AND FUTURE OF CLIMATE PREDICTION

PERIODS ASSOCIATED TO THE MAIN TERMS						
IN THE ANALYTICAL EXPANSIONS OF						
PRECESSION		OBLIQUITY		ECCENTRICITY		
N Amp	ol. Period (years)	N Ampl. (")	Period (years)	N	Ampl.	Period (years)
1. 0.01860	80 23716	12462.22	41000	1.	0.011029	412885
2. 0.01627	52 22428	2857.32	39730	2.	-0.008733	94945
30.01300	66 18976	3629.32	53615	3.	-0.007493	123297
4. 0.00988	83 19155	4414.28	40521	4.	0.006724	99590
		5. –311.76	28910	5.	0.005812	131248
				6.	-0.004701	2305441

Figure 1: The temperature spectrum ($E(\omega)$) giving the variance per interval of frequency (ω). The bottom (grey) is M. Mitchell's "educated guess" showing the still dominant view of a fairly flat (white noise) "background"