Quantum toroidal algebras: braid group actions and automorphisms (arXiv:2304.06773)

Duncan Laurie

University of Oxford

November 2023

0	
Duncan	l aurie
Duncan	Luunc

э

メロト メタト メヨト メヨト

Kac-Moody Lie algebras

Generalised Cartan matrices $A = (a_{ij})_{i,j \in I}$ with

 $\cdot \text{ all } a_{ii} = 2 \qquad \cdot a_{ij} \leq 0 \text{ if } i \neq j \qquad \cdot a_{ij} = 0 \text{ iff } a_{ji} = 0$

Dynkin diagrams have vertex set I and $a_{ij}a_{ji}$ edges

$$\cdot i \rightarrow j ext{ if } a_{ij} < a_{ji} \qquad \cdot j \rightarrow i ext{ if } a_{ij} > a_{ji} \qquad \cdot i \leftrightarrow j ext{ if } a_{ij} = a_{ji}$$

Kac-Moody algebras have generators e_i , f_i , $\pm h_i$ for each $i \in I$ and relations

 $\cdot [h_i, h_j] = 0$

$$[h_i, e_j] = a_{ij}e_j, [h_i, f_j] = -a_{ij}f_j$$

- $\cdot [e_i, f_j] = \delta_{ij} h_i$
- Serre relations

イロト イヨト イヨト

Kac-Moody Lie algebras

type of \mathfrak{g}	finite	affine	indefinite
eigenvalues of A	positive	positive and zero	positive and negative

The affine case has $\ker(A) = \langle \delta \rangle$ for a unique positive vector $\delta = (a_0, \dots, a_n)$.

Loop realization of untwisted affine Lie algebras

finite dimensional simple Lie algebra \mathfrak{g} of type X_n regular rational maps $S^1 \rightarrow \mathfrak{g}$ loop Lie algebra $\mathfrak{g}[t, t^{-1}]$ $[xt^m, yt^n] = [x, y]_{\mathfrak{a}} t^{n+m}$ adjoin central c $\mathfrak{g}[t,t^{-1}] \oplus \mathbb{C}c$ $[xt^m, yt^n] = [x, y]_{\mathfrak{a}} t^{n+m} + m(x, y)\delta_{m+n,0}c$ adjoin derivation d $\mathfrak{q}[t, t^{-1}] \oplus \mathbb{C}c \oplus \mathbb{C}d$ $[d, xt^m] = mxt^m$ 112

affine Lie algebra $\hat{\mathfrak{g}}$ of type $X_n^{(1)}$

Duncan Laurie

University of Oxford

э

Quantum affine algebras $U_q(\hat{\mathfrak{g}})$

<u>Central elements</u>: C corresponds to $t_{\delta} = t_0^{a_0} \dots t_n^{a_n}$.

Duncan Laurie

ICTS November 2023 5 / 16

- 2

イロン イロン イヨン イヨン

Quantum affinization

- $\cdot\,$ This process can be applied to any Drinfeld-Jimbo quantum group.
- · Applying it to $U_q(\mathfrak{g})$ gives the Drinfeld new presentation of $U_q(\hat{\mathfrak{g}})$.
- · What happens if we apply it to $U_q(\hat{\mathfrak{g}})$ in its Drinfeld-Jimbo presentation?

イロン イボン イヨン イヨン 三日

Quantum toroidal algebras $U_q(\mathfrak{g}_{tor})$

The quantum toroidal algebra is the quantum affinization of $U_q(\hat{\mathfrak{g}})$.

- · $U_q(\mathfrak{g}_{tor})$ contains vertical and a horizontal quantum affine subalgebras.
- · These subalgebras U_v and U_h generate the entire algebra.
- Each contains a central element: C and $k_{\delta} = k_0^{a_0} \dots k_n^{a_n}$.

イロト イヨト イヨト イヨト

Why study quantum toroidal algebras?

· [Ginzburg-Kapranov-Vasserot '95] In the ADE case,

 $U_q(\mathfrak{g}_{\mathrm{tor}}) \curvearrowright \mathbb{C}[$ some vector bundles on an algebraic surface][Nakajima '01] In the simply laced case,

$$U_q(\mathfrak{g}_{\mathrm{tor}}) o igoplus_{\underline{v}} \mathcal{K}^{\mathcal{G}}(\mathcal{M}(\underline{v},\underline{w}) imes_{\mathcal{M}_0(\underline{v},\underline{w})} \mathcal{M}(\underline{v},\underline{w}))$$

- \cdot $U_q(\mathfrak{g}_{\mathrm{tor}})$ are the next class of quantum affinizations after $U_q(\hat{\mathfrak{g}})$
- · Studying $U_q(\mathfrak{g}_{tor})$ could lead to results for $U_q(\hat{\mathfrak{g}})$
- \cdot [Varagnolo-Vasserot '95] Schur-Weyl duality of $U_q(\mathfrak{sl}_{n+1,\mathrm{tor}})$ with DAHA

Braid groups

Kac-Moody algebras have braid groups $\mathcal{B} = \langle T_i | i \in I, \underbrace{T_i T_j T_i \dots}_{a_{ij}a_{ji}+2} = \underbrace{T_j T_i T_j \dots}_{a_{ij}a_{ji}+2} \rangle.$

Let $\boldsymbol{\Omega}$ be the outer automorphism group of the affine Dynkin diagram.

Extended affine braid group has Coxeter presentation $\dot{\mathcal{B}} = \Omega \ltimes \langle T_0, \ldots, T_n \rangle$ with $\pi T_i \pi^{-1} = T_{\pi(i)}$.

$$\Omega \quad T_0 \quad T_1 \ \cdots \ T_n$$

Bernstein presentation of $\dot{\mathcal{B}}$ generated by finite braid group $\langle T_1, \ldots, T_n \rangle$ and lattice $\{X_\beta : \beta \in P^{\vee}\}$.

(the ω_i^{\vee} are the fundamental coweights)

$$\begin{array}{cccc} \vdots & \vdots \\ X_{\omega_1^{\vee}}^{\vee} & \dots & X_{\omega_n^{\vee}}^{\vee} \\ \hline T_1 & \cdots & T_n \\ \hline X_{-\omega_1^{\vee}}^{\vee} & \dots & X_{-\omega_n^{\vee}} \\ \vdots & \vdots \end{array}$$

<ロト < 同ト < ヨト < ヨ)

Extended double affine braid group $\ddot{\mathcal{B}}$

- \cdot T_0, \ldots, T_n satisfy the braid relations
- $\cdot \pi T_i \pi^{-1} = T_{\pi(i)}$
- $\cdot \pi X_{\beta} \pi^{-1} = X_{\pi(\beta)}$

$$T_i X_{\beta} = X_{\beta} T_i$$
 if $(\beta, \alpha_i) = 0$,

 $\cdot T_i^{-1} X_{\beta} T_i^{-1} = X_{s_i(\beta)} \text{ if } (\beta, \alpha_i) = 1$

3

< □ > < □ > < □ > < □ > < □ >

Braid groups in type A_3

Actions of braid groups on quantum algebras - the affine level

Theorem (Lusztig, Beck) The extended affine braid group $\dot{\mathcal{B}}$ acts on the quantum affine algebra $U_q(\hat{\mathfrak{g}})$ in all untwisted types.

- · T_i intertwines generators at vertices $j \sim i$ with those at i
- $\cdot \ \pi \in \Omega$ permutes the generators around: $\pi(x_i^{\pm}) = x_{\pi(i)}^{\pm}$ and $\pi(t_i) = t_{\pi(i)}$

- T_i intertwines generators at vertices $j \sim i$ with those at i
- · $X_{\omega_i^{\vee}}$ shifts generators at vertex *i* 'up and down' (ie. $x_{i,m}^{\pm} \rightarrow x_{i,m\mp 1}^{\pm}$)

イロン イロン イヨン イヨン

Actions of braid groups on quantum algebras - the toroidal level

<u>Theorem (L. '23)</u> The extended double affine braid group \ddot{B} acts on the quantum toroidal algebra $U_q(\mathfrak{g}_{tor})$ in all types (other than $A_1^{(1)}$ and $A_2^{(2)}$).

- · Horizontal preserves horizontal, vertical preserves vertical
- T_i intertwines generators at vertices $j \sim i$ with those at i
- $\cdot \pi \in \Omega$ permutes generators around: $\pi(x_{i,m}^{\pm}) = \pm x_{\pi(i),m}^{\pm}$, $\pi(k_i) = k_{\pi(i)}$, etc.
- · $X_{\omega_i^{\vee}}$ shifts generators at vertices *i* and 0 'up and down' their columns

イロト イヨト イヨト

Work of Miki in type A

(Miki '99) obtained an automorphism of $U_q(\mathfrak{sl}_{n+1,\mathrm{tor}})$ exchanging U_v and U_h

(Miki '00) used this to...

- classify some irreducible highest weight representations by Drinfeld polynomials
- study R-matrices on their tensor products
- relate known representations (vertex and Fock space)

< □ > < 同 > < 回 > < 回 >

Automorphisms and anti-automorphisms of $U_q(\mathfrak{g}_{tor})$ – the ADE case

<u>Idea:</u> find an involution t of $\hat{\mathcal{B}}$ exchanging \mathcal{B}_v and \mathcal{B}_h , and pass it across the action to obtain an automorphism of $U_q(\mathfrak{g}_{tor})$ exchanging U_v and U_h .

Each generator equals $b \cdot z$ for some $b \in \ddot{\mathcal{B}}$ and $z \in U_v \cap U_h$.

Theorem (L. '23) $b \cdot z \mapsto \mathfrak{t}(b) \cdot z$ extends to an automorphism Φ of $U_q(\mathfrak{g}_{tor})$.

Proposition For all $b \in \ddot{\mathcal{B}}$ we have $\Phi \circ b = \mathfrak{t}(b) \circ \Phi$.

Duncan Laurie

イロト イヨト イヨト

- 1. Extend our (anti-)automorphisms to non-simply laced types
- 2. Obtain quantum algebra analogues of other braid group phenomena
- 3. Use our automorphism to study the representation theory of $U_q(\mathfrak{g}_{tor})$

э

< □ > < □ > < □ > < □ > < □ >